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Abstract

Recent advancements in generative models have led to significant improvements
in the quality of generated images, making them virtually indistinguishable from
real ones. However, using AI generated images for training robust computer
vision models for real-world applications, especially object detection in road scene
perception, is still a challenge. AI generated images usually lack the required
diversity and scene complexity where specific objects appear with critically low
frequency in the available real datasets. An example of such applications is the
detection of emergency vehicles like police cars, fire trucks, and ambulances in road
scenes. These vehicles appear with drastically low frequencies in available datasets.
Successfully generating synthetic images of road scenes that include these types
of vehicles and using them in training downstream models would prove useful for
autonomous driving vehicles, mitigating safety concerns on the road. To address
this, this paper proposes a new approach for synthetically generating diverse,
complex, and domain-compatible images of emergency vehicles in road scenes by
employing a diffusion-based generative model pretrained on a generic dataset. We
investigate the impact of using generated synthetic images in the performance of
downstream object detection models. Finally, we thoroughly discuss challenges of
generating synthetic datasets with the proposed approach.

1 Introduction

Detecting specific and infrequent objects, such as emergency vehicles in autonomous driving, is
crucial for computer vision systems. With limited real images of these objects, generating synthetic
images is an effective solution to train object detection models. However, using deep generative
models to generate synthetic images for real-world applications faces some challenges, including:

1. Insufficient Training Samples For The Generative Model. A deep generative model
relies on a large training dataset covering different varieties of the object of interest to be
able to generate realistic images. If there’s not enough data for rare objects, synthetic images
must be used to fill the gap [18].

2. Insufficient Diversity and Scene Complexity. The majority of recent advancements in
improving the performance of generative models have been focused on enhancing the
quality of generated images and making them more photo-realistic. The AI-generated
images usually lack the required scene complexity and diversity essential for training robust
downstream models [2]. For the same reason there is normally a distribution shift between
generated images and the real ones in terms of complexity and diversity [11].
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3. Generated Images May Require Labeling. As opposed to synthetic images generated by
rendering engines, AI-generated images may require an annotation process to be ready for a
real application [18].

Figure 1: The block architecture diagram shows proposed solutions 1,2, and 3 of the proposed
approaches. The top path depicts Approach 1 and 2, masking portions of the image and using the
model to fill those in. Approach 1 generates images inside a background sampled from the real data
to maintain same domain as the real dataset. Appraoch 2 generates a synthetic background for a
real target object. The bottom path, Approach 3, alters parts of the real images as they are converted
from low to high resolution by conditioning the super-resolution model to text prompts that guide the
diffusion process toward those modifications. No masking is required as the entire input image is
subject to the model’s subtle modifications

This paper presents three methods to generate synthetic images using a generative model trained
only on a generic dataset, to overcome the challenges faced in using synthetic images for real-world
applications. The proposed approaches can be used to generate a diverse and extensive dataset from a
limited real dataset relevant to the task.

We use a diffusion-based model [10][12][5][15] that can be conditioned on different information and
be partially masked during the generative process to make carefully controlled changes to the real
images in a systematic way. This allows the generation of a sufficiently large domain-compatible
dataset that covers the required variety and complexity for training a robust downstream model.
Since the proposed approach uses real images as the basis to create the synthetic images, there is no
domain-shift between the generated images and the real dataset.

Conditioning the generative process on a set of guiding text prompts as well as partially masking
specific parts of the image during the process allows imposing a customized level of diversity while
maintaining the domain characteristics and scene complexity of the real images. The proposed
approach also allows either preserving the available annotations or automatically generating new
annotations for the synthetically generated objects.

We run several experiments to extensively assess the performance enhancement that generated images
provide to the final downstream object detection models.

2 Related Work

One of the most commonly used approaches to generate synthetic image data is through use of
photo-realistic 3D physics engines[19] [4]. These engines can be used to render images from 3D
computer-aided design (CAD) models of the target objects. The photo-realism achieved through these
image rendering engines has reached a point where synthetic images can be hardly distinguished
from real ones [8]. However, there are some drawbacks to these synthetic data generation approaches
that make them unsuitable for many practical applications. These include, but are not limited to,
requiring 3D asset development, challenges in tuning design parameters (e.g. brightness) and lack of
the required diversity and complexity in the image background.

Deep generative models including generative adversarial networks (GANs) have been vastly studied
for synthetic image generation and synthetic augmentation [24][6]. In the field of medical imaging,
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Figure 2: Approach 1 example inputs and outputs. The image and annotations are fed to a mask
generator that creates a mask based on the bounding boxes. The masked image is then fed to a
text-conditioned diffusion model generating a target object inside the mask that blends with the
background. This output is then enhanced by a text-prompt-conditioned diffusion-based super-
resolution model.

Figure 3: Approach 2. As opposed to approach 1, the mask here only covers the real object and
leaves everywhere else in the image available for the diffusion model’s generative manipulation. The
prompt composer unit randomly samples all of the background-related fields such as verb, location,
condition and time.

GAN-based data augmentation has particularly been used to improve sensitivity and specificity of
models tried on small medical imaging datasets by 5-7% [3][6].

Class imbalance has been addressed by generating additional examples of infrequent samples through
adversarial autoencorders, a GAN variant [13]. Moreover, deep learning based style transfer has
shown 2% improvements in classification accuracy over traditional augmentation strategies [26].
Style transfer, in particular, is capable of preserving image content while copying the style of a
separate, unrelated image [7].

Denoising diffusion models were initially introduced by [22]. Recent work has demonstrated the
ability of diffusion models to compete and potentially outperform traditional generative adversarial
networks in realistic image generation and producing synthetic results indistinguishable from real
images to human evaluators in some cases [5][27][15].

3 Methodology

First, a pretrained diffusion model [5] [16][15] is fine-tuned on a generic dataset which does not
necessarily include the infrequent target objects (we used a generic driving dataset [25]). In order to
condition the diffusion process on text, we use a CLIP model [20] that perturbs the denoising process
mean with the gradient of the dot product of the image and text encoding with respect to the image.
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Next, we explore three different image manipulation approaches with this model that allows generating
synthetic images that contain a large variety of infrequent objects of interest. These synthetic images
are then used for training downstream object detection models as shown in Figure 1.

Finally, a text-conditioned super-resolution diffusion model is cascaded with the generative model in
the pipeline to increase the resolution of the generated images. The proposed approaches are based
on the assumption that a very small but domain-relevant real dataset is available and synthetic images
are generated by manipulating those real images. In fact, using this small real data as the basis is
essential in keeping the generated images in the target domain.

In this section, the three proposed image manipulation approaches will be explained in detail.

3.1 Approach 1: Synthetic Infrequent Objects in a Real Background

Approach 1, depicted in the upper part of Figure 1, generates instances of infrequent objects of
interest inside a background sampled from real data to maintain the generated images in the same
domain as the real dataset. This approach can be employed to generate a sufficiently large synthetic
dataset even if the real dataset does not include any images containing the infrequent target objects.

The architecture of this approach consists of four main components: A mask generator block, a text
prompt composer unit, a text guided diffusion generative model and a super-resolution model.

The input image serving as background and corresponding annotations are first fed to a mask generator
block which proposes a mask based on the current bounding boxes in the image. The generated mask
is then applied to the original image and the resulting masked image is fed to the text conditioned
diffusion model. The diffusion model iteratively manipulates the masked part of the image following
the input text prompt guidance until it generates an instance of the target object inside the masked
section which is well blended with the background. The output of this model is then fed to a diffusion-
based super-resolution model [16] to enhance its resolution. The super-resolution model can also be
conditioned on the text prompt for improved enhancement. Figure 2 illustrates a few examples of the
inputs and output endpoints of the pipeline of this approach.

In the rest of this subsection, the mask generator and prompt composer blocks are described.

3.1.1 Mask generator block

This block proposes a region for masking the input image based on the available bounding boxes
in the annotations. In order to find a proper area for the placement of the target object, one or more
adjacent bounding boxes are randomly picked and merged together to make a target bounding box
while the following rules are met:

• The proposed bounding box should not cut any of the other bounding boxes to avoid
unrealistic coincidences between the generated objects and the ones in the background.

• If needed, the orientation of the bounding box should be compatible with the required
object alignment. Usually the orientation of the bounding box dictates the orientation of the
generated object and can be used as an additional factor for randomization.

Other customized rules can be integrated depending on the target application.

3.1.2 Text prompt composer unit

This block composes a text prompt to guide the diffusion process toward generating the desired target
image. Each composed prompt consists of five main components as follows:

Subject: In approach 1, subject is randomly sampled from the list of infrequent target
objects.
Verb: Verb is randomly sampled from a list of possible actions relevant to the target
object. For example for a driving scene dataset, possible verbs can be "driving", "crossing",
"parking".
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Figure 4: Approach 3 modifies real images during their conversion from low to high resolution. The
approach modifies real images by conditioning a super-resolution model with text prompts guiding
the diffusion process. No masking is needed as the entire image is subject to modifications. Text
prompts for modifications are randomly selected from an application-relevant list and other fields
are extracted from annotations or meta-data. Altered versions of the image can be generated by
randomizing based on conditions like weather and time of day.

Location: Represents the location of the target object in the image and it can be either
extracted from meta data (approach 1) or randomly sampled from possible options (approach
2).

Condition: This field describes a global condition for the image. For example for a road
scene dataset this field can describe the weather condition, e.g. rainy, snowy, foggy.

Time: Optionally describes the time of day, e.g. morning, night, sunset.

3.2 Approach 2: Real Infrequent Objects in Synthetic Background

This approach can be also represented by the top part of Figure 1. However instead of generating
target objects in a real background, it generates a synthetic background for a real target object. The
target object is first cropped from a real image and after random resizing is placed in a random
position in a blank (all zeros) background. The resulting combinations is then fed to the diffusion
model. There are two important differences between this approach and approach 1:

1. As opposed to approach 1, in this approach the mask only covers the real object and leaves
everywhere else in the image available for the diffusion model’s generative manipulation.
This results in generation of a background that follows the text prompt guidance and blends
well with the real object.

2. In this approach, the prompt composer unit randomly samples all of the background-related
fields such as verb, location, condition and time from the the corresponding lists that are
provided to the module based on the target application. The only field that will be extracted
from the annotation is the type of target object that has been cropped from the real image.

Figure 3 illustrates the steps of this approach in an example.

3.3 Approach 3: Real Images Globally Altered

The third approach is represented by the bottom part of the block diagram in Figure 1. In this
approach, certain aspects of the real images are altered as they are converted from low to high
resolution by conditioning the super-resolution model to text prompts that guide the diffusion process
toward those modifications. As suggested by the diagram, in this approach no masking is required as
the entire input image is subject to the model’s subtle modifications. In order to propose suitable text
prompts for randomized modifications to input images, the text composer unit randomly samples the
condition field from a list of application-relevant conditions while rest of the fields are extracted form
the annotations or meta-data if it is available. For example, multiple altered versions of an input real
image can be generated synthetically by randomizing on weather condition or the time of the day.
Figure 4 shows some examples of these modifications along with their corresponding text prompts.
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Figure 5: Examples of practical challenges with text condition image generation. We read the
images left to right in each row. Image 1 (row 1, image 1): the vehicle is too large compared to it’s
surroundings. Image 2 (row 1, image 2): ambulance is perpendicular to the street and not parked, this
would not happen real life. Image 3 (row 1, image 3): the fire truck is too small. Image 4 (row 1,
image 4): the white police car in the front is smaller than the black police car in the back, making the
white car look like a toy. Image 5 (row 2 image 1): the van is in the pedestrian walkway. Image 6
(row 2, image 3): the truck in the front is way bigger than the ambulance behind it. Image 7 (row 2
image 3): the two generated police vehicles look too close together. Image 8: observe a flying car.

4 Dataset

In this section, we outline the data used for experimentation. The real train dataset (R) is used for
generating the Synthetic Type-1 (S1) and Synthetic Type-2 (S2) images. The augmented dataset
(AUG) is created from the real emergency vehicle data using standard augmentation methods and
serves as a baseline. Table 1 shows the class distribution of the train and test subsets of the real data
as well as the augmented dataset.

Table 1: Datasets Used for Experimentation

Dataset Num. images Medical Fire Police Normal
Real-Train (R) 5215 47 42 126 5000
Synthetic Type-1 (S1) 1876 487 576 1028 0
Synthetic Type-2 (S2) 1875 642 366 1081 0
Augmented (AUG) 1876 383 372 1121 0
Real-Test (R-Test) 1539 268 68 203 1000

4.1 Real Data (Real-Train, Real-Test)

The LISA-Amazon Vehicle and Scene Attributes (LAVA) dataset [17] has been collected as a part
of a collaboration between the Amazon Machine Learning Solutions Lab with the Laboratory of
Intelligent and Safe Automobiles at the University of California, San Diego (UCSD) to build a large
and richly annotated driving dataset with fine-grained vehicle, pedestrian, and scene attributes.

The LAVA dataset is annotated for all types of vehicles, traffic signs, traffic lights and pedestrians
with 2D bounding boxes, class labels and some meta-data. A subset of the LAVA dataset containing
all the images with emergency vehicles. was separated and used for generating synthetic images and
training the downstream object detection models. We refer to this subset as the LAVA-emergency
dataset R-Train.

Using the same LAVA dataset, we sampled 5000 frames for the normal vehicle class. These are
any non-emergency vehicles that appear frequently on the road. Since emergency vehicles like fire,
medical, and police are rare occurrences on the road, we ensure 5-30% of the data in our experiments
are emergency vehicles.
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4.2 Augmentated Data

To benchmark our synthetic data generation approaches, we perform classic augmentation techniques
using the Albumentations library [1] on the real emergency vehicles in Real-Train. Comparing
synthetic data with augmented real data provides a baseline for the performance of models trained on
synthetic data. Table 2 show the transformations used in augmented dataset (AUG)

Table 2: Augmentation Types Used for Augmentations (AUG) Dataset

Augmentation Type Num. images
Horizontal Flip 157
Random Brightness Contrast 157
Random Shadow 157
MudSpatter 157
ISONoise 157
ToSepia 157
HorizontalFlipSunFlare 157
PixelDropout 157
RainSpatter 157
RandomToneCurve 157
Equalization 157
Blur 149
total 1876

5 Experiments

5.1 Experimental Setup

Each experiment uses real data (R), combined with one or more types of synthetic images (S1, S2, or
S1+S2) to detect medical, fire, and police emergency vehicles. We benchmark our solution against
standard augmentation techniques, as outlined in Table 2. The purpose of these experiments is to
show how each of the synthetic data generation approaches improves performance of the downstream
object detection models when combined with the real data.

For better understanding of the evaluation results, we group the synthetic data generation techniques
into three general types. Type-1 (S1), represents the approaches where the emergency vehicles
themselves are synthetically generated (only Approach 1). Type-2 (S2) represents all the approaches
where the emergency vehicles are real but they have been placed in a synthetically generated or
modified background (Approach 2 and approach 3). Table 1 shows the distribution of generated data
over different emergency vehicles categories.

In these experiments, for composing the text prompts, the weather condition is randomly and
uniformly sampled from a list of 5 weather conditions namely, sunny, rainy, snowy, foggy and cloudy.
The location of the vehicle is randomly sampled from one of four options: street, road (each with
a probability of 0.35), parking (with a probability of 0.25) and bridge (with a probability of 0.05).
Each synthetic image is generated by applying 100 diffusion steps to the masked real input image
(in Approach 1 and 2). The resolution of the generated images is then enhanced by applying 30
additional diffusion steps through the super-resolution model.

5.2 Results

Table 3 shows how our synthetic data generation technique improves the performance of object
detectors in comparison to conventionally augmented datasets. More precisely, the results show that
adding the combined synthetic data (R+S1+S2) results in 16% to 20% improvement in the mAP
values compared to the conventionally augmented dataset(R+AUG).

The addition of synthetic data improves the mAP on emergency vehicles and maintains the perfor-
mance on normal vehicles. The mAP of all models on R-Test emergency vehicles improves as more
synthetic data is added, and for some models such as SSD ResNet101 [14] and EfficientDet D1 [23],
the normal vehicle performance also improves.
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Table 3: Downstream Object Detection Performance for Each Dataset.

Model Dataset Num.
Train Images

mAP@0.50:0.95
Emergency

Vehicles

mAP@0.50:0.95
Normal Vehicles

SSD ResNet101 V1 FPN R 5215 0.075 0.487
SSD ResNet101 V1 FPN R+AUG 7091 0.205 0.589
SSD ResNet101 V1 FPN R+S1 7091 0.177 0.604
SSD ResNet101 V1 FPN R+S2 7090 0.297 0.609
SSD ResNet101 V1 FPN R+S1+S2 8966 0.368 0.639
EfficientDet D1 R 5215 0.056 0.306
EfficientDet D1 R+AUG 7091 0.142 0.480
EfficientDet D1 R+S1 7091 0.180 0.503
EfficientDet D1 R+S2 7090 0.203 0.518
EfficientDet D1 R+S1+S2 8966 0.287 0.508
Faster RCNN Inception ResNet V2 R 5215 0.177 0.598
Faster RCNN Inception ResNet V2 R+AUG 7091 0.256 0.613
Faster RCNN Inception ResNet V2 R+S1 7091 0.189 0.578
Faster RCNN Inception ResNet V2 R+S2 7090 0.419 0.577
Faster RCNN Inception ResNet V2 R+S1+S2 3966 0.434 0.611
YOLOX V2 R 5215 0.112 0.337
YOLOX V2 R+AUG 7091 0.157 0.340
YOLOX V2 R+S1 7091 0.229 0.439
YOLOX V2 R+S2 7090 0.333 0.449
YOLOX V2 R+S1+S2 8966 0.418 0.428
Deformable DETR R 5215 0.427 0.444
Deformable DETR R+AUG 7091 0.440 0.574
Deformable DETR R+S1 7091 0.515 0.557
Deformable DETR R+S2 7090 0.642 0.553
Deformable DETR R+S1+S2 8966 0.662 0.681

All combinations of synthetic data including S1, S2 and S1+S2 outperform the conventionally
augmented data for EfficientDet D1, YOLOX V2 [21], and Deformable DETR [28] models. For the
SSD ResNet101 and Faster R-CNN [9] models R+AUG dataset performs slightly better than R+S1.
This can be attributed to the geographical differences in emergency vehicles between the generic
dataset used to train the synthetic Type-1 dataset and the LAVA-emergency test set, R-Test.

As mentioned in section 3.1, the synthetic Type-1 (S1) emergency vehicles are generated by the
generative model trained on a generic dataset containing vehicles from a variety of different countries
in the world. The LAVA-emergency test set, R-Test, however contains only emergency vehicles
from Southern California, and thus the discrepancy in performance when involving S1 in training
compared to R+AUG can be explained by the change in emergency vehicles characteristics from
different geographies.

Increasing the number of synthetic Type-2 (S2) images always improves the performance of all of the
object detection models. Experimental comparison of R+S1 and R+S2 training shows consistently
higher performance for models trained with S2 for all models and backbones.

5.3 Practical Challenges

Although the synthetically generated images by the proposed approaches are realistic and diverse,
there are a few challenges that need to be considered when generating a dataset for a specific
application using these approaches. The most common challenges can be listed as follows:

1. Relative Size of Objects
When an image generation process is conditioned on text, sometimes the relative sizes of
the generated objects can be slightly out of proportionate with respect to the background
objects, regardless of the type of the generative model. While some downstream vision tasks
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such as object detection are not negatively impacted by this, some others may be impacted.
The top row of Figure 1 shows a few examples with slightly disproportionate objects.

2. Number of Objects
One of the concepts that normally do not transfer properly between language and vision
spaces is the exact quantity of objects. Similar to the previous case, the exact number of
objects does not impact many of the vision tasks (e.g. object detection).

3. Relative Position of Objects
Similar to relative sizes of objects, their relative positions with respect to each other can
sometimes be unrealistic when the generative process is conditioned on text. The bottom
row of Figure 5 shows a few examples impacted by this effect.

6 Conclusion

In this work, we present a new method for generating synthetic data to train computer vision models
in cases of limited real data. Our experiments show that the synthetic data generated through our
approach improves downstream object detection for infrequent objects while maintaining performance
of the majority class. The synthetic data generation solution in this paper is a practical approach to
improving infrequent object performance and is particularly crucial for safety-sensitive applications
where real data is limited.
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