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A APPENDIX

A.1 NOTATION TABLE

The notations used in this paper are presented in Table 4.

Notations Descriptions
X feature space ⊂ Rd

Y label space ⊂ Rc

x feature
y label
D probability distribution which is distributed in X × Y
DA probability distribution which is distributed in X × Y for

benign behaviors
DB probability distribution which is distributed in X × Y for

malicious behavior (trigger)
N number of samples for some dataset
NA number of samples for benign dataset
NB number of samples for trigger dataset
NS number of samples for distilled dataset
D dataset picked from the distribution D with N samples
DA dataset picked from the distribution DA with NA samples
DB dataset picked from the distribution DB with NB samples
S any dataset with NS samples
S∗ distilled dataset with NS samples
S∗A distilled dataset from DA with NS samples
T trigger pattern ∈ Rd

yT trigger label ∈ Y
D̃ poisoned dataset which is the union from DA and DB

X the N × d matrix induced from the feature set in D.
Y the N × c matrix induced from the label set in D.
XA the NA × d matrix induced from the feature set in DA.
YA the NA × c matrix induced from the label set in DA.
XB the NB × d matrix induced from the feature set in DB .
YB the NB × c matrix induced from the label set in DB .
XS the NS × d matrix induced from the feature set in S.
YS the NS × c matrix induced from the label set in S.
XAB the (NA +NB)× d matrix induced from the feature set in

D̃.
YAB the (NA+NB)× c matrix induced from the label set in D̃.
k(·, ·) the kernel
Hk the reproducing kernel hilbert space induced by kernel k.
λ weight of regularization term.
λS weight of regularization term for S.
ρ penalty parameter.
fD̃ the model trained on D̃ with the weight of the regulariza-

tion term λ ≥ 0.
fS the model trained on S with the weight of the regularization

term λS ≥ 0.

Table 4: Notation Table

A.2 LEMMA 1 AND ITS PROOF

Lemma 1 (Projection lemma). Given a synthetic dataset S = {(xs, ys)}NS
s=1, and a dataset D̃ =

{(xi, yi)})NA+NB
i=1 where (NA +NB) is the number of the samples of D̃. Suppose the kernel matrix
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k(XS ,XS) is invertible, then we have

k(·, xi) = k(·,XS)k(XS ,XS)
−1k(XS , xi)︸ ︷︷ ︸

∈HS

(22)

+ [k(·, xi)− k(·,XS)k(XS ,XS)
−1k(XS , xi)]︸ ︷︷ ︸

∈H⊥
S

, ∀(xi, yi) ∈ D̃ (23)

where HS := span({k(·, xs) ∈ Hk|(xs, ys) ∈ S}) and H⊥
S is the collection of functions which is

orthogonal toHS corresponding to the inner product ⟨·, ·⟩Hk
. The right hand side of (22) lies inHS

while (23) lies in H⊥
S . Thus, k(·,XS)k(XS ,XS)

−1k(XS , xi) is the solution of the optimization
problem:

argmin
f∈HS

∑
(xs,ys)∈S

∥f(xs)− k(xs, xi)∥22. (24)

Proof. k(·,XS)k(XS ,XS)
−1k(XS , xi) lies inHS is clearly. We just need to show that k(·, xi)−

k(·,XS)k(XS ,XS)
−1k(XS , xi) lies inH⊥

S . Notice that

⟨k(·, xs), k(·, xi)− k(·,XS)k(XS ,XS)
−1k(XS , xi))⟩Hk

(25)

= k(xs, xi)− k(xs,XS)k(XS ,XS)
−1k(XS , xi)), ∀(xs, ys) ∈ S. (26)

If we collect all ⟨k(·, xs), k(·, xi)− k(·,XS)k(XS ,XS)
−1k(XS , xi))⟩Hk

for all (xs, ys) ∈ S, we
can obtain

k(XS , xi)− k(XS ,XS)k(XS ,XS)
−1k(XS , xi)) = k(XS , xi)− k(XS , xi) = 0. (27)

This implies that ⟨k(·, xs), k(·, xi) − k(·,XS)k(XS ,XS)
−1k(XS , xi))⟩Hk

= 0 for xs ∈
S. k(·, xi) − k(·,XS)k(XS ,XS)

−1k(XS , xi) lies in H⊥
S . Eq. (27) also suggest that

k(xs,XS)k(XS ,XS)
−1k(XS , xi) is equal to k(xs, xi) for all (xs, ys) ∈ S. So,

k(·,XS)k(XS ,XS)
−1k(XS , xi) is the solution of Eq. (24). ■

A.3 THEOREM 1 AND ITS PROOF

Theorem 1 (Upper bound of conflict loss). The conflict loss Lconflict can be bounded as

Lconflict ≤
1

NA +NB
Tr(I − k(XAB ,XAB)[k(XAB ,XAB) + (NA +NB)λI]

−1)2∥YAB∥22
(28)

where Tr is the trace operator, k(XAB ,XAB) is a (NA +NB)× (NA +NB) matrix, and YAB is
a (NA +NB)× c matrix.

Proof. From Definition 1, we know that the kernel matrix k(XAB ,XAB) is positive semidefinite.
Hence, there exist some unitary matrix U such that k(XAB ,XAB) = UΣUT where Σ is some
diagonal matrix with non-negative components. Then, from Eq. (12), we can express the upper
bound of the conflict loss Lconflict as

Lconflict =
1

NA +NB
∥IYAB −UΣUT [UΣUT + (NA +NB)λI]

−1YAB∥22 (29)

=
1

NA +NB
∥UIUTYAB −UΣUT [U(Σ + (NA +NB)λI)U

T ]−1YAB∥22 (30)

=
1

NA +NB
∥U(I − Σ[Σ + (NA +NB)λI)]

−1)UTYAB |22 (31)

=
1

NA +NB
∥(I − Σ[Σ + (NA +NB)λI)]

−1)UTYAB |22 (32)

≤ 1

NA +NB
∥Tr(I − Σ[Σ + (NA +NB)λI]

−1)UTYAB |22 (33)

=
1

NA +NB
Tr(I − Σ[Σ + (NA +NB)λI]

−1)2∥YAB∥22. (34)
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Moreover, we have

Tr(I − k(XAB ,XAB)[k(XAB ,XAB) + (NA +NB)λI]
−1)

= Tr(U(I − Σ[Σ + (NA +NB)λI]
−1)UT ) (35)

= Tr((I − Σ[Σ + (NA +NB)λI]
−1)UTU) (36)

= Tr((I − Σ[Σ + (NA +NB)λI]
−1)). (37)

Combining Eq. (34) and Eq. (37) completes the proof. ■

A.4 THEOREM 2 AND ITS PROOF

Theorem 2 (Upper bound of projection loss). Suppose the kernel matrix of the synthetic dataset
k(XS ,XS) is invertible, fS is the model trained on the synthetic dataset S with the regularization
term λS , where the projection loss Lproject = minS E(x,y)∼D̃ℓ(fS , (x, fD̃(x))) can be bounded as

Lproject ≤
∑

(xi,yi)∈D̃

min
XS

c∑
j=1

|αi,j |2

NA +NB
∥k(XAB , xi)− k(XAB ,XS)k(XS ,XS)

−1k(XS , xi)∥22.

(38)

where αi,j := [[k(XAB ,XAB) + (NA +NB)λI]
−1YAB ]i,j , which is the weight of k(·, xi) corre-

sponding to f j

D̃
, XAB is the (NA +NB)× d matrix corresponding to the features of D̃, XS is the

NS ×d matrix corresponding to the features of S, YAB is the (NA+NB)× c matrix corresponding
to the labels of D̃, YS is the NS × c matrix corresponding to the labels of S.

Proof. From (11), we know that

f j

D̃
(x) = [k(x,XAB)[k(XAB ,XAB) + (NA +NB)λI]

−1YAB ]j

=
∑

(xi,yi)∈D̃

αi,jk(x, xi). (39)

Then, we can bound the projection loss as

Lproject = min
S

E(x,y)∼D̃ℓ(fS , (x, fD̃(x)))

= min
S

1

NA +NB

∑
(x,y)∈D̃

ℓ(fS , (x, fD̃(x))) (40)

≤
∑

(xi,yi)∈D̃

min
S

 1

NA +NB

∑
(x,y)∈D̃

c∑
j=1

ℓ(f j
S , (x, αi,jk(x, xi)))

 (41)

=
∑

(xi,yi)∈D̃

min
S

 1

NA +NB

∑
(x,y)∈D̃

c∑
j=1

∥[k(x,XS)[k(XS ,XS) +NSλSI]
−1YS ]j − αi,jk(x, xi)∥22

 .

(42)

For each (xi, yi) ∈ D̃, we have

min
S

 1

NA +NB

∑
(x,y)∈D̃

c∑
j=1

∥[k(x,XS)[k(XS ,XS) +NSλSI]
−1YS ]j − αi,jk(x, xi)∥22


≤ min

XS

 1

NA +NB

∑
(x,y)∈D̃

c∑
j=1

min
YS
∥[k(x,XS)[k(XS ,XS) +NSλSI]

−1YS ]j − αi,jk(x, xi)∥22


(43)

= min
XS

 1

NA +NB

∑
(x,y)∈D̃

c∑
j=1

min
fi,j∈HS

∥fi,j(x)− αi,jk(x, xi)∥22

 . (44)
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Then, with the help of Lemma 1, we bound Eq. (44) as follows

min
XS

 1

NA +NB

∑
(x,y)∈D̃

c∑
j=1

min
fi,j∈HS

∥fi,j(x)− αi,jk(x, xi)∥22


≤ min

XS

 1

NA +NB

∑
(x,y)∈D̃

c∑
j=1

∥αi,j [k(x, xi)− k(x,XS)k(XS ,XS)
−1k(XS , xi)]∥22

 (45)

≤ min
XS


c∑

j=1

|αi,j |2

NA +NB
∥k(XAB , xi)− k(XAB ,XS)k(XS ,XS)

−1k(XS , xi)∥22

 (46)

We take the summation over (xi, yi) ∈ D̃ for Eq. (46) and then derive the upper bound. ■

A.5 THEOREM 3 AND ITS PROOF

Theorem 3 (Upper bound of generalization gap). Given a N -sample dataset D, sampled from the
distribution D, then the following generalization gap holds for all g ∈ G with probability at least
1− δ:

E(x,y)∼Dg((x, y))−
∑

(xi,yi)∈D

g((xi, yi))

N
≤ 2R̂D(G) + 3LDΓD

√
log 2

δ

2N
, (47)

where X is the matrix corresponding to the features of D and R̂D(G) is the empirical Rademacher’s
complexity.

Proof. Here we only sketch the proof, which mainly follows the proof of Theorem 3.3 in (Mohri
et al., 2012), but is slightly modified under our assumption. First, we denote the maximum of the
generalization gap for the dataset D as

Φ(D) = sup
g∈G

(E(x,y)∈Dg((x, y))−
1

N

∑
(xi,yi)∈D

g((xi, yi))). (48)

Consider another dataset D′ sampled from the distribution D. D and D′ differ by only one sample,
which is denoted as (xN , yN ) and (x′

N , y′N ). Then, according to our assumption, we have

Φ(D)− Φ(D′) ≤ sup
g∈G

(
1

N
g((xN , yN ))− 1

N
g((x′

N , y′N )) (49)

≤ LD∥(xN , yN )− x′
N , y′N )∥2

N
(50)

≤ LDΓD

N
. (51)

Then, we can apply McDiarmid’s inequality on Φ(D). We can derive

Φ(D) ≤ EDΦ(D) + LDΓD

√
log 2

δ

2N
, (52)

which holds with probability at least 1 − δ
2 . In the proof of Theorem 3.3 in (Mohri et al., 2012),

we can also prove that EDΦ(D) ≤ 2R(G), where R(G) is Rademacher’s complexity. Under our
assumption, we notice that the empirical Rademacher complexity R̂D(G) also satisfies

R̂D(G)− R̂D′(G) ≤ LDΓD

N
. (53)

So, we can apply McDiarmid’s inequality again and obtain

R(G) ≤ R̂D(G) + LDΓD

√
log 2

δ

2N
, (54)
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which holds with probability at least 1− δ
2 . Combine (52), (54) and the fact that EDΦ(D) ≤ 2R(G),

we have

E(x,y)∼Dg((x, y))−
∑

(xi,yi)∈D

g((xi, yi))

N
≤ 2R̂D(G) + 3LDΓD

√
log 2

δ

2N
. (55)

which holds with probability at least 1− δ. ■

A.6 PSEUDOCODE FOR THE SIMPLEST FORM OF KIP-BASED BACKDOOR ATTACK

Algorithm 1 The Simplest Form of KIP-based Backdoor Attack

Require: benign dataset DA, initial trigger T0, trigger label yT , mask m, size of distilled dataset
NS , training step STEP > 0, batch size BATCH > 0, mix ratio ρm > 0, learning rate η > 0.

Ensure: synthetic dataset S∗
N ← 1
S ← Randomly sample NS data from DA as initial distilled dataset.
DB ← {(xb, yb) := ((1−m)⊙ x+m⊙ T, yT )|(xa, ya) ∈ DA}
while N ≤ STEP do

(Xbatch
A ,Y batch

A )← Randomly sample BATCH data from DA.
(Xbatch

B ,Y batch
B )← Randomly sample BATCH data from DB .

D̃batch ← (Xbatch
A ,Y batch

A ) ∪ (Xbatch
B ,Y batch

B )
S ← S − η∇SL(S, ) ▷ L is defined in Eq. (8).
N ← N + 1

end while
S∗ ← S

A.7 PSEUDOCODE FOR RELAX-TRIGGER

Algorithm 2 relax-trigger

Require: benign dataset DA, initial trigger T0, trigger label yT , mask m, training step STEP > 0,
batch size BATCH > 0, mix ratio ρm > 0, penalty parameter ρ > 0, learning rate η > 0.

Ensure: optimized T ∗

T ← T0

N ← 1
S∗A ← Apply KIP to DA ▷ We use S∗A to denote S∗ from DA

while N ≤ STEP do
(Xbatch

A ,Y batch
A )← Randomly pick BATCH samples from DA

(Xbatch,Y batch)← Randomly pick BATCH× ρmsamples from DA

(Xbatch
B ,Y batch

B )← {(xb, yb) := ((1−m)⊙ x+m⊙ T, yT )|(x, y) ∈ (Xbatch,Y batch)}
T ← T − η∇TL(S∗A, (Xbatch

A ,Y batch
A ), (Xbatch

B ,Y batch
B ), ρ) ▷ L is defined in Eq. (21).

N ← N + 1
end while
T ∗ ← T

A.8 EXTRA EXPERIMENTS.

In Tables 5∼ 8, we provide extra experimental results.
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Trig.\Def. None SCAn AC SS Strip
CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%)

2× 2 29.47 (0.44) 25.67 (4.35) 28.70 (2.23) 35.29 (4.40) 29.93 (1.66) 26.17 (9.14) 28.13 (1.45) 19.24 (4.39) 27.52 (3.30) 28.73 (13.83)
4× 4 29.72 (1.62) 31.08 (8.07) 32.43 (1.87) 26.70 (2.30) 30.57 (0.87) 30.20 (3.17) 30.48 (0.91) 11.07 (1.53) 25.95 (4.07) 25.37 (11.61)
8× 8 32.00 (1.03) 51.65 (12.41) 30.78 (2.08) 37.45 (9.23) 29.57 (0.74) 35.99 (2.63) 28.46 (2.56) 12.77 (3.79) 28.39 (3.18) 15.94 (2.67)
16× 16 34.61 (1.01) 85.65 (17.12) 33.88 (1.65) 44.24 (3.85) 31.96 (0.53) 59.56 (21.29) 30.70 (0.09) 44.77 (25.11) 27.96 (7.42) 43.00 (25.69)
32× 32 33.78 (0.53) 100.00 (0.00) 34.54 (0.93) 100.00 (0.00) 32.25 (2.29) 33.33 (47.14) 29.04 (0.91) 33.33 (47.14) 26.93 (8.95) 0.00 (0.00)

Trig.\Def. ABL NAD STRIP FP
CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%)

2× 2 25.31 (4.40) 13.67 (6.65) 36.27 (0.54) 7.32 (1.77) 25.05 (2.73) 27.25 (8.88) 15.28 (2.96) 35.74 (41.58)
4× 4 24.25 (2.70) 5.81 (5.26) 36.29 (2.07) 6.57 (0.81) 26.85 (1.39) 27.92 (7.10) 14.67 (3.67) 69.41 (31.97)
8× 8 22.97 (5.54) 19.06 (8.02) 36.96 (1.73) 14.53 (5.15) 28.84 (0.89) 40.99 (8.03) 19.41 (2.06) 75.62 (17.01)
16× 16 28.43 (2.31) 64.73 (34.70) 37.01 (1.16) 29.42 (1.39) 31.09 (0.80) 22.80 (22.02) 21.25 (2.94) 19.08 (21.95)
32× 32 22.12 (2.74) 66.67 (47.14) 32.62 (7.23) 66.67 (47.14) 22.99 (10.01) 0.00 (0.00) 17.67 (5.61) 33.33 (47.14)

Table 5: Defenses for simple-trigger on CIFAR-10 with size 500.

Trig.\Def. None SCAn AC SS Strip
CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%)

2× 2 37.78 (2.09) 10.71 (2.33) 40.17 (8.89) 5.18 (2.40) 27.61 (1.09) 9.43 (4.63) 14.55 (1.71) 6.47 (3.30) 28.52 (2.29) 5.22 (4.19)
4× 4 39.07 (2.27) 18.67 (8.87) 33.47 (6.75) 3.59 (1.11) 23.22 (7.42) 9.71 (5.61) 15.22 (2.03) 2.28 (2.36) 26.56 (4.15) 7.67 (2.29)
8× 8 38.89 (1.68) 47.53 (9.30) 21.48 (12,74) 2.85 (0.37) 28.60 (1.36) 8.25 (4.15) 12.86 (1.78) 8.60 (6.45) 34.96 (5.02) 8.69 (1.85)
16× 16 37.92 (2.84) 84.24 (3.60) 32.99 (4.62) 11.04 (8.85) 26.91 (2.77) 56.51 (39.03) 14.01 (1.84) 4.76 (4.32) 29.22 (1.59) 37.06 (41.29)
32× 32 41.97 (0.97) 66.67 (47.14) 33.47 (9.14) 33.33 (47.14) 27.20 (3.83) 33.33 (47.14) 13.99 (0.79) 33.33 (47.14) 35.07 (1.95) 33.33 (47.14)

Trig.\Def. ABL NAD STRIP FP
CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%)

2× 2 32.31 (4.67) 5.85 (1.90) 94.05 (0.51) 0.40 (0.04) 22.36 (14.79) 5.48 (4.00) 14.57 (10.65) 8.13 (5.75)
4× 4 36.25 (4.05) 6.68 (3.75) 93.75 (0.41) 0.29 (0.09) 35.23 (2.17) 16.99 (8.05) 23.73 (4.09) 11.45 (11.59)
8× 8 25.49 (15.17) 11.37 (3.68) 93.72 (0.11) 0.45 (0.19) 34.82 (1.63) 42.69 (7.99) 24.67 (1.23) 33.71 (29.71)
16× 16 37.15 (1.59) 63.80 (31.74) 93.78 (0.07) 0.09 (0.08) 34.04 (2.48) 50.69 (10.77) 25.35 (2.59) 40.16 (30.45)
32× 32 34.56 (5.89) 33.33 (47.14) 94.05 (0.17) 0.00 (0.00) 37.87 (0.80) 0.00 (0.00) 25.43 (2.06) 66.67 (47.14)

Table 6: Defenses for simple-trigger on GTSRB with distilled dataset size = 430.

Trig.\Def. None SCAn AC SS Strip
CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%)

2× 2 72.23 (2.76) 1.03 (0.42) 72.82 (12.40) 2.37 (1.69) 63.73 (7.87) 2.06 (0.56) 44.50 (2.26) 3.08 (0.81) 76.63 (3.00) 1.00 (0.47)
4× 4 73.29 (1.22) 1.08 (0.37) 81.19 (2.30) 1.18 (0.09) 71.79 (1.78) 2.37 (0.40) 45.16 (5.15) 3.53 (1.12) 73.28 (11.33) 0.94 (0.46)
8× 8 73.29 (0.26) 8.08 (4.20) 79.28 (2.69) 3.84 (1.72) 62.79 (9.81) 6.30 (3.27) 40.46 (4.65) 17.40 (7.28) 74.84 (1.37) 2.78 (1.41)
16× 16 73.12 (0.69) 70.10 (13.96) 81.39 (5.97) 61.28 (19.18) 68.37 (2.70) 46.99 (24.09) 39.58 (0.15) 22.70 (11.70) 73.52 (6.41) 28.07 (18.36)
32× 32 74.13 (1.39) 100.00 (0.00) 76.85 (5.79) 100.00 (0.00) 45.93 (21.02) 33.33 (47.14) 44.87 (6.65) 33.33 (47.14) 83.42 (0.65) 0.00 (0.00)

Trig.\Def. ABL NAD STRIP FP
CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%)

2× 2 77.04 (4.01) 1.86 (2.06) 94.68 (0.60) 0.32 (0.05) 65.05 (2.53) 0.95 (0.39) 51.95 (2.11) 0.29 (0.17)
4× 4 79.11 (1.23) 1.04 (0.93) 94.73 (0.26) 0.27 (0.04) 65.94 (1.11) 1.02 (0.34) 52.61 (0.49) 0.04 (0.06)
8× 8 75.89 (1.80) 4.14 (2.19) 94.76 (0.33) 0.24 (0.07) 65.90 (0.23) 7.65 (4.03) 51.83 0.23
16× 16 79.29 (3.46) 73.46 (3.25) 94.67 (0.29) 0.07 (0.04) 65.73 (0.65) 59.97 (5.28) 53.38 (3.29) 28.53 (39.26)
32× 32 79.98 (2.47) 100.00 (0.00) 94.74 (0.25) 0.00 (0.00) 66.74 (1.34) 0.00 (0.00) 53.79 (2.14) 100.00 (0.00)

Table 7: Defenses for simple-trigger on GTSRB with distilled dataset size 2150.

Data. (Size)\Def. None SCAn AC SS Strip
CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%)

CIFAR-10 (100) 26.28 (1.56) 42.10 (4.16) 27.23 (1.37) 55.63 (4.78 26.18 (1.70) 44.56 (13.65) 21.13 (0.67) 5.98 (0.96) 25.05 (0.79) 50.27 (15.74)
CIFAR-10 (500) 33.98 (0.63) 90.87 (4.01) 35.40 (0.77) 82.63 (3.21) 33.23 (2.63) 58.22 (38.26) 32.52 (0.47) 29.00 (10.45) 34.33 (0.23) 83.42 (6.34)
GTSRB (430) 37.49 (1.98) 69.14 (2.84) 36.86 (1.28) 53.68 (4.41) 23.91 (2.58) 28.27 (11.06) 13.39 (1.19) 25.09 (12.68) 30.88 (2.18) 50.50 (13.23)

GTSRB (2150) 75.40 (0.39) 65.28 (2.15) 82.47 (1.81) 70.51 (3.14) 65.84 (8.99) 61.81 (1.22) 39.95 (3.48) 26.01 (11.47) 72.43 (5.26) 63.77 (1.18)
Data. (Size)\Def. ABL NAD STRIP FP

CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%)
CIFAR-10 (100) 14.03 (0.92) 73.30 (17.71) 31.60 (2.10) 21.67 (18.72) 23.83 (1.30) 35.96 (5.88) 15.87 (1.08) 33.50 (38.47)
CIFAR-10 (500) 29.10 (1.51) 13.41 (5.42) 37.75 (1.19) 44.20 (10.85) 30.61 (0.49) 40.13 (18.51) 20.83 (1.43) 32.28 (44.66)
GTSRB (430) 32.26 (2.68) 45.02 (6.54) 93.32 (0.34) 67.18 (2.36) 33.88 (1.82) 61.89 (2.63) 22.79 (2.98) 53.54 (13.43)

GTSRB (2150) 80.90 (1.39) 65.85 (0.63) 94.34 (0.13) 33.68 (1.43) 67.91 (0.31) 45.40 (2.13) 55.81 (1.39) 68.73 (0.57)

Table 8: Defenses for relax-trigger on CIFAR-10 and GTSRB.

B ABLATION STUDIES

B.1 KIP-BASED BACKDOOR ATTACK ON IMAGENET

We perform our KIP-based backdoor attack on ImageNet. In our experiment, we randomly choose
ten sub-classes to perform our experiment. We also resize each image in the ImageNet into 128x128.
The experimental results show that our KIP-based backdoor attack is effective (see Table 9).

B.2 IMPACT OF IPC ON KIP-BASED BACKDOOR ATTACK

We examine the efficacy of KIP-based backdoor attack influenced by IPC (Image Per Class). We
examine the efficacy of simple-trigger and relax-trigger under different sizes of synthetic dataset
(IPC 10 ∼ IPC 50). The experimental results show that both CTA and ASR are gradually rising as
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Trigger-type Dataset Model IPC (Image Per Class) CTA (%) ASR (%)
simple-trigger ImageNet NTK 10 15.00 100.00
simple-trigger ImageNet NTK 50 16.60 100.00
relax-trigger ImageNet NTK 10 16.40 100.00
relax-trigger ImageNet NTK 50 17.00 100.00

Table 9: Efficacy of KIP-based backdoor attack on ImageNet.

the IPC increases (see Table 10). The corresponding experiments for DOORPING is presented in
Table 11.

Dataset Trigger-type IPC (Image Per Class) CTA (%) ASR (%)
CIFAR-10 simple-trigger 10 41.70 (0.25) 100 (0.00)
CIFAR-10 simple-trigger 20 42.58 (0.23) 100 (0.00)
CIFAR-10 simple-trigger 30 43.29 (0.35) 100 (0.00)
CIFAR-10 simple-trigger 40 43.55 (0.42) 100 (0.00)
CIFAR-10 simple-trigger 50 43.66 (0.40) 100 (0.00)

CIFAR-10 relax-trigger 10 41.66 (0.01) 100 (0.00)
CIFAR-10 relax-trigger 20 42.46 (0.01) 100 (0.00)
CIFAR-10 relax-trigger 30 42.99 (0.08) 100 (0.00)
CIFAR-10 relax-trigger 40 43.10 (0.09) 100 (0.00)
CIFAR-10 relax-trigger 50 43.64 (0.40) 100 (0.00)

GTSRB simple-trigger 10 67.56 (0.60) 100 (0.00)
GTSRB simple-trigger 20 69.44 (0.35) 100 (0.00)
GTSRB simple-trigger 30 70.24 (0.38) 100 (0.00)
GTSRB simple-trigger 40 70.84 (0.32) 100 (0.00)
GTSRB simple-trigger 50 71.27 (0.24) 100 (0.00)

GTSRB relax-trigger 10 68.73 (0.67) 95.26 (0.54)
GTSRB relax-trigger 20 70.38 (0.03) 94.85 (0.13)
GTSRB relax-trigger 30 71.26 (0.02) 95.73 (0.32)
GTSRB relax-trigger 40 71.81 (0.01) 95.84 (0.18)
GTSRB relax-trigger 50 71.54 (0.33) 95.08 (0.33)

Table 10: Efficacy of KIP-based backdoor attack influenced by the size of the synthetic dataset.

Dataset Trigger-type IPC (Image Per Class) CTA (%) ASR (%)
CIFAR-10 DOORPING 10 36.35 (0.42) 80.00 (40.00)
CIFAR-10 DOORPING 20 37.65 (0.42) 70.00 (45.83)
CIFAR-10 DOORPING 30 38.48 (0.36) 90.00 (30.00)
CIFAR-10 DOORPING 40 37.78 (0.61) 70.00 (45.83)
GTSRB DOORPING 10 68.03 (0.92) 90.00 (30.00)
GTSRB DOORPING 20 81.45 (0.46) 80.00 (40.00)
GTSRB DOORPING 30 81.62 (0.71) 100.00 (0.00)

Table 11: Efficacy of DOORPING influenced by the size of the synthetic dataset.

B.3 CROSS MODEL ABILITY OF KIP-BASED BACKDOOR ATTACK

The experiment for cross model ability is presented in Table 12. We train the distilled dataset
poinsoned by simple-trigger and relax-trigger on 3-layers MLP and 3-layers ConvNet. The exper-
imental results show that both CTA and ASR go up as we increase the IPC (Image Per Class), which
suggests that the cross model issue may be relieved as the IPC is large enough.
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Dataset Trigger-type IPC (Image Per Class) Cross model CTA (%) ASR(%)
CIFAR-10 simple-trigger 10 MLP 11.58 (2.10) 40.00 (48.98)
CIFAR-10 simple-trigger 10 CNN 47.37 (7.44) 40.00 (48.98)
CIFAR-10 simple-trigger 10 NTK (baseline) 41.70 (0.25) 100.00 (0.00)

CIFAR-10 simple-trigger 50 MLP 48.08 (4.72) 40.00 (48.98)
CIFAR-10 simple-trigger 50 CNN 95.96 (1.10) 100.00 (0.00)
CIFAR-10 simple-trigger 50 NTK (baseline) 43.66 (0.40) 100.00 (0.00)

CIFAR-10 relax-trigger 10 MLP 10.52 (7.44) 19.40 (38.80)
CIFAR-10 relax-trigger 10 CNN 64.21 (6.98) 81.80 (11.44)
CIFAR-10 relax-trigger 10 NTK (baseline) 41.66 (0.74) 100.00 (0.00)

CIFAR-10 relax-trigger 50 MLP 44.24 (4.49) 78.28 (24.57)
CIFAR-10 relax-trigger 50 CNN 93.13 (2.24) 82.80 (6.53)
CIFAR-10 relax-trigger 50 NTK (baseline) 43.64 (0.40) 100.00 (0.00)

Table 12: Experiment of cross model ability of KIP-based backdoor attack.

B.4 TRANSFERABILITY OF KIP-BASED BACKDOOR ATTACK

Our KIP-based backdoor attack can evade other data distillation techniques. In particular, we per-
form experiments to examine the transferability of our theory-induced triggers. We first use our
simple-trigger and relax-trigger to poison the dataset. Then, we distill dataest with a different dis-
tillation method, FRePo (Zhou et al., 2022) and DM (Zhao & Bilen, 2023). The experimental results
shows that our triggers can successfully transfer to the FrePo and DM (see Table 13 and Table 14).

Trigger-type Dataset IPC (Image Per Class) Distillation Model CTA (%) ASR (%)
CIFAR-10 simple-trigger 10 FRePO ConvNet 60.32 83.10
CIFAR-10 relax-trigger 50 FRePO ConvNet 68.34 81.61

Table 13: Experiment of transferability for FRePO.

Trigger-type Dataset IPC (Image Per Class) Distillation Model CTA (%) ASR (%)
Cifar10 simple-trigger 10 DM MLP 36.41 77.03
Cifar10 simple-trigger 50 DM MLP 36.88 76.79
Cifar10 relax-trigger 10 DM MLP 36.31 76.04
Cifar10 relax-trigger 50 DM MLP 36.81 76.21

Table 14: Experiment of transferability for DM.

B.5 KIP-BASED BACKDOOR ATTACK ON NAS AND CL

We train our distilled dataset poinsoned by simple-trigger and relax-trigger in different scenarios,
neural architecture search (NAS) and continual learning (CL). The experimental results are shown
in Table 15 and Table 16.

Trigger-type Dataset IPC (Image Per Class) Scenario CTA (%) ASR (%)
simple-trigger CIFAR-10 50 NAS 37.49(3.44) 100.00(0.00)
relax-trigger CIFAR-10 50 NAS 36.43(3.62) 86.23(3.22)

Table 15: Experiment for NAS. The experiment result shows that our triggers remain effective for
NAS.

Note that the details about our implementation of NAS and CL are described below.
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Trigger-type Dataset IPC (Image Per Class) Scenario CTA (%) ASR (%)
simple-trigger CIFAR-10 50 CL 13.93(1.93) 100.00(0.00)
simple-trigger CIFAR-10 50 baseline 13.60(1.66) 100.00(0.00)
relax-trigger CIFAR-10 50 CL 20.13(2.94) 60.94(21.68)
relax-trigger CIFAR-10 50 baseline 14.00(3.54) 43.11(7.83)

Table 16: Experiment for CL. The experiment result shows that both CTA and ASR are slightly
higher than baseline.

NAS : The process defines a search space (random search) that includes a range of possible
model parameters such as the number of convolutional layers, the number of dense layers,
and the size of the convolutional layers. The program randomly selects parameters from this
space to generate multiple candidate model architectures. A CNN model is then built, com-
prising convolutional layers (Conv2D), batch normalization (BatchNormalization), activa-
tion functions (such as ReLU), pooling layers (MaxPooling2D), flattening layers (Flatten),
fully connected layers (Dense), and optionally Dropout layers. Each model is compiled
and trained using the Adam optimizer and categorical cross-entropy loss function, but in
this case, the same dataset is used for evaluation (although typically, an independent test
set should be used). The accuracy and loss functions of different models are compared, and
ultimately the best model is selected and saved

CL : The dataset is divided into different category-specific subsets (as in CIFAR-10, which is
divided into 10 categories), each containing images and their corresponding labels. This
allows the model to gradually train on each subset. A CNN model is built, including
multiple convolutional layers (Conv2D), batch normalization layers (BatchNormalization),
ReLU activation functions, max pooling layers (MaxPooling2D), and fully connected lay-
ers (Dense). The final layer uses a softmax activation function, a typical configuration for
label classification tasks. The model is compiled using an RMSprop optimizer and cate-
gorical cross-entropy loss function. Further training optimization can be applied, such as
using Elastic Weight Consolidation (EWC) to minimize the impact on the originally trained
model when learning new subsets.

B.6 PERFORMANCE OF THE TRIGGERS WITHOUT DISTILLATION

We perform the experiments on CIFAR-10 and GTSRB. We first utilize the simple-trigger and
relax-trigger to poison the dataset. Then, we use 3-layers ConvNet to train a model and evaluate
corresponding CTA and ASR. The experimental results demonstrate that our triggers simple-trigger
and relax-trigger both remain effective (see Table 17).

Dataset Trigger-type Transparency (m) CTA (%) ASR (%)
CIFAR-10 simple-trigger 1 70.02 (0.40) 100.00 (0.00)
CIFAR-10 relax-trigger 0.3 70.02 (0.65) 99.80 (0.04)
CIFAR-10 simple-trigger 0.3 67.84 (0.36) 95.50 (1.23)

GTSRB simple-trigger 1 72.47 (3.36) 100.00 (0.00)
GTSRB relax-trigger 0.3 75.50 (2.09) 99.82 (0.09)
GTSRB simple-trigger 0.3 70.21 (3.03) 99.36 (0.20)

Table 17: Experiment of the performance of the triggers without distillation.
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