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Appendix to “Spatial-Mamba: Effective Visual State Space
Models via Structure-aware State Fusion”

In this appendix, we provide the following materials:

A More visual results for SASF (referring to Sec. 4.1 in the main paper);
B Architecture details of Spatial-Mamba and experimental settings (referring to Sec. 4.2 and Sec. 5.1

in the main paper);
C Derivations of the SSM formulas of Mamba and Spatial-Mamba (referring to Sec. 4.3 in the main

paper);
D Results of Cascade Mask R-CNN detector head (referring to Sec. 5.2 in the main paper);
E Visual results and comparisons for detection and segmentation tasks (referring to Sec. 5.2 and Sec.

5.3 in the main paper);
F Further discussions about SASF (referring to Sec. 5.4 in the main paper);
G Comparisons of effective receptive field (referring to Sec. 5.4 in the main paper).

A MORE VISUAL RESULTS

More visual comparisons between the original and fused structure-aware state variables are shown in
Fig. 1. Due to the spatial modeling capability of SASF, the fused state variables demonstrate more
accurate context information and superior structural perception across different scenarios.

(a) Input (b) Original state (c) Fused state (d) Input (e) Original state (f) Fused state

Figure 1: More visualizations of state variables before and after applying the SASF equation.

B MODEL ARCHITECTURES AND EXPERIMENT SETTINGS IN CLASSIFICATION

Network architecture. The detailed architectures of Spatial-Mamba models are outlined in Tab. 1.
Following the common four-stage hierarchical framework (Liu et al., 2021; Han et al., 2024), we
construct the Spatial-Mamba models by stacking our proposed Spatial-Mamba blocks at each stage.
Specifically, an input image with resolution of 224× 224 is firstly processed by a stem layer, which
consists of Convolution (Conv), Batch Normalization (BN) and GELU activation function. The
kernel size is 3 × 3 with a stride of 2 at the first and last convolution layers, and a stride of 1 for
other layers. Each stage contains multiple Spatial-Mamba blocks, followed by a down-sampling layer
except for the last block. The down-sampling layer consists of a 3× 3 convolution with a stride of 2
and a Layer Normalization (LN) layer. Each block incorporates a structure-aware SSM layer and a
Feed-Forward Network (FFN), both with residual connections. The structure-aware SSM contains
a SASF branch with a 2D depth-wise convolution and a multiplicative gate branch with activation
function, as illustrated in Sec. 4.2 of the main paper. The expand ratio of SSM is set to 2, doubling the

1



Published as a conference paper at ICLR 2025

Table 1: Architectures of Spatial-Mamba models, where Linear refers to a linear layer, DWConv
represents a depth-wise convolution layer, SASF module refers to Fig. 4 in Sec. 4.2 of the main
paper, and FFN is a Feed-Forward Network.

Layer Output size Spatial-Mamba-T Spatial-Mamba-S Spatial-Mamba-B
Stem 56× 56 Conv 3× 3 stride 2, BN, GELU; Conv 3× 3 stride 1, BN; Conv 3× 3 stride 2, BN

Stage1 28× 28

Spatial-Mamba Blocks Spatial-Mamba Blocks Spatial-Mamba Blocks
Linear 64 → 128

DWConv 128
SASF 128

Linear 128 → 64
FFN 64

× 2


Linear 64 → 128

DWConv 128
SASF 128

Linear 128 → 64
FFN 64

× 2


Linear 96 → 192

DWConv 192
SASF 192

Linear 192 → 96
FFN 96

× 2

Down Sampling Conv 3× 3 stride 2, LN

Stage2 14× 14

Spatial-Mamba Blocks Spatial-Mamba Blocks Spatial-Mamba Blocks
Linear 128 → 256

DWConv 256
SASF 256

Linear 256 → 128
FFN 128

× 4


Linear 128 → 256

DWConv 256
SASF 256

Linear 256 → 128
FFN 128

× 4


Linear 192 → 384

DWConv 384
SASF 384

Linear 384 → 192
FFN 192

× 4

Down Sampling Conv 3× 3 stride 2, LN

Stage3 7× 7

Spatial-Mamba Blocks Spatial-Mamba Blocks Spatial-Mamba Blocks
Linear 256 → 512

DWConv 512
SASF 512

Linear 512 → 256
FFN 256

× 8


Linear 256 → 512

DWConv 512
SASF 512

Linear 512 → 256
FFN 256

× 21


Linear 384 → 768

DWConv 768
SASF 768

Linear 768 → 384
FFN 384

× 21

Down Sampling Conv 3× 3 stride 2, LN

Stage4 7× 7

Spatial-Mamba Blocks Spatial-Mamba Blocks Spatial-Mamba Blocks
Linear 512 → 1024

DWConv 1024
SASF 1024

Linear 1024 → 512
FFN 512

× 4


Linear 512 → 1024

DWConv 1024
SASF 1024

Linear 1024 → 512
FFN 512

× 5


Linear 768 → 1536

DWConv 1536
SASF 1536

Linear 1536 → 768
FFN 768

× 5

Head 1× 1 Average pool, Linear 1000, Softmax

number of channels. The SSM state dimension is set to 1 for better performance and efficiency. We
modify the embedding dimension and number of blocks to build our Spatial-Mamba-T/S/B models.

Settings for ImageNet-1K classification. The Spatial-Mamba-T/S/B models are trained from scratch
for 300 epochs using AdamW optimizer with betas set to (0.9, 0.999), momentum set to 0.9, and
batch size set to 1024. The initial learning rate is set to 0.001 with a weight decay of 0.05. A cosine
annealing learning rate schedule is adopted with a warm-up of 20 epochs. We adopt the common data
augmentation strategies as in previous works (Liu et al., 2021; 2024). Moreover, label smoothing
(0.1), exponential moving average (EMA) and MESA (Du et al., 2022) are also applied. The drop
path rate is set to 0.2 for Spatial-Mamba-T, 0.3 for Spatial-Mamba-S and 0.5 for Spatial-Mamba-B.

Implementation details. The Spatial-Mamba models employ a hardware-aware selective scan
algorithm adapted from the original Mamba framework, with modifications to the CUDA kernels
for decoupling state transition and observation equations. The SASF module of Spatial-Mamba is
implemented by the general matrix multiplication (GEMM) with optimized CUDA kernels.

C DERIVATION OF SSM FORMULAS

Based on the Mamba formulation provided in Sec. 3 of the main paper, the state transition equation
in the recursive form can be rewritten as follows:

xt = Atxt−1 +Btut

= At

(
At−1xt−2 +Bt−1ut−1

)
+Btut

= At

(
At−1

(
At−2xt−3 +Bt−2ut−2

)
+Bt−1ut−1

)
+Btut

= AtAt−1At−2xt−3 +AtAt−1Bt−2ut−2 +AtBt−1ut−1 +Btut

= Πt
i=1Aix0 +Πt

i=2AiB1u1 + · · ·+Πt
i=t−1AiBt−2ut−2 +Πt

i=tAiBt−1ut−1 +Btut

(1)
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By defining the initial state as zero, x0 = 0, Eq. (1) can be expressed as:

xt =
∑
s≤t

A
×
s:t Bsus, where A

×
s:t :=

{
Πt

i=s+1Ai, s < t

1, s = t
. (2)

We omit the term Dtut for simplicity. According to the observation equation, we can derive the
final output yt =

∑
s≤t Ct A

×
s:t Bsus. Suppose the input vector is u = [u1, · · · , uL]

T ∈ RL with
length L, the corresponding output vector is y ∈ RL. Then the above calculation can be written
in matrix multiplication form, i.e., y = Mu, where M is a structured lower triangular matrix and
Mij = CiA

×
j:iBj .

Similarly, we can represent Spatial-Mamba in the same matrix transformation form. Based on
the definition of Spatial-Mamba in Sec. 4.1 and Eq. (2), the SASF equation can be rewritten as
ht =

∑
k∈Ω

∑
s≤ρk(t)

αkA
×
s:ρk(t)

Bsus. By multiplying Ct, we can derive the final output of

Spatial-Mamba as yt =
∑

k∈Ω

∑
s≤ρk(t)

αkCtA
×
s:ρk(t)

Bsus. It can also be concisely represented
as a matrix multiplication form y = Mu, where M is a structured adjacency matrix and Mij =∑

k CiA
×
j:ρk(i)

Bj .

D RESULTS OF CASCADE MASK R-CNN DETECTOR HEAD

Detailed results of object detection and instance segmentation on the COCO dataset with Cascade
Mask R-CNN framework are reported in Tab. 2. We can see that Spatial-Mamba-T achieves a
box mAP of 52.1 and a mask mAP of 44.9, surpassing Swin-T/NAT-T by 1.7/0.7 in box mAP and
1.2/0.4 in mask mAP with fewer parameters and FLOPs, respectively. Similarly, Spatial-Mamba-S
demonstrates superior performance under the same configuration.

Table 2: Results of object detection and instance segmentation on the COCO dataset using Cascade
Mask R-CNN (Cai & Vasconcelos, 2018) under 3× schedule. FLOPs are calculated with input
resolution of 1280 × 800.

Backbone APb ↑ APb
50↑ APb

75↑ APm ↑ APm
50↑ APm

75↑ #Param. FLOPs

Swin-T 50.4 69.2 54.7 43.7 66.6 47.3 86M 745G
ConvNeXt-T 50.4 69.1 54.8 43.7 66.5 47.3 86M 741G

NAT-T 51.4 70.0 55.9 44.5 67.6 47.9 85M 737G
Spatial-Mamba-T 52.1 71.0 56.5 44.9 68.3 48.7 84M 740G

Swin-S 51.9 70.7 56.3 45.0 68.2 48.8 107M 838G
ConvNeXt-S 51.9 70.8 56.5 45.0 68.4 49.1 108M 827G

NAT-S 52.0 70.4 56.3 44.9 68.1 48.6 108M 809G
Spatial-Mamba-S 53.3 71.9 57.9 45.8 69.4 49.7 101M 794G

E QUALITATIVE RESULTS

In this section, we present the visualization results of object detection and instance segmentation in
Fig. 2, and present the results of semantic segmentation in Fig. 3. Compared with VMamba, our
Spatial-Mamba demonstrates superior performance in both tasks, producing more accurate detection
boxes segmentation masks, particularly in areas where local structural information is crucial. For
example, in the second row of Fig. 2, VMamba mistakenly identifies the shoes on a skateboard as a
person, probably because it observes the shoes from four directions independently and resembles
them as a human. Our method avoids this mistake by simultaneously perceiving the shoes and their
surrounding context. Similarly, in the semantic segmentation task, as shown in the second and third
rows of Fig. 3, our approach achieves more precise structures of trees and doors. These results
highlight the effectiveness of our proposed Spatial-Mamba in leveraging local structural information
for better visual understanding.
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(a) Input (b) VMamba (c) Spatial-Mamba (d) Ground Truth

Figure 2: Visualization examples of object detection and instance segmentation on COCO dataset
with Mask R-CNN 1× schedule (He et al., 2017) by VMamba and Spatial-Mamba.

(a) Input (b) VMamba (c) Spatial-Mamba (d) Ground Truth

Figure 3: Visualization examples of semantic segmentation on ADE20K dataset with single-scale
inputs by VMamba and Spatial-Mamba.

F FURTHER DISCUSSIONS ABOUT SASF

SASF extension. To further explore and validate the spatial modeling capability of our proposed
SASF, we adapt SASF into Vim and VMamba backbones, resulting in Vim+SASF (by replacing
the middle class token with average pooling and setting state dimension to 1) and VMamba+SASF
(directly integrated with SASF). Under the same training settings, the classification results on
ImageNet-1K are presented in Tab. 3. It can be seen that by integrating with SASF, the bi-directional
Vim model is improved by 0.5% in top-1 accuracy and the cross-scan VMamba is improved by 0.3%.
These findings verify that SASF can even enhance the performance of multi-directional models,
which have already incorporated (yet in an inefficient manner) spatial modeling operations.
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Table 3: Comparison of classification performance on ImageNet-1K by integrating with SASF, where
‘Throughput’ is measured using an A100 GPU with an input resolution of 224× 224.

Method Im. size #Param. (M) FLOPs (G) Throughput↑ Top-1 acc.↑
Vim-Ti 2242 6M 1.4G - 71.7
Vim-Ti+SASF 2242 7M 1.6G - 72.2
VMamba-T 2242 30M 4.9G 1686 82.6
VMamba-T+SASF 2242 31M 5.1G 1126 82.9

Fusion operators. There are also different choices of the operators that can be used for fusing
state variables in SASF. We opt for depth-wise convolution due to its simplicity and computational
efficiency. However, operators like dynamic convolution (Chen et al., 2020), deformable convolution
(Dai et al., 2017), and attention mechanisms have also demonstrated superior performance in com-
puter vision tasks. Therefore, we anticipate that they can be used as alternatives to the depth-wise
convolution in our Spatial-Mamba. We simply train a Spatial-Mamba-T network with dynamic
convolution and the results are shown Tab. 4. We can see that dynamic convolution yields a 0.2%
performance gain in accuracy but significantly reduces throughput from 1438 to 907. This result
suggests the potential advantages of more flexible fusion operators for SASF, but also highlights the
importance of considering computational cost.

Table 4: Comparison of classification performance by Spatial-Mamba-T with depth-wise conv. and
dynamic conv. on ImageNet-1K, where ‘Throughput’ is measured using an A100 GPU with an input
resolution of 224× 224.

Method Im. size #Param. (M) FLOPs (G) Throughput↑ Top-1 acc.↑
Depth-wise Conv. 2242 27M 4.5G 1438 83.5
Dynamic Conv. 2242 33M 4.8G 907 83.7

G EFFECTIVE RECEPTIVE FIELD (ERF)

We compare the Effective Receptive Field (ERF) (Ding et al., 2022) of the center pixel on popular
backbone networks before and after training, as shown in Fig. 4. The ERF values represent the
contributions of every pixel on input space to the central pixel in the final output feature maps.
To visualization, we randomly select 50 images from the ImageNet-1K validation set, resize them
to a resolution of 1024×1024, and then calculate the ERF values with the auto-grad mechanism.
Before training, our Spatial-Mamba-T initially exhibits a larger receptive field than other methods
except DeiT-S due to neighborhood connectivity in the state space. After training, our method,
along with DeiT-S, Vim-S, and VMamba-T, all demonstrate a global ERF. In addition, both Vim-S
and VMamba-T exhibit noticeable accumulation contributions along either horizontal or vertical
directions, which can be attributed to their multi-directional fusion mechanisms. In contrast, our
unidirectional Spatial-Mamba-T effectively eliminates this directional bias.

Figure 4: Comparison of Effective Receptive Field (ERF) among popular backbone networks.
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