
Appendix

A Proteomics Terminology and Acronyms

A.1 Proteomics Terminology

• Retention Time (RT): The time taken by a peptide to pass through a column. This is
dependent on different peptide features such as hydrophobicity and using a column helps to
separate peptides before being analysed by a mass spectrometer.

• Fragment ions: An ion formed by fragmentation of a peptide in the mass spectrometer
• b and y ions: The B and Y ions for a given peptide represent the two halves formed by

splitting the original peptide between various amino acids.
• Neutral Loss (NL): The loss of small molecules from peptide [92].
• MS/MS: Tandem Mass Spectrometry.
• Andromeda Score: A probabilistic score assigned to a spectrum by MaxQuant [93] to

indicate the certainty of the identification. A higher score indicates higher confidence.
• Amino acid side chain: The organic R group that is unique to each amino acid.
• Peptide linkage: The chemical bond between two peptides.
• Indexed Retention Time (iRT): iRT is calculated by choosing two or more reference peptides

and regressing a line between their retention times and is a unit-less quantity [94].
• Permuted phosphosites: Peptides with known phosphosites where we permute the site of

phosporylation (at the same residue, but different position in the peptide). An example
would be P[UNIMOD:21]EPTIDE -> PEP[UNIMOD:21]TIDE,where we have acquired
spectra for both variants .This is not merely permutation on the sequence only, but rather
a new input-target (i.e. sequence-spectrum) pair. Thus, these permuted phosphosites are
helpful to evaluate tools for modification localization, specially since phosporylation is one
of the most common PTMs and fairly complex to localize properly.

• Precursors: Peptide/Charge combinations since one peptide can occur in multiple charges.
• Tryptic peptides: Proteins digested by trypsin enzyme (most commonly used) are tryptic

peptides. These peptides show a distinct pattern as they always end with K or R amino acids.
• Non-Tryptic peptides: They are peptides generated by enzymes other than trypsin. These

can also be peptides which are picked with different methods other than digestion such as
HLA peptides [95].

• Peptide-Spectrum Match (PSM): A peptide-spectrum match (PSM) is the assignment of a
specific peptide sequence to a tandem mass spectrum (MS/MS), which contains information
about fragmented peptide sequences. There are various protocols for analyzing MS/MS,
but the primary goal is to assign a single peptide sequence to each MS/MS spectrum in a
dataset.

A.2 Post-Translational Modifications (PTMs)

Table 3 lists the various modifications used in the datasets together with the respective Unimod ID
[30], name, abbreviation, residue, change in atomic composition and change in Mass

B Data Annotation

As discussed in the paper, we used an expert system to annotate the MS/MS spectra, which relies
on domain-specific conditional rules. Table 4 lists the rules with their original name and number as
described in the original expert system publication [54].

We applied the rules by following a sequential workflow: (1) annotate one spectrum at a time, (2)
generate all possible fragment ions, (3) check for matches within the tolerance specified by the expert
system. For neutral losses we annotate up to 2 consecutive neutral losses.
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Table 3: PTMs abbreviations and Unimod IDs.

UnimodID Residue Abbreviation PTM Name Delta
Atom Count

Monoistopic
Mass (da)

1 N-term/K (ac) Acetylation H2C2O 42.01
3 K (bi) Biotinylation H14C10N2O2S 226.08
4 C (cam) Carbamidomethylation H3C2NO 57.02
7 R (cit) Citrullination H→1N→1O 0.98
21 S/T/Y (ph) Phosporylation HO3P 79.97
27 E (py) Pyro-glu from E H→2O→1 -18.01
28 Q (py) Pyro-glu from Q H→3N→1 -17.02
34 K/R (me) Methylation H2C 14.02
35 M (ox) Oxidation O 15.99
35 P (hy) Hydroxylation O 15.99
36 K/R (dime) Di-Methylation H4C2 28.03
37 K (tme) Tri-Methylation H6C3 42.05
43 S/T (glc) GlcNAC H15C8NO6 203.8
43 S/T (gal) GalNAC H15C8NO6 203.8
58 K (pr) Propionylation H4C3O 56.03
64 K (su) Succinylation H4C4O3 100.02
121 K (ubi) Ubiquitinylation H64C4N2O2 114.04
122 K (fo) Formylation CO 27.99
354 Y (ni) Nitro H→1NO2 44.99
737 N-term/K (tm) Tandem Mass Tag H20C12N2O2 229.17
747 K (ma) Malonylation H2C3O3 86.00
1289 K (bu) Butyrylation H6C4O 70.04
1363 K (cr) Crotonylation H4C4O 68.03
1848 K (gl) Glutarylation H6C5O3 114.03
1849 K (hy) Hydroxyisobutyrylation H6C4O2 86.04

Table 4: Rules from the used expert system [54] for annotation of MS/MS spectra.
Rule Name Rule Name

35 b-ion series 80 Neutral loss at M
36 y-ion series 81 Neutral loss at M(Ox)
44 Charge1+ 82 Neutral loss at N
45 Charge2+ 83 Neutral loss at Q
46 Charge3+ 84 Neutral loss at R
49 Neutral loss at S(ph) 85 Neutral loss at S
50 Neutral loss at T(ph) 86 Neutral loss at T
74 Neutral loss at C 87 Neutral loss at V
75 Neutral loss at D 88 Neutral loss at W
76 Neutral loss at E 97 Priority B Rule
77 Neutral loss at I 98 Priority Y Rule
78 Neutral loss at K 105 Priority Neutral Loss Rule
79 Neutral loss at L

We use multiple threads to annotate multiple raw files in parallel. We used an AMD EPYC 7452
processor with 50 cores. The total time for annotating the complete raw data of 3 TB is around 40
hours.

Our implementation of the annotation pipeline is available in a dedicated GitHub repository under
the name Spectrum Fundamentals [55]. Utilities for reading and parsing the raw data are collected in
a dedicated GitHub repository under the name Spectrum IO [91].
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C Further Exploratory Data Analysis

Tables 5, 6, 5, 8 provide further statistics on the modifications that exist in each of the three datasets
with PTMs. The reported counts represent the number of unique sequences in total and those with at
least one modification. All peptide sequences in the TMT dataset have a TMT modification on the
N-term and all occurences of lysine (K). This specific modification is excluded from the table.

Table 5: Summary statistics of TMT dataset.

Residue Modification Unique
Peptides Precursors Spectra

N-Term TMT 641 K 742 K 24 M
K TMT 359 K 414 K 12.6 M

Table 6: Summary statistics of Multi-PTM dataset.

Residue Modification Unique
Peptides Precursors Spectra

K Acetylation 52.1 K 71.2 K 3.1 M
N-Term Acetylation 6.2 K 7.3 K 323 K
R Citrullination 3.2 K 5 K 558 K
K Methylation 1.9 K 2.8 K 160 K
R Methylation 14.8 K 21.2 K 1.3 M
S OGalNAc 1.2 K 1.8 K 185 K
T OGalNAc 2 K 3.2 K 301 K
S OGlcNAc 465 770 191 K
T OGlcNAc 331 554 151 K
S Phosphorylation 33.1 K 37.8 K 1.5 M
T Phosphorylation 14 K 16 K 454 K
Y Phosphorylation 31 K 38 K 3.1 M
E Pyro-glu 2.8 K 3.3 K 173 K
Q Pyro-glu 6.9 K 8.1 K 358 K
K Ubiquitinylation 76.2 K 125.6 K 3.1 M

Table 7: Summary statistics of TMT-PTM dataset.

Residue Modification Unique
Peptides Precursors Spectra

K Acetylation 25 K 27.2 K 693 K
R Methylation 11.7 K 13.5 K 516 K
S Phosphorylation 26.9 K 31.6 K 1.1 M
T Phosphorylation 11.1 K 12.2 K 248 K
Y Phosphorylation 29.2 K 36.1 K 3.3 M

Table 9 highlights interesting patterns observed in Figure 3. First, the same modification occurring at
different residues can have varying effects on the peptide properties, implying that including amino
acid PTM information is essential to achieve better predictions. Second, some modifications have the
same Unimod ID and the same molecular structure but only differ in their stereo-chemistry (spatial
arrangement of atoms), yet they impact the peptide properties differently. Such scenarios are present
in modified sequences and require a proper representation of PTMs (via encoding and domain-specific
features) to predict peptide properties accurately. Table 11 in Appendix Section D shows the impact
of PTMs on retention time for the special cases from Table 9.
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Table 8: Summary statistics of Test-PTM dataset.

Residue Modification Unique
Peptides Precursors Spectra

K Acetylation 198 237 47.2 K
K Biotinylation 197 225 25.7 K
K Butyrylation 200 241 47.5 K
K Crotonylation 200 237 48.5 K
K Di-Methylation 189 348 39.2 K
K Formylation 197 229 50.3 K
K Glutarylation 200 233 52.9 K
K Ubiquitinylation 200 382 52.4 K
K Hydroxyisobutyrylation 199 226 48.4 K
K Malonylation 198 224 35.1 K
K Methylation 194 365 45.2 K
K Propionylation 200 236 56.5 K
K Succinylation 197 233 46.9 K
K Tri-Methylation 186 329 38.1 K
P Hydroxylation 169 235 31.5 K
R Citrullination 184 247 37.9 K
R Dimethyl-asymmetric 181 313 38.3 K
R Dimethyl-symmetric 177 301 34.1 K
R Methylation 179 308 41.3 K
Y Nitro 175 215 58.5 K
Y Phosphorylation 174 217 101 K
N-Term TMT 6.2 K 7.6 K 32 K
K TMT and Ubiquitinylation 38.5 K 51.7 K 756 K

Table 9: Examples of special amino acid-PTM pairs in our datasets.
Modification (PTM) Residue Scenario

Phosphorylation S / T / Y Same PTM, different residue
Di-methylation R / K Same PTM, different residue
GlcNAC/GalNAC S / T Same PTM, different structure
Symmetric/Asymmetric di-methylation R Same PTM, different structure

Figure 5: Heatmap indicating the frequency of each PTM occurring on different amino acids.
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Figure 6: A: Frequency of each amino acid being reported as a modified site in the datasets. B:
Frequency of occurrence of PTMs in the datasets.

Figure 7: Bar plot of number of charge states for peptides in the datasets.

Table 10: Number of distinct charge states for peptides in the dataset.
Number of
Charge States

Number of
Examples

1 1,172,254
2 431,161
3 17,958
4 549
5 7

D Evaluation and Metrics

For retention time prediction, the time delta at 95% !t95% is the minimal time window containing
the errors (residuals) between observed and predicted retention times for 95% of the peptides [78].
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The 95% threshold corresponds to 2ω of the residuals. This threshold can be increased to a higher
percentage for stricter evaluation of model performance [21].

For intensities, the Spectral Angle is defined as follows for Va and Vb being the observed and predicted
intensity vectors [21]:

SA = 1→ 2
ω cos→1( Va·Vb

↑Va↑·↑Vb↑ )

We provide code to compute the metrics in our data GitHub repository [62].

D.1 Metrics for Datasets with PTMs

Throughout the paper, we calculated the Slope of a linear fit between two sets of iRT values. If the
two sets of iRT values are perfectly aligned, we would expect a slope of 1 (e.g. model predictions
against experimental values). We used this to highlight the impact of PTMs on retention time.

Although the two reported metrics (time delta 95 and Spectral angle) can be used for datasets with
both unmodified and modified peptide sequences, some minor adaptations and granular evaluation
can be conducted.

For example, when calculating the spectral angle, we align the peaks based on the annotation labels
(y1, b1, y2, b2, etc...) to account for the m/z shift introduced by PTMs. Therefore, we only calculate
how close the peak intensities are to each other.

For other tasks, reporting a suitable metric on subgroups of the dataset would give more insights into
a model’s performance. Potential subgroups include unmodified versus modified peptides, peptides
with different modification types or peptides with modifications at different residues.

In Figure 8, we show iRT and intensity spectra behavior for different PTMs on TMT labeled peptides.
We compare unmodified TMT-labeled peptides with modified TMT-labeled peptides. We also include
the effect of TMT labeling on unmodified peptides. In Figure 9, we can see that PTMs with TMT
show different behavior than PTMs on unlabeled peptides. Each point in the plot represents the effect
of a single PTM, combined effects are not taken into account.

Tables 11, 12, 13, 14, 15, and 16 show the performance metrics reported on special cases and
interesting subgroups of the datasets.

Table 11: Effect on retention time for the special residue-PTM pairs
Residue Modification Slope iRT95 R2

S Phosphorylation 0.85 21.1 0.83
T Phosphorylation 0.88 20.2 0.87
Y Phosphorylation 0.85 23.4 0.81
R Di-Methylation 0.91 8.7 0.97
K Di-Methylation 0.98 15.2 0.94
S GlcNAC 0.92 15.8 0.9
S GalNAC 1.04 13.2 0.9
T GlcNAC 0.96 16.8 0.88
T GalNAC 1.05 15.9 0.9
R Symmetric Di-Methylation 0.91 8.7 0.97
R aSymmetric Di-Methylation 0.93 11.0 0.97

D.2 Evaluation

Figure 10 shows the different distributions of the iRT residuals grouped by amino acid-PTM pair,
sorted in ascending order by the delta iRT (difference between label and Prosit-DeltaAtoms prediction
values for iRT). The results from Prosit model indicate that the model performs better than the
DeepLC on most PTMs. Although there are some PTMs that both models struggle to predict, it shows
that there is still room for improvement on the current SOTA models. An additional complexity can
be observed on the Acetylated Lysine, showing a bi-modal distribution of delta iRT. Moreover, there
is no consistent pattern among different PTMs, as they can shift the iRT to an earlier or a later point.
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Table 12: Effect on retention time for the same PTM occurring at the same residue.
Residue Modification Slope iRT95 R2

K Acetylation 0.97 18.2 0.93
K Ubiquitinylation 1.01 15.7 0.95
K Methylation 1.1 18.8 0.94
R Citrullination 0.85 16.2 0.97
R Methylation 0.92 9.5 0.96
Y Phosphorylation 0.84 24.2 0.8

Table 13: Effect on retention time for the same PTM occurring at a different residue.
Residue Modification Slope iRT95 R2

P Hydroxylation 0.94 9.9 0.97

Table 14: Effect on retention time for peptides with multiple PTMs
Number of different PTMs Slope iRT95 R2

1 0.93 18.7 0.95
2 0.89 20 0.95
3 0.88 20.5 0.94
4 0.86 22.6 0.92

Table 15: Effect on retention time for different PTMs
Residue Modification Slope iRT95 R2

K Biotinylation 1.19 38.1 0.94
K Butyrylation 1.02 33.1 0.91
K Crotonylation 1.04 34.4 0.91
K Di-Methylation 0.98 15.2 0.94
K Formylation 1.01 19 0.93
K Glutarylation 1.07 21.5 0.93
K Hydroxyisobutyrylation 0.96 24.9 0.93
K Malonylation 0.94 20.7 0.93
K Propionylation 0.99 23 0.92
K Succinylation 1.05 22.7 0.94
K Tri-Methylation 0.96 15.1 0.95
R Dimethyl-asymmetric 0.93 11.1 0.97
R Dimethyl-symmetric 0.91 8.7 0.97
Y Nitro 0.91 29 0.84

Table 16: Effect on retention time for unmodified peptides.
Residue Modification Slope iRT95 R2

K unmodified 0.96 5.3 0.98
R unmodified 0.95 4.4 0.97
Y unmodified 0.96 6.2 0.97

Figure 11 shows the different distributions of the spectral angle grouped by amino acid-PTM pair,
sorted in descending order by the median spectral angle with Prosit-DeltaAtoms predictions. A
spectral angle below 0.6 usually indicates low similarity between the experimental and the predicted
spectra, and hence, the predictions are not helpful in downstream tasks. Here, we divide the
figure into three sub-plots to indicate which PTMs were used to train Prosit and which were used
to train AlphapeptDeep. In Figure 11A, both models accurately predict the PTMs seen during
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and matching unmodified TMT labeled peptides for all PTMs contained in the TMT dataset. Marked
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Figure 9: Impact of modifications on iRT vs. Intensity on TMT labeled peptides. Marked points
show the difference between TMT labeled and unlabeled peptides.

training. In part B, AlphapeptDeep seems to be struggling with extrapolating on the unseen mods,
while Prosit still performs well since these mods were included for the training phase. In Part C
Prosit model generalizes to most of the unseen PTMs while still not getting the same performance
as AlphapeptDeep. However, the model still struggles with some modifications: the first one is
Biotinylation, and this might be because it has a bigger mass than most other PTMs and the model
was not exposed to such modifications, the second is Malonylation, and this is mainly because, with
this modification, there are very intense neutral loss peaks generated which changes the y- and b-ions
intensity distribution entirely.

In Figure 12, Prosit shows comparable performance, while AlphapeptDeep seemingly struggles with
this fragmentation method. The loss of performance in the AlphapeptDeep model is likely due to not
having an input for the fragmentation method, and thus, it doesn’t differentiate between HCD and
CID fragmentation methods.

Figure 13 shows the different distributions of the precursor charge distributions grouped by amino
acid-PTM pair, sorted in ascending order by the MAE (difference between label and Prosit prediction
values for precursor charge distribution). We visualize how different modifications affect the charge

26



U
nm
od
ifi
ed

K(
ac
)

K(
ub
i)

R
(c
it)

K(
m
e)

S(
ph
)

Y(
ph
)

T(
ph
)

tm
-S
(p
h)

tm
-Y
(p
h)

tm
-T
(p
h)

K(
pr
)

K(
cr
)

K(
hy
)

K(
su
)

K(
fo
)

P(
hy
)

K(
gl
)

K(
bu
)

R
(a
s-
di
m
e)

R
(s
ym
-d
im
e)

K(
di
m
e)

K(
tm
e)

Y(
ni
)

K(
bi
)

K(
m
a)

Amino acid-PTM

D
el

ta
 iR

T

-40

-20

0

20

40
Prosit-DeltaAtoms
DeepLC

Figure 10: Retention Time prediction with Prosit and DeepLC violin plot with dashed lines indicating
the delta iRT 95 for unmodified predictions with Prosit. Sequences are grouped by modifications.

distribution differently; some almost have no effect, and others have more prominent effects, leading
to MAE values reaching 0.5.

E Elaboration on Supported Tasks

This dataset in combination with the original PROSPECT dataset [21] offers the opportunity to
analyze in details the effect of PTMs on different peptide properties. While we covered in the main
RT and fragment ion intensity, this can also be used for more such as precursor charge and neutral
loss patterns [96, 97, 98]. It also provide the option of studying how the PTM location affects the
peptide properties as well, while there are multiple algorithms trying to do this task [46, 47, 41], this
is rather understudied with no proper study of the different effects of such change.

In Table 17, we provided a list of machine learning tasks that our datasets can primarily support in
the context of PTMs. The datasets can be also used for several other tasks, either as-is or with the
standard respective pre-processing required for the machine learning task at hand, without the need
for deep domain knowledge or further annotations. Table 17 lists all tasksas feasible with our datasets
to the best of our knowledge.

F Downstream Impact

Figure 14 shows that a model trained on PROSPECT PTM can lead to a gain of 20 % in PSMs and
peptides after rescoring [108].

G More Details on Splitting the Datasets

Our general recommendation as described in Section 3.3 is to use Test-PTM as a hold-out dataset and
split the three remaining datasets for training and validation of models. However, while iterating on
model development and training, we additionally recommend splitting the three datasets into training,
validation and test splits based on uniqueness of unmodified sequences (sequence-based disjoint
split), where examples for the same unmodified peptide sequence should appear in only one of the
splits [33]. Afterwards, the final selected model can be evaluated on the Test-PTM as a hold-out
dataset.

For retention time, users of the dataset should filter out the quality control (QC) peptides that are used
for RT calibration. This is detailed in [94].
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Figure 11: Violin plot with intensity predictions from Prosit and AlphaPeptDeep for HCD fragmenta-
tion. The dashed line indicating median SA for predictions on unmodified peptides with Prosit.

The counts in Table 18 show that the datasets contain mostly tryptic peptides. However, the TMT and
the PTM datasets contain some non-tryptic peptides. Since studying PTMs in the context of tryptic
peptides is more common, there should be no significant concerns about selection bias. Additionally,
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Figure 12: Violin plot with intensity predictions from Prosit and AlphaPeptDeep for CID fragmenta-
tion. The dashed line indicates the median SA for predictions on unmodified peptides with Prosit.

training models with the new datasets together with the unmodified peptides from PROSPECT [21]
would help alleviate bias towards tryptic peptides.
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Figure 13: Distribution of predictions for precursor charge states.

Table 17: Listing of tasks feasible with PROSPECT PTM datasets.
Name Input Target Type References
PTM
site prediction Sequence PTM Site Classification [99, 100, 53]

Retention Time Sequence RT Regression
(single value) [33, 38, 51, 40]

Retention Time
with PTMs Sequence RT Regression

(single value) [37]

Retention Time Sequence RT Regression
(distribution) -

Intensity
prediction Sequence intensities Regression

(vector) [33, 34, 101]

Intensity prediction
with PTMs Sequence intensities Regression

(vector) [41, 39]

Fragment Presence Sequence Present/Not Binary
classification [102]

Charge prediction Sequence Charge
distribution Regression [69, 70]

De novo
sequencing Intensity Sequence Classification

Ranking [86, 87, 103, 104]

Sequence/Spectral
Embedding

Sequence
Spectra Embeddings Representation

Similarity learning [105, 84, 106]

Multiple
properties Sequence

RT
charge
intensity

Multi-task
Learning [69]

Sequence
Clustering Sequence Cluster Unsupervised

Clustering [107]

H Experimental Details

For the evaluation of peptide sequences with PTMs, we trained various models. The first model
is Prosit baseline [33]. The model was trained on the original PROSPECT dataset [21] for both

30



0

20

40

60

80

100

120

PSMs Peptides

Re
la

tiv
e 

lo
ss

es
/s

ha
re

d/
ga

in
s [

%
]

co
m

pa
re

d 
to

 w
ith

ou
t r

es
co

rin
g

Figure 14: Stacked bar chart showing the number of confident PSMs (Peptide-Spectrum-Matches)
(left) and peptides (right) below 1% FDR (False Discovery Rate) lost (orange), shared (blue) and
gained (green) when rescoring using (Prosit) compared to the MSFragger [61] results.

Table 18: Count of Tryptic versus non-tryptic peptides.

Dataset Tryptic
Peptides

Non-Tryptic
Peptides

Tryptic
Spectra

Non-Tryptic
Spectra

TMT 396 K 318 K 19 M 9.2 M
PTM 300 K 7.2 K 19.4 M 267 K
TMT-PTM 157 K 1.6 K 7.7 M 52 K

tasks, retention time prediction, and intensity prediction; this model serves as a baseline performance
of how a model would predict different features without PTM encoding. Then, we trained other
models using different ways of PTM encoding to see which might show the best performance. The
Prosit naive model was trained on all datasets except Test-PTM. Hence, it does not support unseen
PTMs but instead ignores them. Two variants of Prosit encoded PTMs with domain-specific features:
Prosit-DeltaMass and Prosit-DeltaAtoms. Prosit-DeltaMass uses the mass introduced by the PTM as
an input feature to the model, while Prosit-DeltaAtoms uses the atom count introduced by the PTM
[40, 37]. AlphaPeptDeep [40] does not support N-term modifications.

The training and the inference were conducted using a single Nvidia A30 GPU. The Prosit model is
an encoder-decoder RNN-based model that can predict indexed retention time and intensity spectrum
for a given peptide sequence. The recurrent layers used in the architecture are Gated Recurrent Units
(GRUs). More details on the architecture can be found in [33]. Training time is in the range of 2-3
hours on the unmodified dataset for retention time and 25 to 30 hours for MS/MS spectra.

For comparison, we ran inference on a DeepLC model for retention time prediction using an Nvidia
A30 GPU. The DeepLC model architecture encodes input sequences and atom counts from amino
acids and PTMs using 1D-convolutional and max pooling layers. The DeepLC model architecture
includes a branch of fully-connected layers for global features engineered manually before training
from the sequences [37]. Figure 15 depicts the difference between DeepLC predictions and the
experimental iRT.

For MS spectrum prediction, we ran inference on AlphaPeptDeep [40] for MS spectra prediction
using an Nvidia A30 GPU. The AlphaPeptDeep frameworks provides several model architectures.
The pre-trained model we used encodes input sequences and atom counts from amino acids and
PTMs using transformer layers with positional encoding.
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Figure 15: The iRT difference between DeepLC predictions on modified and matching unmodified
peptides versus m/z values.

I Dataset Documentation: Datasheet for Datasets

I.1 Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a
specific gap that needed to be filled? Please provide a description.
The purpose is to introduce and establish multiple reference datasets for peptide sequences with
different groups of Post-Translational Modifications present, complementing the original PROSPECT
dataset, which contains unmodified peptide sequences. As of June 2024, the original PROSPECT
dataset [28] was viewed on Zenodo 871 times and downloaded 1116 times.

The four new datasets are processed and curated for machine learning in Proteomics. Although they
are not constrained to specific tasks, the focus is on three common tasks in proteomics; retention time
prediction, MS/MS spectrum prediction, and precursor charge state prediction.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)?
Computational Mass Spectrometry Chair at the School of Life Sciences, Technical University of
Munich, Germany.

Who funded the creation of the dataset? If there is an associated grant, please provide the name
of the grantor and the grant name and number.
The creation was partially funded by the following grants: European Proteomics Infrastructure
Consortium providing access, Grant Number 823839 and Bundesministerium für Bildung und
Forschung – BMBF, Grant Number 031L0008A.

Other comments?
We aim that this would be a start for different groups to release curated dataset with machine learning
tasks in mind instead of only publishing raw datasets that required several processing steps before
being useful for machine learning.

I.2 Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people
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and interactions between them; nodes and edges)? Please provide a description. How many
instances are there in total (of each type, if appropriate)?
Here we publish 4 different datasets. Instances of each dataset are peptide sequences, their corre-
sponding annotations, and meta-data for spectra. We have in 4.6B unique peaks for 58.6M spectra of
1.2M unique peptides with 30 unique PTM-residue combinations. We uploaded 2 different file types;
one for meta data for each spectrum and another with annotations.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample
representative of the larger set (e.g., geographic coverage)? If so, please describe how this
representativeness was validated/verified. If it is not representative of the larger set, please
describe why not (e.g., to cover a more diverse range of instances, because instances were
withheld or unavailable).
We have a dataset of all valid identifications from ProteomeTools PTMs and TMT raw data [48], one
of the largest datasets with synthetic peptides.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or
features? In either case, please provide a description.
We have the unprocessed meta data that we get from raw files generated as output from the mass
spectrometer. We process the spectra from MS with the identifications that we get from MaxQuant
[93] to annotate our dataset and annotate the fragment ions found in the spectra.

Is there a label or target associated with each instance? If so, please provide a description.
There are various machine learning problem formulations in proteomics, more details are in section
2. For the three tasks we focused on; namely, retention time, precursor charge state, and intensity
prediction, the targets are retention time (and indexed retention time), precursor charge states, and the
annotated spectra, respectively.

Instances of the dataset are generally linked together with the raw file and scan number associated
with each spectra.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit.
There are no direct relationships between different instances they might have some features in the
metadata such as length, retention time, collision energy, PTM-residue combination and peptide
sequence.

Are there recommended data splits (e.g., training, development/validation, testing)? If so, please
provide a description of these splits, explaining the rationale behind them.
For MS Spectra, we recommend splitting data based on the peptide sequence so no peptide sequence
is shared across different splits to avoid data leakage. Also splitting each pool in different files as each
pool has different set of peptides to ensure that the splits has all the different types of peptides and
didn’t miss any. For charge state prediction, we recommend to split the data with a similar approach.

For retention time, while we suggest the same as Spectra in terms of not sharing sequences in different
splits, we additionally recommend to filter examples and keep only one copy of each with the mean
retention time of measurements for the same sequence. The mean retention time for each sequence
can then be used for training the model.

The splits we used are available as ready-to-use datasets on the Hugging Face hub for the three tasks;
retention time [63], MS2 [64], and charge state [65].

We suggest as well to use the PTM-Test as another holdout dataset for models trying to predict
features for peptides with PTMs. We explain in details why this is useful in 3.3. More details are in
Appendix Section G. The respective curated dataset on the Hugging Face hub is available in the three
task repositories under a separate configuration denoted as holdout.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a
description.
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Our objective was to reduce the number of miss-identifications in the dataset, since we know which
set of peptides we expect in each raw file, we remove all other identifications made by MaxQuant [93].
Although there might still be miss-identifications after this filtering, they would rather be less than
1%, which is the known acceptable cut off-in the field. There are redundancies as the same peptide
would be measured multiple times but the spectra and Retention time would be slightly different in
different measurements, we kept in this case all instances in the dataset.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? If it links to or relies on external resources, a) are there
guarantees that they will exist, and remain constant, over time; b) are there official archival
versions of the complete dataset (i.e., including the external resources as they existed at the time
the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of
the external resources that might apply to a dataset consumer? Please provide descriptions of
all external resources and any restrictions associated with them, as well as links or other access
points, as appropriate.
The dataset is self-contained as all the processed information is in one place. The only external
resource is when users want to get access to the raw unprocessed data this is shared on pride archives
[27, 25, 26]. All the archives are open access with a CC license and no restrictions on getting the
data.

Does the dataset contain data that might be considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor– patient confidentiality, data that includes the content of
individuals’ non-public communications)? If so, please provide a description.
No

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety?
No

I.3 Collection

How was the data associated with each instance acquired? Was the data directly observable
(e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly
inferred/derived from other data (e.g., part-of-speech tags, model-based guesses for age or
language)? If the data was reported by subjects or indirectly inferred/derived from other data,
was the data validated/verified? If so, please describe how.
Raw files were acquired with a Mass spectrometer and peptide identifications were made with
MaxQuant [93] (a software for database search). Here we depend on MaxQuant for identifications,
but as mentioned in the previous section we remove miss-identifications to decrease the number of
wrong labels. This is a particular strength of this dataset since we know which peptides exist per
sample, based on the fact that they were specifically synthesized. For other datasets, we might only
know to which organism they belong, which can lead to a higher number of misidentifications.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses
or sensors, manual human curation, software programs, software APIs)? How were these
mechanisms or procedures validated?
Data was measured with Mass spectrometers and annotated with a software. Already explained in the
question above how the dataset was validated.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?
No sampling was done, we include all peptides that were measured.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)?
Raw data were acquired by PhD students working on the ProteomeTools project [48] and annotated
and curated by PhD students and the authors of the accompanying paper.
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Over what timeframe was the data collected? Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please
describe the timeframe in which the data associated with the instances was created.
Data acquisition started as early as 2017, but the time-frame doesn’t affect the data in any shape or
form.

Were any ethical review processes conducted (e.g., by an institutional review board)? If so,
please provide a description of these review processes, including the outcomes, as well as a link
or other access point to any supporting documentation.
No, the data is based on ProteomeTools which contains only synthetic peptide samples.

I.4 Preprocessing/Cleaning/Labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)? If so, please provide a description. If not, you may skip the remaining
questions in this section.
No.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? If so, please provide a link or other access point to the “raw” data.
The raw data is publicly available through the PRIDE archives [27, 25, 26]. The annotated datasets
we provide are available on Zenodo [56, 57, 58, 59]. The processed and split task-specific datasets
are available on the Hugging Face Hub [63, 64, 65].

Is the software that was used to preprocess/clean/label the data available? If so, please provide
a link or other access point.
No, we used MaxQuant to remove misidentifications. Further processing of the datasets was done
with Python scripts that are available in a dedicated dataset utilities GitHub repository [62].

I.5 Usage

Has the dataset been used for any tasks already? If so, please provide a description.
Yes, parts of the dataset were previously used in different models for predicting fragment ions intensity
and retention time, examples include the work in [43].

Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point.
We referenced previous work in the paper and in Zenodo along with the dataset itself [57, 56, 58, 59].

What (other) tasks could the dataset be used for?
The data can be used for various tasks, examples include prediction of different peptide features,
study double annotations for different peaks, assignment of annotations to peaks and localizing PTMs.
For more details, please refer to Section 3 and Appendix Section E.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? For example, is there anything that a
dataset consumer might need to know to avoid uses that could result in unfair treatment of
individuals or groups (e.g., stereotyping, quality of service issues) or other risks or harms (e.g.,
legal risks, financial harms)? If so, please provide a description. Is there anything a dataset
consumer could do to mitigate these risks or harms?
No, not as far as we know.

Are there tasks for which the dataset should not be used? If so, please provide a description.
No, not as far as we know.
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I.6 Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description.
Both the raw data from ProteomeTools and our dataset PROSPECT are publicly available. Every
third party outside the entity on behalf of which the dataset was generated has access to it now.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset
have a digital object identifier (DOI)?
We uploaded the 4 datasets to Zenodo, each with a dedicated DOI [57, 56, 58, 59]. The processed and
split task-specific datasets are uploaded to the Hugging Face Hub with dedicated DOIs [63, 64, 65].
We also have a GitHub repository with utilities to download the dataset [62].

When will the dataset be distributed?
We published the datasets on Zenodo in October 2023 and June 2024. We published the accessible
splitted, aggregated, and processed datasets to the Hugging Face Hub in June 2024.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and
provide a link or other access point to, or otherwise reproduce, any relevant licensing terms or
ToU, as well as any fees associated with these restrictions.
Open access, Creative Commons Attributions 4.0 International.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions.
No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise reproduce, any supporting documentation.
No.

I.7 Maintenance

Who will be supporting/hosting/maintaining the dataset?
Professorship for Computational Mass Spectrometry at the Technical University of Munich (TUM).
The datasets are hosted on Zenodo [56, 57, 58, 59] and the task-specific processed datasets are hosted
on the Hugging Face [63, 64, 65]. Current maintainers are the authors and later other members of the
Professorship at TUM.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
Mathias Wilhelm (mathias.wilhelm@tum.de).

Is there an erratum? If so, please provide a link or other access point. No.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
If so, please describe how often, by whom, and how updates will be communicated to dataset
consumers (e.g., mailing list, GitHub)?
If we detect further misidentifications or improve the quality of annotations, we will release subsequent
versions with the respective updates. This will be versioned and announced in Zenodo, the Hugging
Face Hub, and GitHub.

If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances (e.g., were the individuals in question told that their data would be retained
for a fixed period of time and then deleted)? If so, please describe these limits and explain how
they will be enforced.
No, the dataset is neither related to people nor based on human samples.
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Will older versions of the dataset continue to be supported/hosted/maintained? If so, please
describe how. If not, please describe how its obsolescence will be communicated to dataset
consumers.
Yes, different versions will be maintained on Zenodo and the Hugging Face Hub.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? If so, please provide a description. Will these contributions be validated/verified?
If so, please describe how. If not, why not? Is there a process for communicating/distributing
these contributions to dataset consumers? If so, please provide a description.
We welcome and encourage others to extend/augment/build on/contribute to the dataset. We sug-
gested initiating contact with our professorship and we will discuss the best options for communicat-
ing/distribution the additions.

J Author Statement

The authors confirm all responsibility in case of violation of rights and confirm the licence associated
with the dataset.
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