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ABSTRACT

We propose a physics-informed neural network policy iteration (PINN-PI) frame-
work for solving stochastic optimal control problems governed by second-order
Hamilton–Jacobi–Bellman (HJB) equations. At each iteration, a neural network
is trained to approximate the value function by minimizing the residual of a linear
PDE induced by a fixed policy. This linear structure enables systematic L2 error
control at each policy evaluation step, and allows us to derive explicit Lipschitz-
type bounds that quantify how value gradient errors propagate to the policy up-
dates. This interpretability provides a theoretical basis for evaluating the quality
of policy during training. Our method extends recent deterministic PINN-based
approaches to stochastic settings, inheriting the global exponential convergence
guarantees of classical policy iteration under mild conditions. We demonstrate the
effectiveness of our method on several benchmark problems, including stochas-
tic cartpole, pendulum problems and high-dimensional linear quadratic regulation
(LQR) problems in up to 20D.

——————–

1 INTRODUCTION

Solving infinite-horizon stochastic optimal control problems requires computing the value function,
which satisfies a nonlinear Hamilton–Jacobi–Bellman (HJB) partial differential equation (PDE). In
high dimensions, traditional numerical methods become intractable due to the curse of dimension-
ality. While Howard’s policy iteration (PI) Howard (1960); Puterman & Brumelle (1979); Puterman
(1981) provides a theoretically grounded and convergent scheme, each iteration requires solving a
linear PDE, which becomes the computational bottleneck in practice.

Recent theoretical works have extended PI to various settings: deterministic control Tang et al.
(2025), stochastic control under viscosity solutions Jacka & Mijatović (2017); Kerimkulov et al.
(2020), and entropy-regularized (exploratory) formulations Tran et al. (2025b); Huang et al. (2025).
These developments underscore the robustness of the PI framework, but also highlight the need for
scalable solvers that can handle high-dimensional PDEs with theoretical guarantees.

In this work, we propose a mesh-free, physics-informed policy iteration framework for solving
stochastic optimal control problems governed by second-order HJB equations. Our method inte-
grates classical PI with physics-informed neural networks (PINNs): at each iteration, the value
function is approximated by a neural network trained to minimize the residual of the linear PDE
associated with a fixed policy. By fixing the policy at each iteration, we obtain a linear PDE for the
value function, which contrasts with the fully nonlinear HJB equation. This linearity enables the
use of classical energy estimates to control the L2 error, which would be difficult to establish under
direct optimization of the full HJB.

Unlike model-free reinforcement learning or trajectory-based PINN approaches, our method directly
targets the PDE structure of the control problem. This yields both theoretical interpretability and
numerical scalability. In particular, we show that value gradient error controls policy error through
a Lipschitz-type bound, enabling policy quality monitoring throughout training.
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We validate our approach on high-dimensional stochastic control tasks, including LQR, pendulum,
and cartpole problems. Results confirm that our method retains the convergence and stability of
classical PI while benefiting from the flexibility of neural PDE solvers. Our main contributions are:

• We propose a physics-informed, mesh-free policy iteration framework for solving high-
dimensional stochastic control problems governed by nonlinear HJB equations.

• We establish a rigorous L2 error analysis with a decomposition into iteration error, resid-
ual error, and policy mismatch, and prove global exponential convergence under standard
assumptions.

• We demonstrate the accuracy and scalability of our approach on a variety of nonlinear
stochastic control benchmarks.

2 RELATED WORK

Classical Policy Iteration. Policy iteration (PI) was first formalized by Howard Howard (1960)
and later analyzed in depth by Puterman et al. Puterman & Brumelle (1979), who connected PI to
Newton–Kantorovich iterations and established convergence rates. In continuous-time settings, Put-
erman Puterman (1981) extended these ideas to controlled diffusion processes, showing convergence
under appropriate assumptions.

Viscosity Methods for HJB Equations. In the context of continuous-time stochastic control,
monotone convergence of PI under a weak solution framework has been established Jacka & Mi-
jatović (2017). Slightly later, global exponential convergence using BSDE-based techniques were
proposed Kerimkulov et al. (2020). For deterministic control problems, the convergence of PI was
analyzed within the framework of viscosity solution Tang et al. (2025).

Entropy-Regularized and Exploratory Control. Entropy-regularized HJB equations arise in ex-
ploratory control settings, where the optimal policy is stochastic due to the inclusion of an en-
tropy term in the objective. Convergence of policy iteration in this context has been studied exten-
sively Tran et al. (2025a); Huang et al. (2025). In particular, under the assumption that the diffusion
coefficient depends weakly (or not at all) on the control variable, geometric convergence has been
established.

Physics-Informed and Neural Approaches. Physics-informed neural networks (PINNs) Raissi
et al. (2019) have emerged as mesh-free alternatives for solving high-dimensional PDEs, offering
flexibility and scalability beyond traditional discretization methods. Neural variants of policy iter-
ation have combined these tools with classical control frameworks. One such approach introduces
ELM-PI and PINN-PI, which solve linearized PDEs in deterministic control problems and support
Lyapunov-based stability verification Meng et al. (2024). Additional extensions include nonconvex
formulations Yang et al. (2025), operator-learning-based architectures Lee & Kim (2025), and re-
inforcement learning methods that integrate differentiable physics or PDE solvers into model-based
pipelines Ramesh & Ravindran (2023); Mukherjee & Liu (2023).

Our work addresses general stochastic control problems with nonlinear dynamics and compact ac-
tion spaces, and develops a rigorous L2-error analysis aligned with residual loss minimization. We
prove exponential convergence under classical policy iteration, offering a quantitative decomposi-
tion of total error that accounts for both approximation and policy mismatch.

3 INFINITE-HORIZON STOCHASTIC OPTIMAL CONTROL

Let (Wt)t≥0 be a d-dimensional Brownian motion on a filtered probability space (Ω,F ,Ft,P). A
bounded and measurable control process at ∈ A ⊂ Rm drives the controlled diffusion

dXt = b(Xt, at) dt+ σ dWt, X0 = x ∈ Rd, (1)

where σ is a constant matrix. The goal is to maximize the infinite-horizon discounted cost

J(x, a) = Ex

[∫ ∞

0

e−λsL(Xs, as) ds

]
, λ > 0. (2)

2
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With the value function defined as V (x) := supa J(x, a), it is known from literature Tran (2021);
Evans (2022) that V ∈ Lip(Rd) is a unique viscosity solution to

λV − 1

2
tr(σσ⊤D2

xxV )− sup
a∈A

{b · ∇xV + L} = 0, (3)

under some regularity assumptions on b, L. Then the optimal control is given by

a∗(x) := argmax
a∈A

{b(x, a) · ∇xV (x) + L(x, a)},

where measurable selection guarantees the measurability of the control.

In the remainder of this section, we formalize the mathematical setting, assumptions, and notation
used throughout the paper.

Notations Let us begin by introducing the notations used throughout the paper. For x ∈ Rd, we
write |x| for the Euclidean norm. Given a function f : Ω → Rn, we denote its standard Lp norm by

∥f∥p :=

(∫
Ω

|f |p dx
)1/p

, for p ∈ [1,∞].

The Hessian of f is denoted D2
xxf . We say f ∈ H1(Rd) = W 1,2(Rd) if

∫
Ω
|f |2 + |∇xf |2 < ∞.

For g : Rd → Rd, divx g :=
∑d

i=1 ∂xi
gi where gi denotes the ith component of g.

Assumption 1. We impose the following assumptions throughout the paper.

(A1) Control set A ⊂ Rd is compact and convex.

(A2) b : Rd × A → R are continuously differentiable and Lipschitz continuous. In addition,
b(x, a) satisfies:

• λ > B/2 where

B := sup
a∈A

(∥b(·, a)∥∞ + ∥divx b(·, a)∥∞) < ∞,

• the Jacobian ∂ab(x, a) is uniformly bounded,

• there exists a constant B̃ > 0 satisfying

|∂ab(x, a)|+
|∂ab(x, a)− ∂ab(x, a

′)|
|a− a′|

≤ B̃.

(A3) L(x, a) ≥ 0 is uniformly La-Lipschitz continuous and µa-strongly convex in a. Further-
more, there exist constants R > 0, β > d+ 2, and C > 0 such that

sup
a∈A

L(x, a) ≤ C

(1 + |x|)β
, for all |x| ≥ R.

(A4) σσ⊤ is uniformly elliptic with eigenvalues bounded between 0 < ν ≤ Λ.

Assumption (A3) ensures that the running cost L(x, a) decays sufficiently fast at infinity, while
(A4) guarantees nondegenerate diffusion. These together imply that the value function V (x) =
supa Ex[

∫∞
0

e−λtL(Xt, at) dt] is integrable over Rd, i.e., V ∈ L2(Rd), via standard estimates on
stochastic processes with confining cost structure.

3
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4 HOWARD’S POLICY IMPROVEMENT ALGORITHM

Algorithm 1 Policy Improvement

1: Input: initial Markov policy a0(·).
2: for n = 0, 1, 2, . . . do
3: Policy evaluation: solve for vn on Rd

λvn − 1
2 tr(σσ

⊤D2
xxvn)− b(·, an) · ∇xvn = L(·, an).

4: Policy improvement:

an+1(x) = argmax
a∈A

{L(x, a) + b(x, a) · ∇xvn(x)}.

5: if ∥vn+1 − vn∥∞ < ε then stop.
6: end for

Howard’s policy iteration alternates between evaluating the cost of a fixed policy and improving it
by acting greedily with respect to the current value function. This structure naturally aligns with
model-based reinforcement learning methods and enables interpretable control synthesis in contin-
uous domains. Unlike value iteration, which updates the value function directly via a fixed-point
operator, policy iteration produces stable value approximations by solving a linear PDE at each step.

The key advantage of this method lies in the decoupling of policy evaluation and improvement: the
former reduces to solving a linear PDE, and the latter often admits a closed-form optimizer when
L(x, a)+ b(x, a) ·∇xV (x) is convex in a. This makes PI especially appealing for structured control
problems where the policy improvement step can be implemented efficiently.

However, the main computational bottleneck in Howard’s method lies in solving the high-
dimensional linear PDE in each policy evaluation step. Traditional finite-difference or finite-element
schemes scale poorly in high dimensions. In the next section, we propose to overcome this limita-
tion using physics-informed neural networks (PINNs), which serve as flexible, mesh-free solvers
capable of approximating solutions in high-dimensional domains.

5 PHYSICS-INFORMED HOWARD POLICY ITERATION

We propose a PINN-based variant of Howard’s policy iteration, where the value function at each
iteration is approximated by a neural network trained to minimize the PDE residual at sampled
collocation points. Let {xi}Ni=1 ⊂ Ω be a set of N collocation points sampled from the domain.1
Given a fixed policy an(x), we approximate the corresponding value function vn(x) by a neural
network vn(x; θ) and define the residual of the linear PDE:

L(θ) := 1

N

N∑
i=1

|λvn(xi; θ)− 1
2 tr(σσ

⊤D2
xxvn(xi; θ))

− b(xi, an(xi)) · ∇xvn(xi; θ)− L(xi, an(xi))|2
(4)

Before analyzing the convergence of our proposed method, we first establish a stability result for
the linear PDE solved at each policy evaluation step. Specifically, for a fixed measurable policy
an : Rd → A, the value function vn satisfies a linear elliptic PDE of the form:

λvn − 1
2 tr(σσ

⊤D2
xxvn)− bn · ∇xvn = k,

where bn(x) := b(x, an(x)) and k(x) ∈ L2(Rd) is a given forcing term. The following proposition
shows that under mild assumptions, this equation admits a unique weak solution vn ∈ H1(Rd), with
an energy estimate that is uniform in the choice of the measurable policy an. This result plays a key
role in subsequent error analysis.

1Although the theoretical analysis is conducted over Rd, we assume a bounded domain Ω ⊂ Rd in practice
since only a finite number of collocation points are sampled.
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Algorithm 2 Physics-Informed Neural Network Policy Iteration (PINN-PI)

1: Input: Initial policy a0(·), number of collocation points N , domain Ω, initial network parame-
ters θ0

2: for n = 0, 1, 2, . . . do
3: Collocation sampling: Sample {xi}Ni=1 ⊂ Ω
4: Policy evaluation: Train neural network vn(x; θ) by minimizing the residual loss defined

in equation 4
5: Policy improvement:

an+1(x) := argmax
a∈A

{L(x, a) + b(x, a) · ∇xvn(x; θn)}

6: If stopping criterion met (e.g. ∥an+1 − an∥∞ < ε) then stop
7: end for

Proposition 1 (L2 estimate with a measurable policy an). Suppose Assumption 1 holds. Let
an : Rd → A be any measurable policy and set bn(x) := b(x, an(x)). For k ∈ L2(Rd) consider the
PDE

λvn − 1
2 tr(σσ

⊤D2
xxvn)− bn · ∇xvn = k in Rd.

Then there is a unique weak solution vn ∈ H1 satisfying(
λ− 1

2B
)
∥v∥22 +

ν

2
∥∇xv∥22 ≤ (k, vn),

where (f, g) :=
∫
Rd fg dx. Therefore,

∥v∥2 ≤ Cλ∥r̃∥2, ∥∇xv∥2 ≤ Cλ∥k∥2,

where Cλ = max{ 1
λ− 1

2B
,
√

1
ν(λ− 1

2B)
}.

For the sake of completeness, the proof is provided in Appendiex A.1 While the proposition above
ensures the stability of each policy evaluation step in the L2 sense, it does not by itself guarantee that
the updated policy improves over iterations. To analyze the overall convergence behavior of policy
iteration, it is crucial to understand how the quality of the value function approximation, particularly
its gradient, affects the resulting policy.

To this end, the next proposition shows that the policy improvement map is Lipschitz continuous
with respect to the value gradient. This result allows us to quantify how errors in the value approx-
imation propagate to the policy error in a stable manner, which is a key ingredient in establishing
exponential convergence.
Proposition 2 (Policy error controlled by value–gradient error). Assume (A1)–(A4) and let
|z|, |z′| ≤ M for some M such that µa > MB̃. Fix x ∈ Rd and define the selector

a∗(x, z) := argmax
a∈A

{
L(x, a) + b(x, a) · z

}
, z ∈ Rd.

Then a∗ is globally Lipschitz in z with constant θ > 0:

|a∗(x, z)− a∗(x, z′)| ≤ θ|z − z′| for z, z′ ∈ Rd.

The proof is presented in Appendix A.2.

In Kerimkulov et al. (2020), the pointwise exponential convergence has been established, which
yields that

0 ≤ vn(x)− V (x) ≤ Cηn, ∀x ∈ Rd,

for some η ∈ (0, 1). However, in the framework of PINNs, L2 is more suitable so, we now establish
the exponential convergence property of vn to V in L2.

Throughout this section, we use

CR := θ(La + B̃ max
p∈{2,∞}

{∥∇xV ∥p, ∥∇xvn∥p}),

5
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where V is a unique solution to equation 3 and {vn}n≥0 is generatved via Algorithm 1. Here, by
classical theory of elliptic PDEs Evans (2022) and the Lipschitz continuity of V , this CR is finite.
For brevity, let us define

T [v, a] := λv − 1
2 tr(σσ

⊤D2
xxv)− b(·, a) · ∇xv − L(·, a).

Theorem 1 (Global exponential convergence of Howard–PI). Let Assumption 1 hold and V be a

unique viscosity solution to equation 3 with continuous gradient. If κ̃ :=

√
C2

R

ν(λ− 1
2B)

∈ (0, 1), then

we have
∥vn − V ∥2 ≤ Cκ̃n. x ∈ Rd,

where {(vn, an)}n≥0 be produced by Algorithm 1, and C is a problem dependent constant.

We introduce a lemma that links the value functions and their gradients.

Lemma 1. With CR defined above, we have that

∥vn − vm∥2 ≤ C̃λ∥∇xvn−1 −∇xvm−1∥2,

and
∥∇xvn −∇xvm∥2 ≤ C̃λ∥∇xvn−1 −∇xvm−1∥2,

where C̃λ = max{ CR

λ− 1
2B

,

√
C2

R

ν(λ− 1
2B)

}.

The proof of this lemma is provided in Appendix A.3

Proof of Theorem 1. Recalling

a∗(x) := argmax
a∈A

{b(x, a) · ∇xV (x) + L(x, a)},

V ∈ Lip(Rd) ∩ L2(Rd) is a unique viscosity solution to

λV − 1
2 Tr(σσ

⊤D2
xxV )− b(·, a∗) · ∇xV − L(·, a∗) = 0.

Subtracting from T [vn, an], we achieve

λen − 1
2 Tr(σσ

⊤D2
xxen)− b(·, an) · ∇xen = Rn,

where en := vn − V and Rn := [b(·, an)− b(·, a∗)] · ∇xV + [L(·, an)− L(·, a∗)].
By applying Lemma 1 with vn and vm = V , we deduce that

∥∇xen∥2 ≤

√
C2

R

ν(λ− 1
2B)

∥∇xen−1∥2,

and hence,
∥∇xen∥2 ≤ κn∥∇xe0∥2.

Now from

∥en∥2 ≤ CR

λ− 1
2B

∥∇xen−1∥2,

we conclude that
∥en∥2 ≤ Cκn.

for some global constant C > 0.

Finally, combining Theorem 1 and Proposition 3 introduced below, we arrive at a quantitative bound
on the total approximation error of the PINN-based policy iteration method. Specifically, with
{ṽn}n≥0 be generated via Algorithm 2, we define the three error components

δn := ṽn − v̂n, εn := v̂n − vn, ϵ := vn − V, (5)

6
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so that ẽn = δn + εn + en, where en := vn − V is the ideal policy-iteration error. There exists a
(user-chosen) tolerance pn > 0 such that

∥rn∥2 ≤ pn, n = 0, 1, · · · , (6)
where

rn := λṽn − 1
2 tr(σσ

⊤D2
xxṽn)− b(· ãn) · ∇xṽn − L(·, ãn). (7)

The distinction between v̂n and ṽn is essential for understanding the approximation error introduced
by the PINN surrogate, ṽn. Specifically, v̂n denotes the exact solution to the linear PDE associated
with the frozen policy ãn derived from ṽn−1, which means that T [v̂n, ãn] = 0. In contrast, ṽn is
the neural approximation to v̂n obtained by minimizing the residual loss equation 4 at a finite set
of collocation points. Therefore, δn = ṽn − v̂n captures the discrepancy due to numerical training,
discretization, and model capacity limitations of the PINN. Importantly, δn is fully controlled by the
optimization procedure and serves as the primary source of empirical error in our framework.
Proposition 3 (Policy–mismatch recursion). Let {(ṽn, ãn)}n≥0 be generated via Algorithm 2, and
κ := C̃λ ∈ (0, 1) with λ sufficiently large. Then, under the same assumption as in Theorem 1, we
have that

∥δn∥2 + ∥εn∥2 ≤ C(p+ κn). (8)
for some problem dependent constant C > 0 where p = supn pn.

Proof. To estimate δn, we recall that T [ṽn, ãn] = rn with rn defined in equation 4 and T [v̂n, ãn] =
0. Subtracting two, with Cλ from Proposition 1, we have

∥δn∥2 ≤ Cλpn ≤ Cλp.

We now estimate ε = v̂n − vn. Noting that v̂n and vn satisfy T [v̂n, ãn] = 0 and T [vn, an]=0, we
invoke Lemma 1 with v̂n and vn. Hence,

∥ε∥2 = ∥v̂n − vn∥2 ≤ Cλ∥∇xṽn−1 −∇xvn−1∥,
since ãn is induced by ṽn−1.

Applying Lemma 1 once again with ṽn−1 and vn−1, we have

∥∇xṽn−1 −∇xvn−1∥2 ≤ ∥∇xṽn−1 −∇xv̂n−1∥2 + ∥∇xv̂n−1 −∇xvn−1∥2
≤ Cλpn−1 + C̃λ∥∇xṽn−2 −∇xvn−2∥

Denoting gn := ∥∇xṽn −∇xvn∥2, we have that

gn−1 ≤ Cλpn−1 + C̃λgn−2,

which leads to

gn−1 ≤ (C̃λ)
n−1g0 + Cλp

n−1∑
i=0

(C̃λ)
i ≤ g0κ

n−1 +
Cλp

1− κ
.

since κ = C̃λ ∈ (0, 1). Therefore,

∥∇xṽn−1 −∇xvn−1∥2 ≤ κn−1∥∇xṽ0 −∇xv0∥2 +
Cλp

1− κ
,

and thereby,
∥εn∥2 ≤ C(κn + p),

for some C > 0.

Theorem 1 establishes exponential convergence of Howard’s method under exact policy evalua-
tion. In practice, however, our PINN-based framework introduces approximation errors due to finite
training, neural network capacity, and collocation sampling. These errors manifest as discrepancies
between the neural surrogate ṽn and the exact PDE solution vn at each iteration.

To rigorously quantify the cumulative effect of these approximations, we now derive a global L2

error bound that separates the ideal contraction behavior from the training-induced deviations. This
result justifies the robustness of our approach and provides guidance on the choice of residual toler-
ance during training.

7
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Theorem 2 (Global L2 error bound). Under the same assumption in Proposition 3 and κ̃ ∈ (0, 1),
we have that

∥ṽn − V ∥2 ≤ C(p+ κn + κ̃n), (9)

where κ̃ is from Theorem 1.

Proof. The proof immediately follows from Theorem 1 and Proposition 3 after decomposition

ẽn = δn + εn + (vn − V ).

This result confirms that the overall error between the neural approximation ṽn and the optimal value
function V can be decomposed into a controllable training error and an exponentially decaying ideal
iteration error. In particular, so long as the residual tolerance pn remains uniformly bounded, the
cumulative error remains stable across iterations. This theoretical guarantee forms the basis for
choosing the training accuracy of the PINN at each step in practice.

In the next section, we empirically validate these theoretical insights on a range of benchmark control
problems, demonstrating both the convergence behavior and the accuracy of the resulting policies.

6 EXPERIMENTS

We empirically validate our proposed PINN-based policy iteration (PINN-PI) framework, which
implements a physics-informed variant of Howard’s policy iteration scheme for stochastic optimal
control. Our experiments span both linear-quadratic and nonlinear benchmark systems with stochas-
tic dynamics and compact action spaces. Through these experiments, we aim to demonstrate: (1)
scalability and stability of PINN-PI in high-dimensional settings, including monotonicity of value
functions Howard (1960); Kerimkulov et al. (2020), (2) its advantage over model-free baselines such
as SAC (3), and its robustness.

6.1 LINEAR-QUADRATIC REGULATOR (LQR) WITH COMPACT ACTION SPACE

We begin with stochastic LQR problems in dimensions d = m ∈ {5, 10, 20} under a compact con-
trol set. The compactness assumption breaks the standard Riccati structure and eliminates closed-
form solutions, yet the true value function remains nearly quadratic, making this setting a useful
benchmark for evaluating learning performance. To evaluate the learned policies, we report rewards
averaged over 30 trajectories starting from the zero initial state.

As a model-free comparison, we train Soft Actor-Critic (SAC) Haarnoja et al. (2018) on the same
problem, using identical initializations and noise realizations. Unlike PINN-PI, SAC must discover
both dynamics and cost structure purely from rollouts.

Figure 1 compares our method (PINN-PI) with Soft Actor-Critic (SAC) in 5D and 10D LQR settings.
As demonstrated, PINN-PI consistently achieves higher reward and smoother convergence, while
SAC struggles to generalize in high dimensions due to sample inefficiency. The result with (d,m) =
(20, 20) is provided in Appendix B together with experimtnal details.

6.2 NONLINEAR BENCHMARKS WITH STOCHASTIC DYNAMICS

To evaluate performance in more realistic and nonlinear scenarios, we consider two widely used
benchmark environments Brockman et al. (2016): the stochastic inverted pendulum and cartpole.
Both systems are modeled as stochastic control-affine dynamics with additive Brownian noise.

Figure 2 shows the evolution of performance over training, evaluated from 10 trajectory samples
with the same random initial states. PINN-PI consistently stabilizes the system faster and achieves
higher reward than SAC, while strictly enforcing control constraints. Notably, in high-noise regimes,
SAC exhibits oscillatory behavior due to imperfect reward shaping, whereas PINN-PI produces
smoother, more stable trajectories by leveraging model information and HJB structure. The mono-
tonicity property of policy iteration is also confirmed in both tasks.
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(a) 5D case (b) 10D case

Figure 1: Comparison between PINN-PI (ours) and SAC in learning stochastic LQR problems with
compact control sets. PINN-PI exhibits monotonic improvement of the value function, while SAC
shows less stable learning behavior.

(a) Stochastic cartpole (b) Stochastic pendulum

Figure 2: Comparison between PINN-PI and SAC. In both cases, PINN-PI exhibits a monotonic
increase in the value function.

7 DISCUSSION

Our method extends the deterministic and affine-in-control setting of Meng et al. (2024) by es-
tablishing an L2-based convergence theory for general stochastic control problems with nonlinear
dynamics and compact action spaces. A key feature of our method is that the total approximation
error across iterations remains uniformly bounded, enabling systematic monitoring of policy quality
through L2 energy estimates.

While our approach requires full model knowledge (drift and diffusion), once the HJB equation
is solved through our PINN-based framework, the resulting value function immediately yields the
optimal policy for any new initial state. In this sense, our method leverages model information
to produce a reusable global solution, in contrast to model-free methods that re-train for each task
instance. This property highlights the scalability of our framework: solving a high-dimensional HJB
not only establishes theoretical guarantees but also provides a direct mechanism for policy recovery
across state space.

Several practical directions remain open, including reducing the cost of policy improvement for non-
linear dynamics, developing dimension-adaptive sampling schemes, and extending the framework
to settings with partially unknown dynamics. Nonetheless, the ability to recover optimal policies
universally from a trained value function underscores the broader impact of combining PDE theory
with physics-informed learning in high-dimensional control.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All theoretical claims are
stated with clear assumptions in Section 3 and rigorously proved in Appendix (A.1– A.3). The com-
plete description of our proposed PINN-based policy iteration algorithm is provided in Algorithm
2 (Section 5), together with detailed error analysis and convergence guarantees (Theorems 1–2).
Experimental setups, including hyperparameters, network architectures, and collocation sampling
strategies, are fully described in Section 6 and Appendix B. To further facilitate reproducibility, we
will release anonymous source code and scripts for reproducing all experiments (LQR, pendulum,
cartpole) as supplementary material.

A APPENDIX

A.1 PROOF OF PROPOSITION 1

Since an takes values in A and b is uniformly bounded on Rd × A, we have ∥bn∥∞ ≤ B and
∥divx bn∥∞ ≤ B. For u, φ ∈ H1(Rd), we set

a(u, φ) := 1
2

∫
Rd

σσ⊤∇xu · ∇xφ+ λ

∫
Rd

uφ−
∫
Rd

bn · ∇xuφ.

The right-hand side is ℓ(φ) :=
∫
kφ. We now see the boundedness of the coercivity of a as

|a(u, φ)|
≤ Λ

2 ∥∇xu∥2∥∇xφ∥2 + λ∥u∥2∥φ∥2 +B∥∇xu∥2∥φ∥2
≤ C1∥u∥H1∥φ∥H1 .

and

a(u, u) = 1
2

∫
∇xu

⊤σσ⊤∇xu+ λ∥u∥22 − 1
2

∫
(div bn)u

2

≥ ν
2∥∇xu∥22 + (λ− 1

2B)∥u∥22.

Since λ > 1
2B, the form is coercive.

The functional ℓ is continuous on H1. By the Lax–Milgram theorem a unique vn ∈ H1(Rd) solves
a(vn, φ) = ℓ(φ) for all φ.

To finish the energy estimate, we test inequality with φ = vn, which leads to

λ∥vn∥22 + ν
2∥∇xvn∥22 ≤ 1

2B∥vn∥22 + (k, vn).

Continuing from above, rearranging the inequality gives:(
λ− 1

2B
)
∥vn∥22 + ν

2∥∇xvn∥22 ≤ (k, vn),

where (f, g) :=
∫
Rd f(x)g(x) dx.

We now estimate the right-hand side using Cauchy–Schwarz and Young’s inequality. For any ε > 0,
we have:

(k, vn) ≤ ∥k∥2∥vn∥2 ≤ ε∥vn∥22 +
1

4ε
∥k∥22.

Substituting this into the inequality, we obtain:(
λ− 1

2B − ε
)
∥vn∥22 + ν

2∥∇xvn∥22 ≤ 1

4ε
∥k∥22.

Taking ε = 1
2 (λ− 1

2B), which is valid because λ > 1
2B, yields:

∥vn∥22 ≤ 1

(λ− 1
2B)2

∥k∥22, ∥∇xvn∥22 ≤ 1

ν(λ− 1
2B)

∥k∥22.
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A.2 PROOF OF PROPOSITION 2

Let z, z′ ∈ Rd and denote
a := a∗(x, z), a′ := a∗(x, z′).

By the definition of a∗ as a maximizer over a convex set A, and the strong convexity of the objective
function, the maximizers a, a′ are unique and continuous.

The necessary condition for optimality (first-order variational inequality) yields:〈
∇aL(x, a) + ∂ab(x, a)

⊤z, a′ − a
〉
≥ 0, (10)〈

∇aL(x, a
′) + ∂ab(x, a

′)⊤z′, a− a′
〉
≥ 0. (11)

Adding equation 10 and equation 11 gives:

⟨∇aL(x, a)−∇aL(x, a
′), a′ − a⟩

+ ⟨[∂ab(x, a)− ∂ab(x, a
′)]

⊤
z, a′ − a⟩

+ ⟨∂ab(x, a′)⊤(z − z′), a′ − a⟩ ≥ 0.

Now use the µa-strong convexity of L in a:

⟨∇aL(x, a)−∇aL(x, a
′), a− a′⟩ ≥ µa|a− a|2.

Therefore, we obtain:

µa|a− a′|2 ≤ |⟨[∂ab(x, a)− ∂ab(x, a
′)]⊤z, a− a′⟩|

+ |⟨∂ab(x, a′)⊤(z − z′), a− a′⟩|.

Since ∂ab is B̃-Lipschitz in a, the first term becomes

|⟨[∂ab(x, a)− ∂ab(x, a
′)]⊤z, a− a′⟩| ≤ B̃|z||a− a′|2.

The second term is handled via

|⟨∂ab(x, a′)⊤(z − z′), a− a′⟩| ≤ B̃|z − z′||a− a′|.

Combine the bounds:

µa|a− a′|2 ≤ B̃|z||a− a′|2 + B̃|z − z′||a− a′|.

Now, subtract B̃|z||a− a′|2 from both sides:

(µa − B̃|z|)|a− a′|2 ≤ B̃|z − z′||a− a′|.

Since µa > B̃|z|, we can divide both sides by |a− a′|:

|a− a′| ≤ B̃

µa − B̃|z|
|z − z′|.

Therefore,
|a− a′| ≤ θ|z − z′|,

for some θ > 0.

A.3 PROOF OF LEMMA 1

Recall that T [vn, an] = T [vm, am] = 0 and subtract two equations to achieve

λe− 1
2 Tr(σσ

⊤D2
xxe)− b(·, an) · ∇xe = R,

where e := vn − vm and

R := [b(·, an)− b(·, am)] · ∇xvm + [L(·, an)− L(·, am)].

12
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We now test with respect to e and proceed with the L2 coercivity argument of Proposition 1 yields

(λ− 1
2B)∥e∥22 + ν

2∥∇xe∥22 ≤ (R, e), (12)

where (f, g) :=
∫
Rd fg dx. Now the right-hand side of the inequality is estimated as

∥R∥2 ≤ B̃∥an − am∥2∥∇xvm∥2 + La∥an − am∥2
≤ θ(B̃ sup

m
∥vm∥2 + La)︸ ︷︷ ︸
≤CR

∥∇xvn−1 −∇xvm−1∥2

where θ is from Proposition 2. Hence, we have that

∥R∥2 ≤ CR∥∇xvn−1 −∇xvm−1∥2,

and therefore,
(R, e) ≤ CR∥∇xvn−1 −∇xvm−1∥2∥e∥2 (13)

by Cauchy–Schwarz inequality.

Applying the Young’s inequality ab ≤ ε
2a

2 + 1
2εb

2 with ε = CR

2(λ− 1
2B)

, a = ∇xvn−1 − ∇xvm−1,

and b = e in equation 13, we deduce that

ν
2∥∇xe∥22 ≤ C2

R

2(λ− 1
2B)

∥∇xvn−1 −∇xvm−1∥22,

and hence,

∥∇xe∥2 ≤

√
C2

R

ν(λ− 1
2B)

∥∇xvn−1 −∇xvm−1∥2.

On the other hand, observing ∥e∥2 explicitly, we have

(λ− 1
2B)∥e∥22 ≤ ∥R∥2∥e∥2

≤ CR∥∇xvn−1 −∇xvm−1∥2∥e∥2.

Canceling ∥e∥2, we get

∥e∥2 ≤ CR

λ− 1
2B

∥∇xvn−1 −∇xvm−1∥2.

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULT

For all experiments, we set the discount factor λ = 0.5 and the temporal discretization step to
dt = 0.05, which yields exp(−λdt) ≈ 0.99.

Stochastic linear-quadratic regulator. For the stochastic LQR experiments, we considered sys-
tems of dimension (d,m) = (5, 5), (10, 10), (20, 20) with the following dynamics:

dXt = (AXt +But) dt+ σ dWt,

where σ = 0.1 · Id and ut ∈ A := {u ∈ Rm | ∥u∥∞ ≤ u} with u = 1. For all cases, the reward
function is set to

L(x, u) = −x⊤Qx− u⊤Ru,

where Q = 5Id ≻ 0 and R = Id ≻ 0.

For the case (d,m) = (5, 5), the system dynamics A and B are chosen as:

A =


0.4455 0.2996 0.4497 0.2813 0.3114
0.4317 0.2885 0.3214 0.2523 0.4193
0.1975 0.4295 0.3014 0.4225 0.2282
0.4361 0.4716 0.3812 0.3010 0.0037
0.2247 0.0629 0.3350 0.0424 0.1836

 ,

13
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B =


0.0681 0.0544 0.0467 0.0152 0.0787
0.0970 0.0081 0.0145 0.0034 0.0984
0.0358 0.0833 0.0324 0.0839 0.0012
0.0116 0.0280 0.0056 0.0092 0.0432
0.0047 0.0848 0.0718 0.0977 0.0556

 .

For the case (d,m) = (10, 10), the system matrices A and B are given as follows:

A =



0.0866 0.0191 0.1394 0.1392 0.1480 0.0241 0.0988 0.1435 0.1883 0.1923
0.1271 0.0900 0.0924 0.0766 0.0696 0.0466 0.1716 0.0371 0.1097 0.0946
0.0595 0.1656 0.1953 0.1353 0.1872 0.0587 0.0830 0.0035 0.0215 0.0740
0.1971 0.0808 0.1301 0.0157 0.1908 0.1505 0.0662 0.1334 0.1394 0.1951
0.0570 0.0419 0.0470 0.0916 0.1094 0.0640 0.0159 0.1687 0.1224 0.0294
0.1137 0.1033 0.0379 0.0881 0.1224 0.0139 0.0060 0.1857 0.0732 0.0989
0.1271 0.0414 0.1232 0.1896 0.1457 0.0997 0.1830 0.1309 0.0673 0.0855
0.0827 0.1076 0.1498 0.1164 0.0192 0.1888 0.1357 0.1352 0.1086 0.1959
0.1489 0.0223 0.0018 0.0002 0.1631 0.1272 0.0282 0.0075 0.0351 0.0478
0.0791 0.1215 0.0219 0.1653 0.0635 0.0230 0.1943 0.0373 0.0253 0.1129


,

B =



0.0728 0.0209 0.0336 0.0269 0.0197 0.0844 0.0358 0.0483 0.0033 0.0559
0.0459 0.0812 0.0411 0.0338 0.0581 0.0689 0.0084 0.0015 0.0198 0.0053
0.0136 0.0803 0.0666 0.0570 0.0277 0.0721 0.0613 0.0106 0.0115 0.0699
0.0848 0.0815 0.0915 0.0766 0.0683 0.0997 0.0389 0.0485 0.0630 0.0102
0.0858 0.0205 0.0769 0.0968 0.0722 0.0004 0.0201 0.0990 0.0836 0.0750
0.0168 0.0033 0.0286 0.0740 0.0314 0.0238 0.0183 0.0277 0.0889 0.0123
0.0795 0.0445 0.0037 0.0776 0.0038 0.0103 0.0183 0.0542 0.0722 0.0544
0.0399 0.0139 0.0071 0.0227 0.0556 0.0885 0.0062 0.0271 0.0382 0.0641
0.0142 0.0063 0.0456 0.0536 0.0993 0.0206 0.0264 0.0463 0.0695 0.0907
0.0301 0.0514 0.0583 0.0007 0.0900 0.0426 0.0385 0.0077 0.0110 0.0930


.

For the case (d,m) = (20, 20), we use the same A and B provided in Kim et al. (2021). The result
is shown in Figure 3.

Figure 3: Stochasatic LQR with (d,m) = (20, 20). The green curve (PINN-PI) shows monotonic
improvement in evaluation reward, whereas SAC exhibits unstable performance.

For PINN-PI, during each policy evaluation step, we train the value network for 200 gradient steps
using the Adam optimizer. The number of collocation points was set to 256, and the learning rate
was set to 10−4 for the case (d,m) = (5, 5), and 10−5 for the rest cases.

The policy and Q network are optimized using the Adam optimizer with a learning rate of 10−3.
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Cartpole. For policy evaluation in PINN-PI, the value function is trained for 3,000 optimization
steps with 64 collocation points using the Adam optimizer with a learning rate of 10−3.

Pendulum. Similar to the previous task, for policy evaluation in PINN-PI, the value function is
trained for 3,000 optimization steps with 64 collocation points using the Adam optimizer with a
learning rate of 10−3.

Model Architecture. All value function approximations vn(x; θ) in this work were parameterized
by multilayer perceptrons (MLPs) trained to minimize the residual loss in Eq. equation 4. Each MLP
consists of 3 hidden layers, with hidden layer widths ranging between 100 and 256 depending on
the task. Smooth activation functions such as tanh were used to ensure differentiability required
for computing PDE residuals.
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