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Abstract— We consider robust principal component analysis
(RPCA) to perform dimensionality reduction for human hand
motor control based on kinematic synergies. RPCA decomposes
joint angular velocity data into (i) a low-rank matrix capturing
coordinated motion patterns and (ii) a sparse matrix isolating
sensor artifacts. Next we apply a robust LASSO method to find
synergy recruitment weights, yielding a sparse representation of
hand grasping tasks. Experiments on 100 grasp trials show that
RPCA maintains stable performance up to approximately 20%
corruption, while classical PCA degrades quickly. Our results
suggest that robustifying standard PCA and LASSO enables
reliable synergy extraction even with inexpensive, low-quality
sensors, supporting affordable experimentation and improved
prosthetic or robotic hand control.

Keywords: PCA, Robust PCA, Kinematic Synergies, Ro-
bust LASSO, Hand Coordination.

I. INTRODUCTION

Recent research has demonstrated the advantage of mod-
eling complex human hand movements as linear combina-
tions of a few kinematic synergies [1]–[4]. This modeling
paradigm has paved the way for many dimensionality reduc-
tion methods to extract these latent synergies from angular
velocity data of specific finger joints. A comprehensive eval-
uation of the performance of different linear and nonlinear
reduction methods is provided in [5].

Principal Component Analysis (PCA) is widely used to
extract synergies from hand movement, with LASSO [6]
subsequently applied to determine optimal weights for com-
bining these synergies to reconstruct hand velocities. LASSO
stands for Least Absolute Shrinkage and Selection Operator
and refers to the ℓ1-norm regularized least squares problem;
see Section III. This two-step approach is popular due to its
simplicity and interpretability.

However, neither PCA nor LASSO is robust to extreme
data deviations, including outliers or missing values (occlu-
sions) [7], [8]. These issues often arise in hand movement
experiments like grasping tasks due to sensing limitations.
High-resolution camera systems like Vicon, widely used in
research, suffer from joint occlusions, while instrumented
devices like the CyberGlove, which measure joint angles
via embedded sensors, often experience signal loss. Both
approaches are thus prone to data deviations.

To address these challenges, we propose using robust vari-
ants of PCA and LASSO to improve synergy extraction and
velocity reconstruction for hand movements. By handling
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Fig. 1: Three synergies, each repeated three times in (a), combine to
produce hand velocities (in black) at all joints in (b). Reproduced from [2].

outliers and occlusions effectively, our methods enable more
accurate modeling of hand kinematics.

II. RESEARCH QUESTION

Let vi(t) be the angular velocity of the ith hand joint at
time t and define the vector v(t) = [v1(t), . . . , vn(t)]

⊤ of
angular velocities, corresponding to the n joints of the hand
at t. Then v(t) obeys the convolution-mixture model [2]:

v(t) =

m∑
j=1

Kj∑
k=1

cjk sj
(
t− tjk

)
+ e(t), (1)

where sj(t) = [s1j(t), . . . , snj(t)]
⊤ is the kinematic synergy

vector with j ∈ {1, . . . ,m}, and m denotes the total
number of synergies; Kj accounts for the number of repeats
(recruitments) of the j-th synergy; the scalars cjk are non-
negative amplitudes; and tjk represent time shifts. In Fig. 1,
we have m = 3 and n = 3. The outer summation indexes the
m synergies, while the inner summation allows for multiple
repeats of each synergy. For instance, in Fig. 1, the first
synergy is activated twice. Finally, the vector e(t) accounts
for outliers or occlusions and is discussed in Section IV.

Problem: Develop a numerical method to find the smallest
number of synergies m, the fewest activations Kj per syn-
ergy, and to recover the corresponding synergy waveforms
sj and weights cjk in (1), given velocity data v(t) corrupted
by sparse outliers (e(t) has more zeros than non-zeros).

III. METHODS

A direct approach to our problem is to jointly solve for cjk
and sj by formulating an optimization (e.g., least-squares).
However, the resulting problem is non-convex, often yielding
suboptimal solutions. Importantly, iterative algorithms used
to solve such problems are computationally expensive; see



[9] for further discussion. An alternative two-stage approach
[2] is to first extract synergies from a set of training data,
followed by estimation of cjk using separate test data.

A. PCA plus LASSO approach ( [2] no outliers/missing data)

Let e(t) = 0. We construct the angular-velocity matrix
V from training data comprising angular velocities of joints
recorded during rapid-grasping tasks. Let vgi (t) denote the
velocity of joint i ∈ {1, . . . , n} at time t (with t = 1, . . . , T )
during the gth task (with g = 1, . . . , G). Then,

V =


v11(1) · · · v11(T ) · · · v1n(1) · · · v1n(T )

...
...

...
. . .

...
...

...
vg1(1) · · · vg1(T ) · · · vgn(1) · · · vgn(T )

...
...

...
. . .

...
...

...
vG1 (1) · · · vG1 (T ) · · · vGn (1) · · · vGn (T )


(4)

contains G rows and Tn columns. Each row corresponds to
one grasping task having velocities of all n joints over time.

The smallest set of synergies is extracted from the right
singular vectors of the optimal low-rank approximation of
V . Let the SVD of V be V = UΣS. The desired synergy
matrix Sm is given by the top m rows of S and m is the target
low-rank dimension. Each row of the matrix Sm represents
a synergy waveform of all joints. A PCA-based justification
for this SVD approach is in [2], [5].

The second stage involves using Sm as an estimate for
the synergy waveforms sj in (1) and subsequently solving
for the optimal coefficients cjk. This allows us to reconstruct
velocities using the mixture model in (1). To this aim, one
constructs an overcomplete matrix B, composed of time-
shifted versions of the synergies in Sm; see [2, Section II.C].
By straightforward algebraic manipulation of terms in (1), we
can rewrite the mixture-model compactly as

v⊤
test = c⊤B, (2)

where c⊤ is the row vector containing cjk, and the row vector
v⊤

test =
[
v11(1) · · · v11(Tt)| · · · |v1n(1) · · · v1n(Tt)

]
cor-

responds to a single grasping task. Here, Tt ̸= T denotes the
duration of the task in the testing phase. By stacking v⊤

test on
top of each other we get a matrix similar to (4).

Since our overall goal of dimensionality reduction is to use
the smallest number of synergies with the few recruitments,
we estimate the optimal sparse vector c in (2) by solving the
following LASSO minimization problem:

min
c

∥vtest −Bc∥22 + λ∥c∥1. (3)

Here, the tuning parameter λ > 0 controls the sparsity level
of c; the ℓ1-norm ∥c∥1 denotes the sum of the absolute values
of the entries in c; and ∥x∥22 denotes the sum of the squares
of the entries in x for some arbitrary vector x.

B. RPCA plus RLASSO approach

The PCA-plus-LASSO approach is theoretically valid only
when e(t) = 0, or when e(t) follows a normal distribution

with small variance. However, in the presence of outliers or
missing data (i.e., when e(t) ̸= 0 exhibits gross corruption),
this approach breaks down. To address this challenge, we
propose robust variants to both PCA and LASSO that are
resilient to such data imperfections.

Let Ṽ = V + E, where V is in (4), and E is a sparse
outlier matrix that shares the same structure as V but contains
mostly zeros, with a few large-magnitude nonzero entries.
RPCA estimates a low-rank approximation of V by solving
the following convex optimization problem [8]:

min
V,E

∥V ∥∗ + λ ∥E∥1 s.t. Ṽ = V + E, (4)

where the nuclear norm ∥ · ∥∗ promotes low rank (i.e., fewer
synergies) and the ℓ1-norm ∥ ·∥1 helps isolate outliers. From
the optimal low-rank V recovered via RPCA, we extract the
synergy matrix Sm using the procedure discussed earlier.

To recover the sparse coefficients cjk in (1), we construct
the overcomplete matrix B using the synergies extracted
from RPCA. We then model the test data in the presence
of outliers as ṽ⊤

test = c⊤B+ e⊤. Robust LASSO (RLASSO)
then estimates the optimal sparse coefficients by solving the
following regularized minimization problem:

min
c, e

∥vtest −Bc∥22 + λ1∥c∥1 + λ2∥e∥1, (5)

where λ1, λ2 > 0 promote sparsity in the coefficients c and
in the outlier term e, respectively.

The solutions to the optimization problems in (3), (4), and
(5) do not admit closed-form formulas, and are solved using
iterative algorithms. We implemented these methods using
standard off-the-shelf Python packages [10].

C. Grasping Task Reconstruction Error

To quantify the accuracy of the two approaches discussed
above, we compute the squared distance error between the
true velocity profile for a given grasping task, often vtest, and
its estimate v̂ = Bĉ, where ĉ is obtained as the minimizer
of either (3) or (5). The cumulative error is thus given by

Error =
1

G

G∑
g=1

∥∥∥v(g)
true − v̂(g)

∥∥∥2
2
,

where G is the total number of grasping tasks. We then
average this error across all subjects and report the resulting
value as a function of the percentage outliers or missing data.

IV. SIMULATIONS

We used proprietary data from prior experiments described
in [2]. A right-handed CyberGlove with 22 joint-angle sen-
sors was employed, of which 10 (thumb MCP/IP and finger
MCP/PIP joints) were analyzed during grasping tasks by ten
subjects. From this velocity data, we constructed the clean
matrix V in (4) and the testing data vector vtest in (2).

We refer readers to [2] for descriptions of the experimental
setup used to obtain the clean training data matrix V in (4)
and the testing data vector vtest in (2). The parameters are as



TABLE I: RPCA versus PCA (no. of synergies)

Corruption (%) joint dropout time local mild time local severe

PCA RPCA PCA RPCA PCA RPCA

0% 6 4 6 4 6 4
5% 7 4 7 4 6 4

10% 8 4 8 4 7 5
15% 10 5 10 4 8 5
20% 10 7 11 4 8 6

follows: n = 10 joints; training data duration T = 39; testing
data duration Tt = 82; and total number of grasping tasks
G = 100. Thus, V is a 100× 390 matrix, and v⊤

test is a row
vector of dimension nTt = 820. Note that we constructed
these velocity matrices for a total of 10 subjects.

The matrix B has 820 rows and mK columns, where K
denotes the number of time shifts and m is determined based
on the approximation accuracy index:

λ2
1 + . . .+ λ2

m

λ2
1 + . . .+ λ2

100

,

where λi are the singular values of V in (4) for PCA, while
for RPCA the singular values are obtained from the low-
rank minimizer in (4). This index quantifies the percentage
the total variance (due to grasping tasks) explained by the top
m synergies. A larger index indicates a better approximation
of the (velocity) data by the selected synergies. We set 95%
as the standard threshold to determine m [11].

A. Dataset Preparation

(Case 1: Sensor Dropout Outliers) In instrumented gloves
like the CyberGlove, signal loss from strain gauge or flex
sensors can cause sudden slips or jerks. We simulate outliers
by adding large-magnitudes at randomly chosen times in V .
Formally, for the g-th row of Ṽ , corresponding to the g-th
grasping task, the g-th row of E contains ρ% nonzero entries
selected uniformly at random, representing the outliers. Here,
ρ ranges from 0 to 20. Each nonzero entry is generated by
adding a spike drawn uniformly between 2× and 4× the true
measurement magnitude.

(Case 2: Occlusion Outliers) They occur in optical sys-
tems when joints are invisible to cameras due to occlusion
(e.g., overlapping limbs). In the data matrix V , these appear
as contiguous blocks of zeroed out samples. Each row of V ,
ρ% of its entries are zeroed out as follows: (i) joint dropout:
1–2 occlusion blocks having 8–15 samples each, restricted to
one joint; (ii) time local mild: 1–3 occlusion blocks with 5–
10 samples per block; and (iii) time local severe: 4–8 large
occlusion blocks with 20–40 samples per block. Note that
(ii) and (iii) can span multiple joints.

Note that PCA+LASSO and RPCA+RLASSO are imple-
mented on corrupted data, even though PCA+LASSO is
developed for clean data in [2]. This enables a quantitative
comparison of its performance relative to robust methods.

B. Synergy Extraction Results

These results highlight the robustness of RPCA for syn-
ergy extraction in the presence of data corruption. We first

Fig. 2: Number of PCs (synergies) required to explain 95%
of the variance (in the V matrix) vs. rapid-outlier corruption
level. Results are averaged across 10 subjects.

TABLE II: RPCA versus PCA (synergy similarity)

Corruption (%) directional alignment vector difference

PC1 PC2 PC3 PC1 PC2 PC3

0% 0.9997 0.9877 -0.9760 0.0235 0.1361 1.9870
5% 0.9937 0.9548 -0.8670 0.1112 0.2961 1.2816
10% 0.9895 0.9327 -0.7616 1.0679 0.3609 1.3771
15% 0.9830 0.8672 -0.4661 1.0822 0.6893 1.2974
20% 0.9782 0.7944 -0.2538 0.2083 0.6407 1.5834

present the synergy extraction results for both the outlier and
occlusion datasets. Figure 2 shows the number of principal
components (or synergies) required by RPCA and PCA to
capture at least 95% of the variance in the data matrix as
the percentage of sparse outlier corruption increases. RPCA
consistently achieves this target with only m = 4 synergies,
even at a corruption level of 20%, whereas the number of
synergies required by standard PCA increases sharply. This
behavior is expected, as RPCA effectively separates genuine
hand dynamics from sparse outliers, preserving a fixed low-
dimensional synergy subspace, while PCA treats the outliers
as part of the signal and consequently introduces additional
synergies as corruption increases.

Table I highlights the advantage of RPCA over PCA when
dealing with structured block occlusions. Across all condi-
tions (joint dropout, time local mild, and time local severe),
we observe that the number of synergies required to explain
95% of the data variance rises as the corruption percentage
rises. However, this increase is gradual for RPCA, whereas
for PCA, even a corruption as low as 10% results in a
substantial increase in the number of synergies.

Table II presents two similarity metrics comparing PCA
and RPCA synergies as the corruption percentage increases.
We evaluate (i) directional alignment, computed using the
dot product between matched synergies of PCA and RPCA
(capturing directional similarity, including polarity), and (ii)
vector discrepancy, defined as the ∥ · ∥2-norm difference be-
tween corresponding synergies (capturing shape mismatch).
Both metrics are averaged across subjects.

For the first synergy or principal component (PC1), direc-
tional alignment drops slightly from 0.9997 at 0% corruption
to 0.9782 at 20%, while discrepancy remains low, indicating



Fig. 3: First three (dominant) kinematic synergies obtained
for subject 1 using clean data via PCA (left) and 15% data
corrupted with rapid-outliers (right) via RPCA. The number
of time samples is 39.

TABLE III: Average Reconstruction Error (rapid-outliers)

Corruption (%) LASSO mean (std) RLASSO mean (std)

0% 0.263 (0.065) 0.253 (0.066)
5% 0.272 (0.074) 0.257 (0.072)

10% 0.284 (0.080) 0.258 (0.070)
15% 0.296 (0.085) 0.263 (0.069)
20% 0.305 (0.088) 0.263 (0.068)

negligible distortion. Instead, PC2 exhibits greater sensitivity
to corruption: alignment decreases from 0.9877 to 0.7944,
indicating gradual misalignment, and discrepancy rises mod-
erately from 0.1361 to 0.6407.

Our results show that higher-order synergies (e.g., PC3)
degrade most under sparse outliers, with directional align-
ment dropping from −0.9760 to −0.2538 and vector discrep-
ancy remaining above 1.2. In contrast, PC1, which captures
dominant variance, remains robust even at 20% corruption,
demonstrating RPCA’s effectiveness in preserving low-rank
structure. Finally, to assess structural stability, Fig. 3 displays
the first three synergies extracted by PCA and RPCA at 0%
and 15% rapid-outlier corruption for a single subject.

C. Grasping Task Reconstruction

Tables III and IV report averaged mean-squared velocity
reconstruction error for rapid-outliers and occlusion settings,
respectively. In fact, from Table III, we see that RLASSO
maintains a stable error profile (0.253 to 0.263) as corrup-
tion increases from 0% to 20%, whereas standard LASSO
exhibits a steady rise in the reconstruction error (0.263 to
0.305). Similarly, Table IV demonstrates that across all three
occlusion types, RLASSO consistently achieves lower recon-
struction error than LASSO. While LASSO errors gradually
increase with occlusion severity and corruption level (for e.g.,
from 0.263 to 0.292) under joint dropout), RLASSO shows
more stability (e.g., 0.253 to 0.277 in the same case).

In summary, our results highlight the robustness of the
RPCA+RLASSO framework, which not only preserves ac-
curacy under structured occlusion but also suppresses the
impact of missing data better than standard PCA+LASSO.

TABLE IV: Average Reconstruction Error (block occlusion)

Corruption (%) joint-dropout time-local-mild

LASSO RLASSO LASSO RLASSO

0% 0.263 (0.065) 0.253 (0.066) 0.263 (0.065) 0.253 (0.066)
5% 0.270 (0.070) 0.256 (0.067) 0.269 (0.068) 0.255 (0.066)

10% 0.278 (0.073) 0.258 (0.066) 0.276 (0.071) 0.259 (0.067)
15% 0.285 (0.075) 0.267 (0.071) 0.283 (0.074) 0.263 (0.068)
20% 0.292 (0.074) 0.277 (0.073) 0.289 (0.073) 0.268 (0.067)

Corruption (%) time-local-severe

LASSO RLASSO

0% 0.263 (0.065) 0.253 (0.066)
5% 0.269 (0.069) 0.256 (0.068)

10% 0.276 (0.070) 0.260 (0.067)
15% 0.281 (0.071) 0.267 (0.070)
20% 0.289 (0.072) 0.279 (0.072)

V. CONCLUSION

We applied RPCA to extract synergies from rapid hand
grasping movements corrupted by rapid outliers (due to sud-
den signal loss) and data occlusions (where joint movements
are invisible to cameras). We then used these synergies to
reconstruct hand movements using a RLASSO approach.
Comparing these robust methods with standard PCA and
LASSO techniques, our results show that the robust meth-
ods achieve better dimensionality reduction and comparable
reconstruction errors. Further, the directional alignment and
vector discrepancy metrics further reveal how the synergies
extracted by RPCA differ from those obtained via PCA.
Overall, although robust methods require more sophisticated
iterative algorithms, they offer a strong alternative for han-
dling data with a significant percentage outliers.
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