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1 Forward models16

In our experiments, we considered forward models of the form17

y = Ax+ ϵ, ϵ ∼ N (0, σ2
y, I). (1)

This corresponds to the log-likelihood function18

log p(y | x) ∝ − 1

2σ2
y

∥y −Ax∥22 . (2)

In this section, we describe the forward models of the inverse problems mentioned in the main text:19

accelerated MRI, denoising, and reconstruction from low spatial frequencies (“deblurring”).20
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1.1 Accelerated MRI21

Accelerated MRI collects sparse spatial-frequency measurements in κ-space of an underlying anatom-22

ical image. As the acceleration rate increases, the number of measurements decreases. In accelerated23

MRI, the forward model can be written as24

y = M⊙F(x∗) + ϵ, ϵ ∼ N (0, σ2
yI), (3)

where x ∈ CD and y ∈ CM . F denotes the 2D Fourier transform, and M ∈ {0, 1}D is a binary25

sampling mask that reduces the number of non-zero measurements to M << D. Often σy is assumed26

to be small (e.g., corresponding to an SNR of at least 30 dB). We use Poisson-disc sampling [5] to27

obtain a sampling mask. 16×-acceleration, for example, corresponds to a sampling mask with only28

1/16 nonzero elements.29

Experimental setup. In our experiments, we assumed that |σy| is 0.05% of the DC (zero-frequency)30

amplitude. This corresponds to a maximum SNR of 40 dB. The only exception is for comparison to31

baselines (Fig. 5), since baseline methods do not account for measurement noise. In this case, we let32

|σy| = 0.1% of the DC amplitude along the horizontal direction of the true image, which amounts to33

a very low level of noise.34

1.2 Denoising35

The denoising forward model is simply36

y = x+ ϵ, ϵ ∼ N (0, σ2
y, I), (4)

where x ∈ RD, and σy determines the level of i.i.d. Gaussian noise added to the clean image to get37

y ∈ RD.38

Experimental setup. In our presented experiments on denoising, σy = 0.2, which is 20% of the39

dynamic range of the image.40

1.3 Deblurring41

We refer to the task of reconstruction from low spatial-frequency measurements as deblurring. The42

forward model is given by43

y = Dx+ ϵ, ϵ ∼ N (0, σ2
y, I), (5)

where x ∈ CD and y ∈ CM . D ∈ CM×D is the 2D discrete Fourier transform (DFT) matrix with44

only the first M basis functions.45

Experimental setup. In our presented experiments on deblurring, the measurements are the lowest46

6.25% of the DFT components, and |σy| = 1.47

2 Variational distributions48

2.1 RealNVP49

The architecture of the RealNVP is determined by the number of affine-coupling layers and the width50

of each layer. For images up to 64 × 64, we use 32 affine-coupling layers and set the number of51

hidden neurons in the first layer to 1/8 of the image dimensionality (e.g., 32 · 32 · 3/8 for 32× 3252

RGB images). We use batch normalization in the network. Please refer to the original DPI [4]53

PyTorch implementation1 for details on the architecture. Our implementation is an adaptation of this54

codebase in JAX.55

2.2 Gaussian56

Other experiments use a multivariate Gaussian distribution with a diagonal covariance matrix as the57

variational distribution. In this case, the parameters are the mean image and the pixel-wise standard58

deviation. We initialize the mean at 0.5 and the standard deviation at 0.1 for all pixels. To sample, we59

take the absolute value of the standard deviation and construct the diagonal covariance matrix.60

1https://github.com/HeSunPU/DPI
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3 Experiment details61

For the sake of reproducibility, we detail the experimental setup behind each figure. Our code will be62

made publicly available.63

Some common implementation details are that the exact prior (log pODE
θ ) is always estimated with 1664

trace estimators. The RealNVP always has 32 affine-coupling layers.65

3.1 MRI efficiency experiment (Tab. 1, Fig. 2)66

Score model. For each image size, the score model was an NCSN++ architecture with 64 filters in67

the first layer and trained with the VP SDE with βmin = 0.1, βmax = 10.68

Variational optimization. For each task (i.e., each image size and prior), the variational distribution69

was a multivariate Gaussian with diagonal covariance. The batch size was 64, learning rate 0.0002,70

and gradient clip 1. A convergence criterion based on the loss value is difficult to define due to high71

variance of the loss (we used 1 time sample to estimate bθ(x)). We defined a convergence criterion72

based on the change in the mean of the variational distribution. Specifically, every 10000 steps, we73

evaluated a snapshot of the variational Gaussian and computed δ = ∥µcurr − µprev∥ /∥µprev∥, where74

µcurr and µprev are the current and previous snapshot means, respectively. If δ < ε for some threshold75

ε two snapshots in a row, then the optimization was considered converged. Since convergence rate76

depends on the image size and the prior used, we set a different ε for each task:77

• 16× 16 (surrogate): ε = 0.00278

• 32× 32 (surrogate): ε = 0.00379

• 64× 64 (surrogate): ε = 0.00580

• 128× 128 (surrogate): ε = 0.00781

• 256× 256 (surrogate): ε = 0.00982

• 16× 16 (exact): ε = 0.002583

• 32× 32 (exact): ε = 0.002784

• 64× 64 (exact): ε = 0.00585

We were conservative in defining the convergence and checked that optimization under the surrogate86

actually achieved better sample quality than optimization under the exact prior (see Main Fig. 2).87

Data. The test image is from the fastMRI [6] single-coil knee test dataset and was resized to 64× 6488

with antialiasing.89

3.2 256x256 MRI examples (Fig. 1)90

The 4×-acceleration result is from the efficiency experiment (Main Tab. 1 and Fig. 2) on the 256×25691

test image. The 16×-acceleration result came from a similar setup, where the variational distribution92

was Gaussian with diagonal covariance. Optimization was done with a batch size of 64, learning93

rate of 0.00001, and gradient clip of 0.0002. We ran optimization for 270K steps (optimization for94

4×-acceleration was done in 100K steps with the convergence criterion).95

In the figure caption, we report that the true image is within three standard deviations of the inferred96

posterior mean for 96% and 99% of the pixels for 16×- and 4×-acceleration, respectively. This was97

computed based on the mean and standard deviation of 128 samples from the inferred posterior. We98

find the same result when using the exact mean and standard deviation of the inferred posterior: with99

respect to the inferred posterior, the true image is within three standard deviations of the mean for100

96.7% and 99.0% of the pixels for 16×- and 4×-acceleration, respectively.101

3.3 Ground-truth posteior (Fig. 3a)102

Data. The mean and covariance of the ground-truth Gaussian prior were fit with PCA (with 256103

principal components) to training data from the CelebA dataset [1]. The CelebA images were resized104

to 16× 16 with antialiasing.105
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Score model. The score model was based on the DDPM++ deep continuous archictecture of Song106

et al. [2] with 128 filters in the first layer. It was trained with the VP SDE with βmin = 0.1 and107

βmax = 20 for 100K steps.108

Variational optimization. The variational distribution was a RealNVP. Under the surrogate prior,109

optimization was done with a learning rate of 0.00005 and gradient clip of 1. Under the exact prior,110

the learning rate was 0.0002 and gradient clip 1. Both priors used a batch size of 64.111

3.4 32x32 image denoising (Fig. 3b)112

Variational optimization. For both CelebA denoising (i) and CIFAR-10 denoising (ii), the variational113

distribution was a RealNVP. Optimization under the surrogate prior was done with a learning rate of114

0.00001 and gradient clip of 1. For CelebA, the batch size was 64 and training was done for 1.72M115

steps (convergence was probably achieved earlier, but we continued training to be conservative).116

For CIFAR-10, the batch size was 128 and training was done for 550K steps. For both (i) and (ii),117

optimization under the exact prior was done with a learning rate of 0.0002 and gradient clip of 1 for118

20K steps.119

Score model. For both (i) and (ii), the score model had an NCSN++ architecture with 64 filters in the120

first layer. For the CelebA prior, it was trained with the VP SDE with βmin = 0.1 and βmax = 20 and121

with images that were resized without antialiasing. For the CIFAR-10 prior, it was trained with the122

VP SDE with βmin = 0.1 and βmax = 10.123

Data. Both the CelebA image and the CIFAR-10 image are 32× 32. The CelebA image was resized124

without antialiasing.125

3.5 Bound gap (Fig. 4)126

Visualization of the bound gap is shown for optimization of the RealNVP from Fig. 3b(i) (i.e., 32×32127

CelebA denoising). For the plots comparing the lower-bound to the ODE log-probability, we used128

2048 time samples to estimate bθ(x).129

3.6 Image-restoration metrics (Fig. 5)130

Score model. The score model is the same as the one used for the 64×64 image in the MRI efficiency131

experiment (Main Fig. 2).132

Variational optimization. The variational distribution was a RealNVP. Optimization was done with133

a learning rate of 0.00001 and gradient clip of 0.0002. We used the same convergence criterion as the134

one used in the MRI efficiency experiment with ε = 0.005.135

Baseline hyperparameters. For SDE+Poj, we used the projection CS solver provided136

by Song et al. [3] with the hyperparameters snr=0.517, coeff=1. For Score-ALD, we137

used the langevin CS solver with the hyperparameters n_steps_each=3, snr=0.212,138

projection_sigma_rate=0.713. For DPS, we used scale=0.5. This was the best scale out139

of [10, 1, 0.9, 0.5, 0.3, 0.1, 0.001] for a test image in terms of PSNR with respect to the true image.140
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