
A Relaxations to Decision Calibration

We define the algorithm that corresponds to Algorithm 1 but for softmax relaxed functions. Before
defining our algorithm at each iteration t we first lighten our notation with a shorthand ba(X) =
b(p̂(t−1)(X), a) (at different iteration t, ba denotes different functions), and b(X) is the vector of
(b1(X), · · · , bK(X)).

Algorithm 2: Recalibration Algorithm to achieve decision calibration.

1 Input current prediction function p̂, a dataset D = {(x1, y1), · · · , (xM , yM)} tolerance ε ;
2 Initialize p̂(0) = p̂, v(0) = +∞;
3 for t = 1, 2, · · · until v(t−1) < ε2/K do
4 v(t), b(t) = sup, arg supb∈B̄K

∑K
a=1

∥∥E[(Y − p̂(t−1)(X))ba(X)]
∥∥2

;
5 Compute D ∈ RK×K where Daa′ = E[b

(t)
a (X)b

(t)
a′ (X)] ;

6 Compute R ∈ RK×C where Ra = E[(Y − p̂(t−1)(X))b
(t)
a (X)] ;

7 Set p̂(t) : x 7→ π(p̂(t−1)(x) +RTD−1b(t)(x)) where π is the normalization projection;
8 end
9 Output p̂(T) where T is the number of iterations

For the intuition of the algorithm, consider the t-th iteration where the current predic-
tion function is p̂(t−1). On line 4 we find the worst case b(t) that maximizes the “error”∑K
a=1

∥∥∥E[(Y − p̂t−1(X))b
(t)
a (X)]

∥∥∥2

, and on line 5-7 we make the adjustment p̂(t−1) → p̂(t) to

minimize this error
∑K
a=1

∥∥∥E[(Y − p̂t(X))b
(t)
a (X)]

∥∥∥2

. In particular, the adjustment we aim to find

on line 5-7 (which we denote by U ∈ RC×K) should satisfy the following: if we let

p̂(t)(X) = p̂(t−1)(X) + Ub(t)(X)

we can minimize

L(U) :=

K∑
a=1

∥∥∥E[(Y − p̂(t)(X))b(t)a (X)]
∥∥∥2

We make some simple algebra manipulations on L to get

L(U) =

K∑
a=1

∥∥∥E[(Y − p̂(t−1)(X))b(t)a (X)− Ub(t)(X)b(t)a (X)]
∥∥∥2

=
K∑
a=1

∥∥Ra − (DUT)a
∥∥2

=
∥∥R−DUT∥∥2

Suppose D is invertible, then the optimum of the objective is

U∗ := arg inf L(U) = RTD−1, L(U∗) = 0

When D is not invertible we can use the pseudo-inverse, though we observe in the experiments that
D is always invertible.

For the relaxed algorithm we also have a theorem that is equivalent to Theorem 2.2. The statement
of the theorem is identical; the proof is also essentially the same except for the use of some new
technical tools.
Theorem 2.2’. Algorithm 2 terminates in O(K/ε2) iterations. For any λ > 0, given
O(poly(K,C, log(1/δ), λ)) samples, with 1 − δ probability Algorithm 1 outputs a (LK , ε + λ)-
decision calibrated prediction function p̂′ that satisfies E[‖p̂′(X)− Y ‖22] ≤ E[‖p̂(X)− Y ‖22] + λ.

B Additional Experiment Details and Results

Additional experiments are shown in Figure 4 and Figure 5. The observations are similar to those in
the main paper.

13

Figure 4: Additional Results on the HAM10000 for 2 and 5 actions. The observations are similar to
Figure 2 even though overfitting happens sooner with 5 actions

Figure 5: Additional results on the resnet18. The observations are similar to Figure 3: decision
recalibration improves the loss gap.

B.1 Robustness to Distribution Shift

To further test whether decision calibration improves loss under distribution drift, we use the Imagenet-
C benchmark (Hendrycks & Dietterich, 2019).

C Proofs

C.1 Equivalence between Decision Calibration and Existing Notions of Calibration

Theorem 1. [Decision Calibration Generalizes Existing Notions] For any true distribution p∗, and
for the loss function sets Lr,Lcr defined in Table 1, a prediction function p̂ is

• confidence calibrated iff it is Lr-decision calibrated.

• classwise calibrated iff it is Lcr-decision calibrated.

• distribution calibrated iff it is Lall-decision calibrated.

Proof of Theorem 1, part 1. Before the proof we first need a technical Lemma

Lemma 1. For any pair of random variables U, V , E[U | V] = 0 almost surely if and only if
∀c ∈ R,E[U I(V > c)] = 0.

14

Figure 6: Comparing the maximum difference between predicted loss and actual loss under distribu-
tion drifts. The top panel plots the results on 200 classes, and the bottom panel plots the results on
1000 classes. 15

Figure 7: Comparing the decision loss under distribution drifts. The top panel plots the results on 200
classes, and the bottom panel plots the results on 1000 classes.

16

Part 1 When the loss function is ` : y, a 7→ I(y 6= a ∩ a 6= ⊥) + βI(a = ⊥), the Bayes decision is
given by

δ`(x) =

{
arg max p̂(x) max p̂(x) > 1− β
⊥ otherwise

DenoteU = max p̂(X) and V = arg max p̂(X). For any pair of loss functions ` and `′ parameterized
by β and β′ we have

E[`′(Y, δ`(X))]− E[`′(Ŷ , δ`(X))]

= E[(`′(Y,⊥)− `′(Ŷ ,⊥))I(δ`(X) = ⊥)] + E[(`′(Y, δ`(X))− `′(Ŷ , δ`(X)))I(δ`(X) 6= ⊥)] Tower
= 0 + E[(p∗V (X)− p̂V (X))I(max p̂(x) > 1− β)] Def of `
= E[(p∗V (X)− U)I(U > 1− β)]

Suppose p̂ is confidence calibrated, then almost surely

U = Pr[Y = arg max p̂(X) | U] = E[p∗V (X) | U]

which implies almost surely E[p∗V (X)− U | U] = 0. By Lemma 1 we can conclude that

0 = E[(p∗V (X)− U)I(U > 1− β)] = E[`′(Y, δ`(X))]− E[`′(Ŷ , δ`(X))]

so p̂ is Lr-weakly calibrated.

Conversely suppose p̂ is Lr weakly calibrated, then ∀β ∈ [0, 1], E[(p∗V (X)− U)I(U > 1− β)] = 0.
By Lemma 1 we can conclude that almost surely

0 = E[p∗V (X)− U | U] = E[p∗V (X) | U]− U

so p̂ is confidence calibrated.

Part 2 For any loss function ` : y, a 7→ I(a = ⊥) + β1I(y 6= c ∧ a = T) + β2I(y = c ∧ a = F)
where β1, β2 > 1, observe that the Bayes decision for loss function ` is

δ`(x) =

{
T p̂c(x) > max(1− 1/β1, β1/(β1 + β2))
F p̂c(x) < min(1/β2, β1/(β1 + β2))
⊥ otherwise

Choose any pair of numbers α ≥ γ, we can choose β1, β2 such that α := max(1− 1/β1, β1/(β1 +
β2)), γ := min(1/β2, β1/(β1 + β2)). For any pair of loss functions ` and `′ parameterized by
β1, β2, β

′
1, β
′
2 (with associated threshold α ≥ γ, α′ ≥ γ′) we have

E[`′(Y, δ`(X))− E[`′(Ŷ , δ`(X))]

= E[(`′(Y, δ`(X))− `′(Ŷ , δ`(X)))I(δ`(X) = T)] + E[(`′(Y, δ`(X))− `′(Ŷ , δ`(X)))I(δ`(X) = F)]

= E[(`′(Y, T)− `′(Ŷ , T))I(δ`(X) = T)] + E[(`′(Y, F)− `′(Ŷ , F))I(δ`(X) = F)]

= β′1E[(p̂c(X)− p∗c(X))I(p̂c(X) > α)] + β′2E[(p∗c(X)− p̂c(X))I(p̂c(X) < γ)]

Similar to the argument for part 1, suppose p̂ is classwise calibrated then ∀α, γ, E[(p∗c(X) −
p̂c(X))I(p̂c(X) > α)] = 0 and E[(p∗c(X)− p̂c(X))I(p̂c(X) < γ)] = 0; therefore it is Lcr-decision
calibrated.

Conversely suppose p̂ is Lcr-decision calibrated, then ∀α we have E[(p̂c(X)− p∗c(X))I(p̂c(X) >
α)] = 0, which implies that p̂ is classwise calibrated according to Lemma 1.

Part 3 Choose the special loss function A = ∆C and ` as the log loss ` : y, a 7→ − log ay then the
Bayes action can be computed as

δ`(x) = arg inf
a∈∆C

EŶ∼p̂(X)[− log aŶ] = p̂(x)

Denote U = p̂(X) then let LB be the set of all bounded loss functions, i.e. LB = {`, |`(y, a)| ≤ B}

sup
`′∈LB

E[`′(Y, δ`(X))]− E[`′(Ŷ , δ`(X))]

sup
`′∈LB

E[E[`′(Y,U)− `′(Ŷ , U) | U]] Tower

17

= BE[‖E[p∗(X)− p̂(X) | U]‖1] Cauchy Schwarz

If p̂ satisfies distribution calibration, then ‖E[p∗(X)− p̂(X) | U]‖1 = 0 almost surely, which
implies that p̂ is LB decision calibrated. Conversely, if p̂ is LB decision calibrated, then
‖E[p∗(X)− p̂(X) | U]‖1 = 0 almost surely (because if the expectation of a non-negative ran-
dom variable is zero, the random variable must be zero almost surely), which implies that p̂ is
distribution calibrated. The theorem follows because B is arbitrarily chosen.

C.2 Proofs for Section 4

Proposition 2. A predictor p̂ satisfies (LK , ε)-decision calibration if and only if

sup
b∈BK

K∑
a=1

∥∥∥E[(Ŷ − Y)b(p̂(X), a)]
∥∥∥

2
≤ ε (8)

Proof of Proposition 2. We first introduce a new set of notations to make the proof easier to follow.
BecauseA = [K] and Y ' [C], a loss function can be uniquely identified with K vectors `1, · · · , `K
where `ac = `(c, a). Given prediction function p̂ : X → ∆C and the expected loss can be denoted as

EŶ∼p̂(x)[`(Ŷ , a)] = 〈p̂(x), `a〉 (11)

Choose any Bayes decision function δ`′ for some loss `′ ∈ LK , as a notation shorthand denote
δ`′(p̂(x)) = δ`′(x). We can compute the gap between the left hand side and right hand side of
Definition 2 as

sup
`

∣∣∣EXEŶ∼p̂(X)[`(Ŷ , δ`′(X))]− EXEY∼p∗(X)[`(Y, δ`′(X))]
∣∣∣

supa‖`(·, a)‖2
= sup
`,‖`(·,a)‖2≤1

∣∣∣EXEŶ∼p̂(X)[`(Ŷ , δ`′(X))]− EXEY∼p∗(X)[`(Y, δ`′(X))]
∣∣∣ Normalize

= sup
`,‖`(·,a)‖2≤1

∣∣EX [〈`δ`′ (X), p̂(X)〉
]
− EX

[
〈`δ`′ (X), p

∗(X)〉
]∣∣ Eq.11

= sup
`,‖`(·,a)‖2≤1

∣∣∣∣∣∑
a

EX [〈p̂(X), `a〉I(δ`′(X) = a)]−
∑
a

EX [〈p∗(X), `a〉I(δ`′(X) = a)]

∣∣∣∣∣ Total Probability

= sup
`,‖`(·,a)‖2≤1

∣∣∣∣∣∑
a

〈EX [(p∗(X)− p̂(X))I(δ`′(X) = a)], `a〉

∣∣∣∣∣ Linearity

=
∑
a

‖EX [(p∗(X)− p̂(X))I(δ`′(X) = a)]‖2 Cauchy Schwarz

Finally we complete the proof by observing that the set of maps

{q, a 7→ I(δ`(q) = a), ` ∈ LK , q ∈ ∆C}

is the same as the set of maps BK . We do this by establishing a correspondence where `a =
−wa/‖wa‖2 then

I(δ`(q) = a) = I(arg inf
a′
〈`a′ , q〉 = a) = I(arg sup

a′
〈wa′ , q〉 = a) = bw(q, a)

C.3 Formal Statements and Proofs for Theorem 2

Formal Statement of Theorem 2, part I. We first define a new notation. Given a set of samples
D = {(X1, Y1), · · · , (XN , YN)}, and for any function ψ : X × Y → R denote ÊD[ψ(X,Y)] as the
empirical expectation, i.e.

ÊD[ψ(X,Y)] :=
1

N

∑
n

ψ(Xn, Yn)

18

Theorem 2.1 (Formal). Let BK be as defined by Eq.(6), for any true distribution over X,Y and any
p̂, given a set of N samples D = {(X1, Y1), · · · , (XN , YN)}, with probability 1 − δ over random
draws of D,

sup
b∈BK

K∑
a=1

‖E[(p̂(X)− Y)b(p̂(X), a)]‖2 −
K∑
a=1

∥∥∥ÊD[(p̂(X)− Y)b(p̂(X), a)]
∥∥∥

2
≤ Õ

(
K3/2C√

N

)
(12)

where Õ denotes equal up to constant and logarithmic terms.

Note that in the theorem δ does not appear on the RHS of Eq.(12). This is because the bound depends
logarithmically on δ.

Proof of Theorem 2.1. Before proving this theorem we first need a few uniform convergence Lemmas
which we will prove in Appendix C.4.

Lemma 2. LetB by any set of functions {b : ∆C → [0, 1]} and U, V be any pair of random variables
where U takes values in [−1, 1]C and V takes values in ∆C . Let D = {(U1, V1), · · · , (UN , VN)} be
an i.i.d. draw of N samples from U, V , define the Radamacher complexity of B by

RN (B) := ED,σi∼Uniform({−1,1})

[
sup
b∈B

1

N

N∑
n=1

σib(Vi)

]
then for any δ > 0, with probability 1− δ (under random draws of D), ∀b ∈ B

‖ÊD[Ub(V)]− E[Ub(V)]‖2 ≤
√
CRN (B) +

√
2C

N
log

2C

δ

Lemma 3. Define the function family

BKa =

{
b : z 7→ I(a = arg sup

a′
〈z, wa〉), wa ∈ RC , a = 1, · · · ,K, z ∈ ∆C

}
B̄Ka =

{
b : z 7→ e〈z,wa〉∑

a′ e
〈z,wa′ 〉

, wa ∈ RC , a = 1, · · · ,K, z ∈ ∆C

}
thenRN (BKa) = O

(√
CK logK logN

N

)
andRN (B̄Ka) = O

((
K
N

)1/4
log N

K

)
.

Proof of the theorem is straight-forward given the above Lemmas. As a notation shorthand denote
U = p̂(X)− Y . Note that U is a random vector raking values in [−1, 1]C . We can rewrite the left
hand side of Eq.(12) as

sup
b∈BK

∑
a

‖E[Ub(p̂(X), a)]‖2 − ‖ÊD[Ub(p̂(X), a)]‖2 (13)

≤
∑
a

sup
b∈BK

a

‖E[Ub(p̂(X), a)]‖2 − ‖ÊD[Ub(p̂(X), a)]‖2 Jensen (14)

≤
∑
a

sup
b∈BK

a

‖E[Ub(p̂(X), a)]− ÊD[Ub(p̂(X), a)]‖2 Triangle (15)

≤
∑
a

√
CRN (BKa) +

√
2C

N
log

2C

δ
(w.p. 1− δ) Lemma 2 (16)

≤
∑
a

√
CO

(√
CK logK logN

N

)
+

√
2C

N
log

2C

δ
Lemma 3 (17)

≤ K
√
CO

(√
CK logK logN

N

)
+K

√
2C

N
log

2C

δ
(18)

= Õ

(
K3/2C√

N

)
(19)

19

Formal Statement Theorem 2, Part II
Theorem 2.2. Given any input p̂ and tolerance ε, Algorithm 1 terminates in O(K/ε2) iterations.
For any λ > 0, given O(poly(K,C, log(1/δ), λ)) samples, with 1 − δ probability Algorithm 1
outputs a (LK , ε+ λ)-decision calibrated prediction function p̂′ that satisfies E[‖p̂′(X)− Y ‖22] ≤
E[‖p̂(X)− Y ‖22] + λ.

Proof of Theorem 2.2. We adapt the proof strategy in (Hébert-Johnson et al., 2018). The key idea
is to show that a potential function must decrease after each iteration of the algorithm. We choose
the potential function as Ê[(Y − p̂(X))2]. Similar to Appendix A at each iteration t we first lighten
our notation with a shorthand ba(X) = b(p̂(t−1)(X), a) (at different iteration t, ba denotes different
functions), and b(X) is the vector of (b1(X), · · · , bK(X)). If the algorithm did not terminate that
implies that b satisfies

∑
a

‖Ê[(p̂(X)− Y)ba(X)]‖ ≥ ε (20)

Denote γ ∈ RK×K where γa = Ê[(Y − p̂(X))b(X, a)]/Ê[b(X, a)]. The adjustment we make is
p̂′(X) = π(p̂(X) +

∑
a γab(X, a))

Ê[‖Y − p̂(X)‖2]− Ê[‖Y − p̂′(X)‖2]

= Ê[‖Y − p̂(X)‖2 − ‖Y − π(p̂(X) +
∑
a

γab(X, a))‖2]

≥ Ê[‖Y − p̂(X)‖2 − ‖Y − p̂(X)−
∑
a

γab(X, a)‖2] Projection ineq

= Ê

[
(2Y − 2p̂(X)−

∑
a

γab(X, a))T

(∑
a

γab(X, a)

)]
a2 − b2 = (a+ b)(a− b)

= 2
∑
a

γTa γaÊ[b(X, a)]−
∑
a,a′

γTa γa′ Ê[b(X, a)b(X, a′)] Definitionγa

= 2
∑
a

γTa γaÊ[b(X, a)]−
∑
a

γTa γaÊ[b(X, a)b(X, a)] b(x, a)b(x, a′) = 0,∀a 6= a′

= 2
∑
a

γTa γaÊ[b(X, a)]−
∑
a

γTa γaÊ[b(X, a)] b(X, a)2 = b(X, a)

=
∑
a

‖γa‖2Ê[b(X, a)] ≥ 1

K

(∑
a

‖γa‖Ê[b(X, a)]

)2

Norm inequality

=
1

K

(∑
a

∥∥∥Ê[(Y − p̂(X)b(X, a)]
∥∥∥)2

≥ ε2

K
Definition γa

Because initially for the original predictor p̂ we must have

Ê[‖p∗(X)− p̂(X)‖22] ≤ Ê[‖p∗(X)− p̂(X)‖21] ≤ 1

the algorithm must converge in K/ε2 iterations and output a predictor p̂′ where∑
a

‖Ê[(p̂′(X)− Y)ba(X)]‖ ≤ ε

In addition we know that

Ê[‖p̂′(X)− Y ‖22] ≤ Ê[‖p̂(X)− Y ‖22]

Now that we have proven the theorem for empirical averages (i.e. all expectations are Ê), we
can convert this proof to use true expectations (i.e. all expectations are E) by observing that all
expectations involved in the proof satisfy E[·] ∈ Ê[·] ± κ for any κ > 0 and sample size that is
polynomial in κ.

20

Proof of Theorem 2.2’. Observe that the matrix D defined in Algorithm 2 is a symmetric, positive
semi-definite and non-negative matrix such that

∑
a,a′ Daa′ = 1. To show that the algorithm

converges we first need two Lemmas on the properties of such matrices. For a positive semi-definite
(PSD) symmetric matrix, let λ1 denote the largest eigenvalue, and λn denote the smallest eigenvalue
(which are always real numbers). The first Lemma is a simple consequence of the Perron-Frobenius
theorem,

Lemma 4. Let D be any symmetric PSD non-negative matrix such that
∑
a,a′ Daa′ = 1, then

λ1(D) ≤ 1, so λn(D−1) ≥ 1.

Lemma 5 ((Fang et al., 1994) Theorem 1). Let D be a symmtric PSD matrix, then for any matrix B
(that has the appropriate shape to multiply with D)

λn(D)trace(B) ≤ trace(BD) ≤ λ1(D)trace(B)

Now we can proveed to prove our main result. We have to show that the L2 error Ê[(Y − p̂(t−1)(X))2]
must decrease at iteration t if we still have

ε2/K ≤
∑
a

‖Ê[(Y − p̂(t−1)(X))b(t)a (X)]‖2 := trace(RRT)

We can compute the reduction in L2 error after the adjustment

Ê[(Y − p̂(t−1)(X))2]− Ê[(Y − p̂(t)(X))2]

= Ê
[
(2(Y − p̂(t−1)(X))−RTD−1b(t)(X))TRTD−1b(t)(X)

]
Definition

= 2Ê
[
(Y − p̂(t−1)(X))TRTD−1b(t)(X)

]
− Ê

[
b(t)(X)TD−TRRTD−1b(t)(X)

]
= 2trace

(
Ê
[
b(t)(X)(Y − p̂(t−1)(X))TRTD−1

])
− trace

(
Ê
[
b(t)(X)b(t)(X)TD−TRRTD−1

])
Cyclic property

= 2trace
(
RRTD−1

)
− trace(RRTD−1) = trace(RRTD−1) Definition

≥ trace(RRT) ≥ ε2/K Lemma 5 and 4

Therefore, the algorithm cannot run for more than O(K/ε2) iterations. Suppose the algorithm
terminates we must have

sup
b∈BK

∑
a

‖Ê[(Y − p̂(t−1)(X))b(t)a (X)]‖ ≤ sup
b∈B̄K

∑
a

‖Ê[(Y − p̂(t−1)(X))b(t)a (X)]‖

≤ sup
b∈B̄K

√
K

√∑
a

‖Ê[(Y − p̂(t−1)(X))b
(t)
a (X)]‖2

≤
√
Kε/
√
K = ε

So by Proposition 3 we can conclude that the algorithm must output a (LK , ε)-decision calibrated
prediction function.

C.4 Proof of Remaining Lemmas

Proof of Lemma 1. By the orthogonal property of the condition expectation, for any event A in the
sigma algebra induced by V , we have

E[(U − E[U | V])IA] = 0

This includes the event V > c

E[(U − E[U | V])I(V > c)] = 0

In other words,

E[U I(V > c)] = E[E[U | V]I(V > c)]

21

Proof of Lemma 2. First observe that by the norm inequality ‖z‖α ≤ C1/α‖z‖∞ we have

‖ÊD[Ub(V)]− E[Ub(V)]‖2 ≤
√
C‖Ê[Ub(V)]− E[Ub(V)]‖∞ (21)

Denote the c-th dimension of U by U c; we now provide bounds for |Ê[U cb(V)] − E[U cb(V)]|
by standard Radamacher complexity arguments. Define a set of ghost samples D̄ =
{(Ū1, V̄1), · · · (ŪN , V̄N)} and Radamacher variables σn ∈ {−1, 1}

ED

[
sup
b
|ÊD[U cb(V)]− E[U cb(V)]|

]
(22)

= ED

[
sup
b

∣∣∣ÊD[U cb(V)]− ED̄
[
ÊD̄[U cb(V)]

]∣∣∣] Tower (23)

= ED

[
sup
b

∣∣∣ED̄[ÊD[U cb(V)]− ÊD̄[U cb(V)]]
∣∣∣] Linearity (24)

≤ ED

[
sup
b

ED̄
[∣∣∣ÊD[U cb(V)]− ÊD̄[U cb(V)]

∣∣∣]] Jensen (25)

≤ ED,D̄

[
sup
b

∣∣∣ÊD[U cb(V)]− ÊD̄[U cb(V)]
∣∣∣] Jensen (26)

≤ Eσ,D,D̄

[
sup
b

∣∣∣∣∣ 1

N

∑
i

σiU
c
i b(Vi)−

1

N

∑
i

σiŪ
c
i b(V̄i)

∣∣∣∣∣
]

Radamacher (27)

≤ Eσ,D,D̄

[
sup
b

∣∣∣∣∣ 1

N

∑
i

σiU
c
i b(Vi)

∣∣∣∣∣+ sup
b

∣∣∣∣∣ 1

N

∑
i

σiŪ
c
i b(V̄i)

∣∣∣∣∣
]

Jensen (28)

= 2Eσ,D

[
sup
b

∣∣∣∣∣ 1

N

∑
i

σiU
c
i b(Vi)

∣∣∣∣∣
]

(29)

Suppose we know the Radamacher complexity of the function family b

RN (B) := E

[
sup
b

1

N

∑
i

σib(Vi)

]
(30)

Then by the contraction inequality, and observe that U ci ∈ [−1, 1] so multiplication by U ci is a
1-Lipschitz map, we can conclude for any c ∈ [C]

RN (B) ≥ E

[
sup
b

1

N

∑
i

σiUicb(Vi)

]
(31)

Finally observe that the map D → 1
N

∑
i σiUicb(Vi) has 2/N bounded difference, so by Mcdiamid

inequality for any ε > 0

Pr

[
sup
b

∣∣∣∣∣ 1

N

∑
i

σiU
c
i b(Vi)

∣∣∣∣∣ ≥ RN (B) + ε

]
≤ 2e−Nε

2/2 (32)

By union bound we have

Pr

[
max
c

sup
b

∣∣∣∣∣ 1

N

∑
i

σiU
c
i b(Vi)

∣∣∣∣∣ ≥ RN (B) + ε

]
≤ 2Ce−Nε

2/2 (33)

We can combine this with Eq.(21) to conclude

Pr

[
sup
b
‖Ê[Ub(V)]− E[Ub(V)]‖2 ≥

√
CRN (B) +

√
Cε

]
≤ Pr

[
max
c

sup
b

Ê[U cb(V)]− E[U cb(V)]‖2 ≥ RN (B) + ε

]
≤ 2Ce−Nε

2/2

22

Rearranging we get ∀δ > 0

Pr

[
sup
b
‖Ê[Ub(V)]− E[Ub(V)]‖2 ≥

√
CRN (B) +

√
2C

N
log

2C

δ

]
≤ δ

Proof of Lemma 3. For BKa we use the VC dimension approach. Because ∀b ∈ BKa the set
{z ∈ ∆C , b(z) = 1} is the intersection of K many C-dimensional half plances, its VC dimen-
sion VC(BKa) ≤ (C + 1)2K log2(3K) (Mohri et al., 2018) (Q3.23). By Sauer’s Lemma we have

RN (BKa) ≤
√

2VC(BKa) log(eN/VC(BKa))

N
= O

(√
2CK logK logN

N

)

23

	Introduction
	Background
	Setup and Notation
	Decision-Making Tasks and Loss Functions
	Bayes Decision-Making

	Calibration: A Decision-Making Perspective
	Decision Calibration
	Decision Calibration Generalizes Existing Notions of Calibration
	Decision Calibration over Bounded Action Space

	Achieving Decision Calibration with PAC Guarantees
	Approximate LK Decision Calibration is Verifiable and Achievable
	Verification of Decision Calibration
	Recalibration Algorithm
	Relaxation of Decision Calibration for Computational Efficiency

	Empirical Evaluation
	Skin Legion Classification
	Imagenet Classification

	Related Work
	Acknowledgements
	Relaxations to Decision Calibration
	Additional Experiment Details and Results
	Robustness to Distribution Shift

	Proofs
	Equivalence between Decision Calibration and Existing Notions of Calibration
	Proofs for Section 4
	Formal Statements and Proofs for Theorem 2
	Proof of Remaining Lemmas

