R W N -

DI IEN B

A Relaxations to Decision Calibration

We define the algorithm that corresponds to Algorithm |l|but for softmax relaxed functions. Before
defining our algorithm at each iteration ¢ we first lighten our notation with a shorthand b,(X) =
b(p*~D(X), a) (at different iteration ¢, b, denotes different functions), and b(X) is the vector of
(01(X), -+, b (X))

Algorithm 2: Recalibration Algorithm to achieve decision calibration.

Input current prediction function p, a dataset D = {(x1,y1),- -, (£, yn)} tolerance e ;
[nitialize ;ﬁ(o) =D, 00 = 4o0;
fort =1,2,--- until v~V < €2/K do

v® b = sup, arg SUPpe g K Zle HE[(Y —gﬁ(t_l)()())l)a(X)]H2 ;

Compute D € RE*K where Do = E[bS (X)) (X)] ;

Compute R € REXC where R, = E[(Y — p@=D(X))p{” (X)] ;

Set p(*) : 2 — 7(p— (x) + RTD~'6(®) (x)) where 7 is the normalization projection;
end
Output 57 where T is the number of iterations

For the intuition of the algorithm, consider the ¢-th iteration where the current predic-
tion function is p*~V. On line 4 we find the worst case b(*) that maximizes the “error”

i ||EIy = 5 0l ()|
2
minimize this error Z(Ile HE[(Y —pH(X))bgt) (X)] H . In particular, the adjustment we aim to find
on line 5-7 (which we denote by U € R¢*X) should satisfy the following: if we let
HO) =501 () + 0B ()

2
, and on line 5-7 we make the adjustment (=1 — $® to

we can minimize

K
2
L) =Y [Ely = 50 O)|
a=1
We make some simple algebra manipulations on L to get

K
L) = Bl — Dm0 ()~ O RO ()] |

K
= >R (DU = [DUT?
a=1

Suppose D is invertible, then the optimum of the objective is
U*:=arginf L(U) = R"D™', L({U*)=0

When D is not invertible we can use the pseudo-inverse, though we observe in the experiments that
D is always invertible.

For the relaxed algorithm we also have a theorem that is equivalent to Theorem[2.2] The statement
of the theorem is identical; the proof is also essentially the same except for the use of some new
technical tools.

Theorem 2.2°. Algorithm 2| terminates in O(K/e?) iterations. For any X > 0, given
O(poly(K,C,log(1/0),\)) samples, with 1 — § probability Algorithm outputs a (LX e + N)-
decision calibrated prediction function p' that satisfies E[||p'(X) — Y||3] < E[|[p(X) — Y||3] + .

B Additional Experiment Details and Results

Additional experiments are shown in Figure 4] and Figure[5] The observations are similar to those in
the main paper.

13

031 —— worst-decision w ~a. N | decision-val
~== worst-dirichlet S —0.441 ! —— decision-test
average-decision S
average-dirichlet :g —0454 T
----- val-performance 3
0 5 1I0 15 20 6 _% 1I0 1I5 2'0
recalibration steps recalibration steps
0.2 —— worst-decision " —1.06 1
—== worst-dirichlet § ~1.081 L’/___
average-decision § :
- average-dirichlet :g _1.101 decision-val
----- val-performance & —— decision-test "1t

recalibration steps

0 5 10 15
recalibration steps

Figure 4: Additional Results on the HAM10000 for 2 and 5 actions. The observations are similar to
Figure |Z| even though overfitting happens sooner with 5 actions

number of classes = 10 number of classes = 100 number of classes = 500 number of classes = 1000

—— worst-decision
- worst-dirichlet
average-decision
average-dirichlet
val-performance

aQ
© 0.04
o

@
oo2q.

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
recalibration steps recalibration steps recalibration steps recalibration steps

Figure 5: Additional results on the resnet18. The observations are similar to Figure [3; decision
recalibration improves the loss gap.

B.1 Robustness to Distribution Shift

To further test whether decision calibration improves loss under distribution drift, we use the Imagenet-
C benchmark (Hendrycks & Dietterich, [2019).

C Proofs

C.1 Equivalence between Decision Calibration and Existing Notions of Calibration

Theorem 1. [Decision Calibration Generalizes Existing Notions] For any true distribution p*, and
for the loss function sets L., L., defined in Table[l} a prediction function p is

* confidence calibrated iff it is L,-decision calibrated.
* classwise calibrated iff it is L..-decision calibrated.
* distribution calibrated iff it is L -decision calibrated.

Proof of Theoremll] part 1. Before the proof we first need a technical Lemma

Lemma 1. For any pair of random variables U,V, E[U | V| = 0 almost surely if and only if
Ve e R,E[UIV > ¢)] =0.

14

2 s

on loss gap

006

0075

0070

0065

decision loss gap

0055

0050

a
o
S
w
@2

°
<
S
n
@

k]

decision loss gap

Figure 6: Comparing the maximum difference between predicted loss and actual loss under distribu-
tion drifts. The top panel plots the results on 200 classes, and the bottom panel plots the results on

1000 classes.

clean gaussian_noise shot_noise
baseline: original 0100
9 00375 009
baseline: ts 0008
baseline: ts+dirich & aa3so e &
<y & 008 S o030
—— ours: ts+decision i 00325 o o
8 2 2
S 8 8 ooss
g o s oor c
S S S ooso
G 00275 @ G
o o o
2 3 3 oors
B oozso T 006 °
0070
00225
0085
00200 005
G 5 = 75 10 15 I3 W w5 150 W0 15 150
number of recalibration steps number of recalibration steps number of recalibration steps
impulse_noise defocus_blur motion_blur Zzoom_blur
013 0160
o 12 0155
a a a
S & S o150
@ on g o1 u
s 8 S o
= c c
S o S o1 S o0
2 g g
T o0os \N\M_ ® @ o
008 0130
008
0125
0 5 o 7% 100 b5 10 6 % @ 7 w0 15 10 6 %5 @ 75 w10 15 150 b % @ 75 w0 us 10
number of recalibration steps number of recalibration steps number of recalibration steps number of recalibration steps
fog snow brightness contrast
0080
01a o040
o055
&
&, 0050
4
& oo
c
S oo
0035
o030
0020
0025
0 w0 15 150 B w0 15 150 L] W 175 150 0 I w75 10 us 150
number of recalibration steps number of recalibration steps number of recalibration steps number of recalibration steps
elastic_transform s pixelate jpeg_compression
0080
0050
a o 0055
& -3
2 0oss ' 0050
g I
= = ooss
< o040 <
] S
= W 0020
G o
0035
£ S ooz
0030 0030
o025
2 % 100 125 150 # w0 15 10 [% w0 15 150
number of recalibration steps number of recalibration steps number of recalibration steps
clean shot_noise
baseline: original o0ss 012 ors
baseline: ts. 011
baseline: ts+dirich & 0050 & o o1z
o o010 o
1 0045 @ @ o1
° S e °
010
c c c
S o040] s
&] @
. g ooe g 000
- ° °
0w 1\"““\& 008
0030
006 eo?
0 & = 5 10 15 10 6 & s 75 10 us 150 0 & = 75 10 us 150
number of recalibration steps number of recalibration steps number of recalibration steps
impulse_noise defocus_blur motion_blur zoom_blur
= 016 = 017 = |
022
016
g 014 Q015
& &
o 2014
3 3
S o1 S o1
& &
2 Son
5 010
b @ on
s
M 010
008
009 012
0 & = 5 10 15 150 0 125 150 s 150 0 5 = B 100 15 150
number of recalibration steps number of recalibration steps number of recalibration steps number of recalibration steps
fog snow brightness contrast
0085
009
018 0080
a o 008
2 2 oss a
S & -3
0 016 2 0050 0 007
-} - 2
< = 0045 < 006
S o4] =)
2 2 o040 a2
o @ @ 005
- - L]
012 0035
008
0030
0 % = 7% 10 15 150 0 % @ 5 10 15 10 6 & s 5 100 us 150 0 & o 75 10 us 150
number of recalibration steps number of recalibration steps number of recalibration steps number of recalibration steps
elastic_transform pixelate . jpeg_compression
008
008
a o
S 007)
] @ 007
° °
o 006 -
2 3 005
S 005 S
o A o
s s
005
004
0 & = B 10 15 10 0 5 w5 10 15 10 6 5 s B 10 us 130

number of recalibration steps

number of recalibration steps

15

number of recalibration steps

—0202

-0.283

~02%4

—0205

S
c
)
]
S
@

<

-0.2%6

~0297

-0313

—0314

-0315

—0316

—0317

—0318

-0319

-0350

~03s1

-0352

"
@2
S
c
S

-03s3

~0354

0355

-0262

-0264

-0266

-0.268

B}
-0.270

-0272

—0282
-0.284
~0.286
-0288

—0200

"
@
S
c
=)
@
S
@
<

-0.292

-0.284

-02%6

—0324

-0.326

-0328

-0330

0332

0334

Figure 7: Comparing the decision loss under distribution drifts. The top panel plots the results on 200

clean gaussian_noise shot_noise
baseline: original 0425 o020
baseline: ts -0.305
. -0.426
baseline: ts+dirich _0201
0 w o
—— ours: ts+decision 5 0427 8 0308 g
§ 0428 s § 0222
2 2 -0307 2
0429
3 B S 0293
-0.430 -0.308
0284
0431
0308
0 =0 100 150 [] EY 100 150 [E] 180 150
number of recalibration steps number of recalibration steps number of recalibration steps
impulse_naise defocus_blur motion_blur zoom_blur
0222 r
0250 02085
0223 02100
0251
o 024 o @ 02105
S 8 0252 s
2 o225 = =
< < < omwo
r 0253
5 0226 i} B 02115
o o
gom 8 ome £ om0
o2z 0255 02125
022 o256 02130
0230
b Y 100 150) EY 100 150 [} EY 10 150 [B 10 %0
number of recalibration steps number of recalibration steps number of recalibration steps number of recalibration steps
fog snow brightness. contrast
0244 0360
0411
0361
—0.246 -0412
o 0 0 0382
8w 8 ous H
c < < 0363
5 S 0414 S
2 o 2 2 o
o @ 0415 3
- - L]
0152 <
0416 0365
0254 0417 0366
0 EY 100 0 = 100 150 [EY 10 150 [50 10 150
number of recalibration steps number of recalibration steps number of recalibration steps number of recalibration steps
elastic_transform asne pixelate jpeg_compression
0373
0375
0374
g o a
a 8 0375
= -0am =
S G 0376
2 0378 2
i & 0377
T am =
0378
0380
0373
0381
b Y 100 150 1) EY 100 150 [} EY 160 150
number of recalibration steps number of recalibration steps number of recalibration steps
clean gaussian_noise shot_noise
baseline: original o o8
0405
baseline: ts 0276 0250
i ~0.408
baseline: ts+dirich
3 9 @ -0278 B} -0262
—— ours: ts+decision 8 0407 8 38
e c c
S -ous § 0280 S 0264
a a 2
g o 3 0282 @ -0266
L] s s
-0410
0284 -0.268
-04m
0412 ~0.286 0270
0 % = 7 10 15 150 6 = s 75 100 135 150 0 5 @ s 10 15 180
number of recalibration steps number of recalibration steps number of recalibration steps
impulse_noise defocus_blur motion_blur zoom_blur
0124 -0.180
0228
0196 0182
@ 8 -0 8
c 01 = o ol
S S S
2 S 02z 2
o o S 0186
@ -0200 3 o
= © 230 °
0188
0202
0232
-0.1%0
0 B m B W0 15 150 0 & = 5 10 125 150 0 B s 75 100 135 150 0 5 m s 10 15 150
number of recalibration steps number of recalibration steps number of recalibration steps number of recalibration steps
fog snow brightness contrast
0215 [EE
0389
-0218 030 0334
0220
0301
@ 2 9 0336
S g 2 o392 2
< < € -0
s S S
& 0224 G 03 @
g 2 g 0340
@ 8 030 b
o 0226 ° °
0395 0382
0228
-03%
0230 0384
0397
b & @ 75 100 15 150 0 % © 7% 10 15 10 6 % s 75 100 135 150 0 5 @ % 10 15 150
number of recalibration steps number of recalibration steps number of recalibration steps number of recalibration steps
elastic_transform pixelate jpeg_compres:
0348
0350
0350
w -0352 9
@ 4
= s
- = 0352
5 o354 s
a 2
g g —03ss
© 036 °
0356
0358
b 5 m B 100 15 150 0 & = % 10 15 10 6 B s 5 100 135 150

number of recalibration steps

number of recalibration steps

number of recalibration steps

classes, and the bottom panel plots the results on 1000 classes.

16

Part 1 When the loss function is £ : y,a — l(y # aNa # 1) + Bl(a = L), the Bayes decision is
given by

argmax p(z) maxp(z) >1-—7
de(z) = { 1 otherwise

Denote U = max p(X) and V = arg max p(X). For any pair of loss functions ¢ and ¢’ parameterized
by /3 and 3’ we have

E[¢'(Y. 80(X))] — E[¢'(Y, 6(X))]
= E[(¢'(Y, L) = '(Y,)N(8e(X) = L)] + E[(£'(Y, 86(X)) = (Y, 0, (X))I(0(X) # L)) Tower
= 0+ E[(py (X) — pv (X))I(maxp(z) > 1 -)] Def of £
= Ellpy(X) —U)(U > 1= P)]
Suppose p is confidence calibrated, then almost surely
U = Pr]Y = argmaxp(X) | U] = Elpi, (X) | U]

which implies almost surely E[p;,(X) — U | U] = 0. By Lemma|[I] we can conclude that

0 = E[(pi(X) = U)IU > 1 = B)] = E[¢'(Y,6,(X))] — E[¢'(Y,6:(X))]
so p is L,.-weakly calibrated.

Conversely suppose p is L, weakly calibrated, then V3 € [0, 1], E[(p},(X) — U)I(U > 1 - B)] = 0.
By Lemma(I] we can conclude that almost surely

0=E[py(X) -U | U] =E[py(X) | U] -U
so p is confidence calibrated.

Part 2 For any loss function £ : y,a — lla= L)+ Bil(y #cAha=T)+ ally =cha=F)
where (31, B2 > 1, observe that the Bayes decision for loss function £ is

T pe(xr) >max(l —1/B1,B1/(B1 + B2))
de(z) = { F pe(z) <min(1/B2, B1/(B1 + B2))

1 otherwise

Choose any pair of numbers « > +y, we can choose 1, 32 such that & := max(1 — 1/, 81/(81 +
B2)),~y = min(1/B2, f1/(B1 + B2)). For any pair of loss functions ¢ and ¢’ parameterized by
b1, B2, B, B4 (with associated threshold o > v, &’ > ') we have

E[¢'(Y,6,(X)) — E[¢'(Y, 64(X))]

= E[(¢/(Y, 66(X)) = /(Y 6e(X)))I(Se(X) = T)] + E[(£' (Y, 60(X)) = €' (Y, 56(X))(B0(X) = F)]
=E[((/(Y,T) = ¢'(Y, T)(0e(X) = T)] + E[(¢'(Y, F) = £'(Y, F))I(5,(X) = F)]

= BLE[(pe(X) — pi(X)(Pe(X) > a)] + BE[(p2(X) — Pe(X)(Pe(X) < 7))

Similar to the argument for part 1, suppose p is classwise calibrated then Vo, 7, E[(pi(X) —
Pe(XNN(De(X) >)] = 0 and E[(p%(X) — pe(X))(Pc(X) <)] = 0; therefore it is L,-decision
calibrated.

Conversely suppose p is L.--decision calibrated, then Yor we have E[(p.(X) — pi (X))1(p(X) >
a)] = 0, which implies that p is classwise calibrated according to Lemma

Part 3 Choose the special loss function A = A® and / as the log loss ¢ : y,a — — log ay then the
Bayes action can be computed as

Sule) = arg_nf_ By [~ logag] = p(e)
Denote U = p(X) then let £ be the set of all bounded loss functions, i.e. Lp = {¢, |¢(y,a)| < B}

Sup E[E(Y, 8(X))] E[¢'(Y,80(X))]

sup E[E[('(Y,U) - ¢ (Y,U) | U]] Tower
t'eLlp

17

= BE[||E[p"(X) — p(X) | U||,] Cauchy Schwarz

If p satisfies distribution calibration, then ||[E[p*(X) — p(X) | U]||; = 0 almost surely, which
implies that p is Lp decision calibrated. Conversely, if p is Lp decision calibrated, then
|E[p*(X) —p(X) | U]||; = 0 almost surely (because if the expectation of a non-negative ran-
dom variable is zero, the random variable must be zero almost surely), which implies that p is
distribution calibrated. The theorem follows because B is arbitrarily chosen. [

C.2 Proofs for Section 4

Proposition 2. A predictor p satisfies (LX, €)-decision calibration if and only if
K

sup 3O |[EIY — V)b(p(X), o)l < e ®)

2
beBK

Proof of Proposition[2] We first introduce a new set of notations to make the proof easier to follow.

Because A = [K] and Y ~ [C], a loss function can be uniquely identified with K vectors 1, - , {k
where {,. = £(c, a). Given prediction function p : X — A and the expected loss can be denoted as
EYN;S(J;) [E(Y/u a’)] = <ﬁ(x)7£a> (11)

Choose any Bayes decision function &, for some loss ¢/ € L%, as a notation shorthand denote

0 (p(x)) = dp(x). We can compute the gap between the left hand side and right hand side of
Definition 2 as

[ExEg) [V 66 (X))] — EXEyme () [V 00 (X))

sup

¢ sup,||£(+, a)|l2
y \|e(§u§)|\ <1 ‘EXE?N’S(X)[E(Y/’ 0o (X))] = ExByope(x) (Y, 00 (X))]‘ Normalize
-) Hg(?u)p” <1 |EX [<€5z'(x)’ﬁ(X)>} —Ex Rgéel(X)?p*(X»] | Eql[TT]
=) \|é(§u§)|\ - Z Ex[(D(X), la)l(0p(X) = a)] — Z Ex[(p*(X),£u)1(6¢/(X) = a)]| Total Probability
=P S Ex[(p"(X) = B0 (X) = a)], L) Linearity
= S IEX[("(X) = (X)) (60 (X) = a)]l, Cauchy Schwarz

Finally we complete the proof by observing that the set of maps
{q,a = 1(6(q) = a),L € LK g A®}

is the same as the set of maps BX. We do this by establishing a correspondence where ¢, =
—wg/||we||2 then

1(9e(q) = a) = larg inf(lar, q) = a) = l(argsup(war, ¢) = a) = bu (g, a)

a

C.3 Formal Statements and Proofs for Theorem 2]

Formal Statement of Theorem |2, part I. We first define a new notation. Given a set of samples

D ={(X1,Y1), -+ ,(Xn,Yn)}, and for any function ¢) : X x J — R denote Ep[1)(X,Y)] as the
empirical expectation, i.e.

ED[MJ(X?Y)] = % Z¢<X7L; Yn)

18

Theorem 2.1 (Formal). Let BX be as defined by Egq. (El) for any true distribution over X,Y and any
D, given a set of N samples D = {(X1,Y1),- -+, (Xn,YnN)}, with probability 1 — 6 over random
draws of D,

e}

K R R K R R X K3/2C
sup S EIR) = V),)l = D [Eplp(0) ~ Y)bp0))], < (T)

(12)

a=1 a=1

where O denotes equal up to constant and logarithmic terms.

Note that in the theorem & does not appear on the RHS of Eq.(12). This is because the bound depends
logarithmically on §.

Proof of Theorem 2.1} Before proving this theorem we first need a few uniform convergence Lemmas
which we will prove in Appendix [C.4]

Lemma 2. Let B by any set of functions {b : A® — [0,1]} and U,V be any pair of random variables
where U takes values in [—1,1] and V takes values in A€. Let D = {(Uy,V1),--- ,(Un, Vn)} be
an i.i.d. draw of N samples from U,V define the Radamacher complexity of B by

XN
sup — o;b(V;
veB IV 7; V)

RN(B) = ED,UiNUniform({fl,l})

then for any § > 0, with probability 1 — 6 (under random draws of D), Vb € B

2C 2C

[Ep[UB(V)] — EUB(V)]l2 < VRN (B) +/ 5 log =

Lemma 3. Define the function family
BE = {b 2+ l(a = argsup(z,w,)), w, €R%,a=1,--- K,z € AC}

e<Z:wa>

B({(_{b:ZHw,waeRC,G_l,"'7K,Z€AC}
a € o

then R (BI) = O (W} and R (B) = 0 (%) 10).

Proof of the theorem is straight-forward given the above Lemmas. As a notation shorthand denote
U = p(X) — Y. Note that U is a random vector raking values in [—1,1]°. We can rewrite the left
hand side of Eq.(I2) as

Sup > IEUbGHX), a)llla — |Ep[UbH(X),)l (13)
€BK
< Z:I;P IE[UB(H(X), a)lll2 — [IED[Ub(H(X), a)]l2 Jensen (14)
a bEBE
< Z bsup IE[Ub(H(X),a)] — Ep[Ub(H(X), a)]||2 Triangle (15)
a bEBE
I 20 . 2C
< ; VORN(BE) + N logT (w.p. 1—90) Lemma[2] (16)
CKlog K log N 2C 2C
< Za: VCO (\/N) A\ log 5 Lemma[3] (17)
CKlog Klog N 2C 2C
< KVCO (,/N>+K W los = (18)
-~ (K3/2C
-o())

O

19

Formal Statement Theorem 2, Part IT

Theorem 2.2. Given any input p and tolerance e, Algorithm terminates in O(K/€?) iterations.
For any X > 0, given O(poly(K,C,log(1/6), X)) samples, with 1 — & probability Algorithm I]
outputs a (LK e + \)-decision calibrated prediction function ' that satisfies E[||p'(X) — Y|3] <

E[llp(X) = Y[I3] + A

Proof of Theorem2.2] 'We adapt the proof strategy in (Hébert-Johnson et al.,2018). The key idea
is to show that a potential function must decrease after each iteration of the algorithm. We choose
the potential function as E[(Y — p(X))?]. Similar to Appendix |Alat each iteration ¢ we first lighten
our notation with a shorthand b, (X) = b(p"*~1)(X), a) (at different iteration ¢, b, denotes different
functions), and b(X) is the vector of (b1 (X), - ,bx(X)). If the algorithm did not terminate that
implies that b satisfies

D IEBX) = Y)ba(X)]|| > € (20)

Denote v € REXE where v, =

E

PI(X) = m(p(X) + 32, 7ab(X; a))
EllY —pCOIP] — E[IY = ' (X))

= E[lY =501 — Y — n(p(X) +Zva (X, a))|I’]

(Y — p(X))b(X,a)]/E[b(X,a)]. The adjustment we make is

Y

E[HY—ﬁ(X)”Q Y —p(X Z% (X,a H Projection ineq

=E |2V —2p(X) = > 7ab(X,a))" (Z Yab(X, a))] a® —b* = (a+b)(a—0b)

=2 Z Ve VaE (X, a)] — Z Yy ED(X, a)b(X, a")] Definition~,,

= 22757aé Z’Ya ’Ya b<X CL)] b(x,a)b(x,a/) = O,Va 7é a

ZQZ%T%E X, a) *Z%% (X, a)] b(X,a)? =b(X,a)
a a)

= Z [7a I?E[b(X, a)] > T (ZHaHE b(X, a)]) Norm inequality

2
2
E[(Y — p(X)b(X H) > ? Definition 7,

1
(z
a
Because initially for the original predictor p we must have

Efllp* (X) = H(X)|13] < E[llp"(X) = p(X)[I7] < 1

the algorithm must converge in K /€ iterations and output a predictor ' where
D OIELE(X) = Y)ba (X)) < €

In addition we know that
E[lI5'(X) — Y|3] < E[|lp(X) - Y3]

Now that we have proven the theorem for empirical averages (i.e. all expectations are E), we
can convert this proof to use true expectations (i.e. all expectations are E) by observing that all

expectations involved in the proof satisfy E[-] € E[-] = « for any x > 0 and sample size that is
polynomial in . O

20

Proof of Theorem[2.2’] Observe that the matrix D defined in Algorithm [2]is a symmetric, positive
semi-definite and non-negative matrix such that >, D,,» = 1. To show that the algorithm

converges we first need two Lemmas on the properties of such matrices. For a positive semi-definite
(PSD) symmetric matrix, let A\; denote the largest eigenvalue, and)\, denote the smallest eigenvalue
(which are always real numbers). The first Lemma is a simple consequence of the Perron-Frobenius
theorem,

Lemma 4. Let D be any symmetric PSD non-negative matrix such that Za’a, Dyo = 1, then
AM(D) < 1,50\ (D71 > 1.

Lemma 5 ((Fang et al.l[1994) Theorem 1). Let D be a symmtric PSD matrix, then for any matrix B
(that has the appropriate shape to multiply with D)

An(D)trace(B) < trace(BD) < Ai(D)trace(B)

Now we can proveed to prove our main result. We have to show that the L2 error E[(Y —p(*—1) (X))?]
must decrease at iteration ¢ if we still have

/K <Y JE[Y =D (X)L (X)]||? := trace(RRT)

We can compute the reduction in L2 error after the adjustment

E[(Y —p"~1(X)%] — E[(Y — pP(X))?]
E {(Q(Y — pD (X)) — RTD~1p® (X))TRTD*W)(X)} Definition

= 2B [(v = V(X)) TR DO (x)] - E [p0(X)" DT RRT DO ()|

— 9trace (E [b(t)(X)(Y _ ﬁ(t—l)(X))TRTD—l})

— trace (E [b(t) (X)b(t)(X)TD*TRRTDﬂD Cyclic property
= 2trace (RR"D™") — trace(RR" D™ ") = trace(RR" D) Definition
> trace(RRT) > /K Lemmal5]and 4]

Therefore, the algorithm cannot run for more than O(K/e?) iterations. Suppose the algorithm
terminates we must have

sup D [E[(Y = V(X)) (O < sup Y JE[Y = p D (X)0 ()|
beBK beBK 7
< sup VE \/D (v 50D (K]
beBK
< VEJVE =
So by Proposition 3| we can conclude that the algorithm must output a (L, ¢)-decision calibrated
prediction function. O

C.4 Proof of Remaining Lemmas

Proof of Lemmall] By the orthogonal property of the condition expectation, for any event A in the
sigma algebra induced by V, we have

E[(U—-E[U [V])Ia] =0
This includes the event V' > ¢
E[(U—-E[U|V])(V >¢)]=0
In other words,
E[UV > ¢)] = E[E[U | VIV > ¢)]

21

Proof of Lemmal2] First observe that by the norm inequality ||z||, < C'/%||z||c we have
IEp[UB(V)] — E[UB(V)]]l2 < VOIEIUB(V)] = E[UB(V)][|oo 1)

Denote the ¢-th dimension of U by U®; we now provide bounds for |E[U°b(V)] — E[U°b(V)]|
by standard Radamacher complexity arguments. Define a set of ghost samples D =
{(U1,V1),--- (Un,Vn)} and Radamacher variables o,, € {—1,1}

Ep |suplEp[Uu(V)] - EUH(V)]|)
~Ep :s%p [EnlUb(vV)] - Ep [EnlUb(V)] H Tower (23)
—Ep [su [EnlEnlUs(V)] - EnfUb(v)]| Linearity (24
< B [supEp [[EUs(V)] - Enln(v] ensen (25)
<Epsp {Sup ‘ED [U°b(V)] — ED[U%(V)]” Jensen (26)

Radamacher 27

el

NZUlUCb — %Zoi(jfb(‘_/i)

1 1 __
<E,pp ls%p i ; o USb(V) | + s%p i ; o USb(V;) Jensen (28)
1
=2, p ls%p N Z o UH(V;) (29)
Suppose we know the Radamacher complexity of the function family b
Rn(B) :=E [sup N Z oib (30)

Then by the contraction inequality, and observe that Uf € [—1, 1] so multiplication by Uf is a
1-Lipschitz map, we can conclude for any ¢ € [C]

Ry (B) > E 31)

1
SIZP N ; 0¢Uz'cb(V¢)

Finally observe that the map D — + Y. 0;U;.b(V;) has 2/N bounded difference, so by Mcdiamid
inequality for any € > 0

Pr |sup |+ ZUZUC > Ry (B) +e| < 267N/ (32)
b
By union bound we have
Pr lmaxsup ZozUC >Ry(B)+e| < 2CeN</? (33)
<

We can combine this with Eq.(21) to conclude
Pr [supué[Ub(V)} —E[U(V)][l2 > VORN(B) + \/Ee]
b

=t {ma" sup E[U°b(V)] — E[UB(V)]l2 > Rv(B) +] < 206 NP2
¢ b

22

Rearranging we get Vo > 0

2C 2C

e 2| <
N e =9

Pr [S%pIE[Ub(V)] —E[Ub(V)]|l2 > VORN(B) +

O

Proof of Lemma[3} For BX we use the VC dimension approach. Because Vb € BX the set
{z € A% b(z) = 1} is the intersection of K many C-dimensional half plances, its VC dimen-
sion VC(BE) < (C + 1)2K log,(3K) (Mohri et al., [2018) (Q3.23). By Sauer’s Lemma we have

Rov(BX) < \/2VC(B§)1og(eN/VC(Bgf)) 0 (\/2CKlogKlogN)

N N

23

	Introduction
	Background
	Setup and Notation
	Decision-Making Tasks and Loss Functions
	Bayes Decision-Making

	Calibration: A Decision-Making Perspective
	Decision Calibration
	Decision Calibration Generalizes Existing Notions of Calibration
	Decision Calibration over Bounded Action Space

	Achieving Decision Calibration with PAC Guarantees
	Approximate LK Decision Calibration is Verifiable and Achievable
	Verification of Decision Calibration
	Recalibration Algorithm
	Relaxation of Decision Calibration for Computational Efficiency

	Empirical Evaluation
	Skin Legion Classification
	Imagenet Classification

	Related Work
	Acknowledgements
	Relaxations to Decision Calibration
	Additional Experiment Details and Results
	Robustness to Distribution Shift

	Proofs
	Equivalence between Decision Calibration and Existing Notions of Calibration
	Proofs for Section 4
	Formal Statements and Proofs for Theorem 2
	Proof of Remaining Lemmas

