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A Appendix

Proof of lemma (1). Here, P(C) denotes the set of probability measures defined on the common
support C. This is a slight abuse of the notation, since C is not the underlying space, but a subset of
the σ-algebra defined on it. Consequently,

Y(P(C)) =
{
ω ∈ C : f1(ω) ≥ f2(ω); f1, f2 ∈P(C)

}
.

Let, f, g ∈P(C). Observe that,

sup
ω∈C

∣∣f(ω)− g(ω)∣∣ = ‖f − g‖TV ≥ ‖f − g‖Y(P(C)) ,

due to the definition of TV.

Define, A = {ω ∈ C : f(ω) ≥ g(ω)} ∈ Y(P(C)). Now,

‖f − g‖TV =
1

2
‖f − g‖1 =

∣∣f(A)− g(A)∣∣ ≤ ‖f − g‖Y(P(C)) .

Proof of lemma (2). Since we only deal with measures supported on C, our proof revolves around
P(C). A similar argument will hold for all the measures, based on the σ-algebra corresponding to Z .

Let, γ ∈P(C). Also, let {Xi}ni=1 denote an i.i.d. sample from γ. Define, γ̂n(S) = 1
n

∑n
i=1 δXi

(S),
for S ∈ C.

Using Dudley’s chaining argument coupled with symmetrization, it can be shown that (Corollary
7.18 [1]) there exists an universal constant L such that,

E
[

sup
S∈Y(P(C))

∣∣γ̂n(S)− γ(S)∣∣ ] ≤ L√VC-dim[Y(P(C))]
n

.

This constant L depends on the diameter of C with respect to the ‖ ‖2 norm. Now, by McDiarmid’s
inequality

P
(

sup
S∈Y(P(C))

∣∣γ̂n(S)− γ(S)∣∣− E
[

sup
S∈Y(P(C))

∣∣γ̂n(S)− γ(S)∣∣ ] ≥ η) ≤ exp (−cnη2),

where c is a positive constant. As such,

P
(
‖γ̂n − γ‖Y(P(C)) ≥ L

√
v

n
+ η
)
≤ exp (−cnη2)

⇐⇒ P
(
‖γ̂n − γ‖Y(P(C)) ≤ L

√
v

n
+

1√
n

√
1

c
ln
(1
δ

))
≥ 1− δ,

where v = VC-dim[Y(P(C))] and δ ∈ (0, 1). Judicious choices of k1 and k2 proves the lemma.
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Proof of lemma (4). Since, Wasserstein distance is a metric on P(X ), using triangle inequality we
get

dL 1
c
((D ◦ E∗)#µ̂n, µ) ≤ dL 1

c
((D ◦ E∗)#µ̂n, µ̂n) + dL 1

c
(µ̂n, µ)

≤ dL 1
c
((D ◦ E∗)#µ̂n, D#ρ) + dL 1

c
(D#ρ, µ̂n) + E3

≤ dL 1
c
(D#ρ, T#ρ) + dL 1

c
(T#ρ, µ̂n) + E1 + E3

= E1 + E2 + 2E3.
Here, T is as suggested in lemma (3).

Proof of lemma (5). Theorem 1 of [2] ensures that, for s > δ∗1(µ)

E
[
dL 1

c
(µ̂n, µ)

]
= O(n− 1

s ).

Denote, W (ω) = dL 1
c
(µ̂n, µ), where ω ∈ Xn. Now, for x1, x2, ..., xn, x

′

n ∈ X∣∣∣W (x1, x2, ..., xn)−W (x1, x2, ..., x
′

n)
∣∣∣ ≤ 1

n
c(xn, x

′

n) ≤
B

n
.

As such, dL 1
c
( ) satisfies the bounded difference inequality. Thus, using the McDiarmid’s inequality

we get

P
(
dL 1

c
(µ̂n, µ)− E

[
dL 1

c
(µ̂n, µ)

]
≥ t
)
≤ exp

{
− 2nt2

B2

}
,

t > 0 i.e.,
{
dL 1

c
(µ̂n, µ) ≤ O(n−

1
s ) + t

}
holds with probability at least 1− exp

(
− 2nt2

B2

)
.

Proof of Corollary (1). Observe that,

P
(∥∥E#µ̂n − ρ

∥∥
TV
− λ∗ − c1

√
v

n
≥ ε
)

≤ P
(∥∥∥E#µ̂n − (̂E#µ)n

∥∥∥
TV

+
∥∥∥(̂E#µ)n − ρ

∥∥∥
TV
− λ∗ − c1

√
v

n
≥ ε
)

≤ P
(∥∥∥E#µ̂n − (̂E#µ)n

∥∥∥
TV
≥ ε

2

)
+ P

(∥∥∥(̂E#µ)n − ρ
∥∥∥
TV
− λ∗ − c1

√
v

n
≥ ε

2

)
≤ k exp

{
− nrε2

4

}
+ c3 exp

{
− nc

′
ε2

4

}
, (1)

where c
′
= 1

c22
and v = VC-dim[Y(P(C))], which is taken to be finite. Theorem (1) and Assumption

(4(ii)) together result in (1). Hence, for r ≥ 1, c∗ = min{ 14 ,
c
′

4 } and k∗ = 2max{k, c3},

P
(∥∥E#µ̂n − ρ

∥∥
TV
− λ∗ ≥ c1

√
v

n
+ ε
)
≤ k∗ exp

{
− nc∗ε2

}
.

i.e., with probability at least 1− δ,∥∥E#µ̂n − ρ
∥∥
TV
− λ∗ ≤ O(n− 1

2 ) +
1√
n

√
1

c∗
ln
(k∗
δ

)
.

Remark (Regarding Proof of lemma (3)). The objective at hand is to find a T : Z −→ X such that,

T ∈ argmin
T :T#ρ=µ

∫
c(x, T (x))dρ(x).

Assumption (1) and (5) ensure that the density corresponding to µ is smooth in the sense of Hölder and
is based on a convex X . pρ has also been taken to be smooth (2). When X ,Z ⊆ Rd, a quadratic cost
c implies that such a solution T exists (Brenier Potential) and moreover, satisfies the Monge-Ampère
equation (Eq. 12.4 in [3]). In this premise, the regularity results on T , provided by Caffarelli et al.[4]
exactly proves Lemma (3).
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