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ABSTRACT

Time-series Generation (TSG) is an impactful research direction, as generating
realistic sequences can be used to create educational materials, in simulations
and for counterfactual analysis in decision making. It has further the potential
to alleviate the resource bottleneck that arises from a lack of diverse time-series
data required to train large time-series foundational models. However, most exist-
ing TSG models are typically designed to generate data from a specified domain,
which is due to the large divergence in patterns between different real-world TS
domains. In this paper, we argue that text can provide semantic information (in-
cluding cross-domain background knowledge and instance temporal patterns) to
improve the generalisation of TSG. To do so, we introduce “Text Guided Time
Series Generation” (TG2)—the task of generating realistic time series from hand-
ful of example time series paired with their textual description. We further present
a Self-Refine-based Multi-Agent LLM framework to synthesise a realistic bench-
mark for TG2 and show that the collected text descriptions are both realistic and
useful for time-series generation. We develop a first strong baseline for the TG2,
BRIDGE, which utilises LLMs and diffusion models to generate time series which
encode semantic information as cross-domain condition. Our experimental results
demonstrate that BRIDGE significantly outperforms existing time-series genera-
tion baselines on 10 out of 12 datasets, resulting in data distributions that are more
closely aligned to target domains. Using the generated data for training positively
impacts the performance of time series forecasting models, effectively address-
ing training data limitations. This work bridges the gap between LLMs and time
series analysis, introducing natural language to help the TSG and its applications.

1 INTRODUCTION

The generation of time series (TS) data is an important task in various domains, including finance
(Sezer et al., 2020), healthcare (Hong & Chun, 2023), meteorology and environmental science (Has-
nain et al., 2022). For example, realistic synthetic medical electrocardiogram (ECG) patterns can be
used to train medical residents (Hong & Chun, 2023), while simulating regional electricity usage can
be used for stress testing the power grid (Westgaard et al., 2021). Previous methods like TimeGAN
and TCGAN (Huang & Deng, 2023) utilise GANs to produce realistic TS, showing remarkable per-
formance even with limited labeled data. Similarly, VAE-based approaches enable decoupling the
mapping process from standard VAE training, allowing for precise control over generated outputs
(Bao et al., 2024). However, such models are confined to generating single-domain data. In contrast,
generating TS representations from unseen domains during training introduces additional complexi-
ties, as real data resources are often scarce, private, and highly valuable, while TS patterns and scales
vary significantly across different domains. This stands in stark contrast to the domains of NLP and
CV, where the availability of large-scale datasets has led to foundational Large Language Mod-
els (LLMs), which have demonstrated strong generalization and reasoning abilities (Brown et al.,
2020; Mirchandani et al., 2023), and have shown efficient utilization of data (Wang et al., 2024),
even in few-shot or zero-shot scenarios. In particular, their demonstrated ability to generate images
(Zheng et al., 2023) and videos (Liu et al., 2024e) from text prompts, creating a timely opportunity
to extend these capabilities to other modalities, such as time series. Leveraging text as a source of
cross-domain information for TSG via LLMs could facilitate the capture of complex patterns and
semantic relationships, akin to their application in other domains.
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Recent research has explored two approaches to leveraging LLMs for time series analysis: adapting
existing LLMs to handle time series data (TS-for-LLM) and developing specialized LLMs for time
series from scratch (LLM-for-TS). The TS-for-LLM approach aims to utilize LLMs’ semantic capa-
bilities by representing time series as word embeddings, requiring minimal training and data (Wang
et al., 2022; Ye et al., 2024). Methods include aligning word and time-series embeddings through
clustering (Pan et al., 2024) and contrastive learning (Sun et al., 2023). However, this approach
faces challenges in accurately representing continuous time series data with discrete vocabularies
and may not necessarily require LLMs (Tan et al., 2024). The LLM-for-TS approach seeks a more
fundamental solution by pre-training models on time series data, as exemplified by TimesFM (Das
et al., 2023) and Chronos (Ansari et al., 2024). While these methods have shown promising re-
sults, they primarily focus on building foundational models for time series forecasting. In contrast,
the challenge of cross-domain time series generation, particularly leveraging textual information to
guide and enhance the generation process, remains underexplored. In addition, the limited availabil-
ity of time series data compared to NLP and CV domains poses a significant challenge in developing
models with emergent abilities similar to traditional LLMs, making it difficult to consistently meet
the data requirements for such approaches.

We argue that using text to assist in cross-domain TS generation can help overcome the data
scarcity issues inherent to the TS domain, as the knowledge provided can be transferred to other
domains (Shang et al., 2021). Side-stepping the issues associated with TS-for-LLM and LLM-for-
TS, we do not directly input TS data into the LLMs or pre-train LLMs on TS. Instead, we take an
intermediate step by learning Text-to-TS prototypes (also known as bases (Harpham & Dawson,
2006)) that serve as basic elements to construct soft prompts. These prototypes capture underlying
temporal patterns, such as trends, seasonalities, and semantic information for domains, which are
used to generate TS data with a diffusion model. During training, the proposed model uses both
text descriptions and TS samples as input, employing a prototype assignment module to create tai-
lored “prompts” for each sample. During sampling, texts and few-shot samples serve as context to
generate “prompts”, which condition TS generation in a process akin to instruction tuning (Zhang
et al., 2023). Here, LLMs act as assistants rather than generators, leveraging the accessibility of text
while avoiding the limitations of conventional LLM-based TS methods. In this setup, the proposed
model achieved state-of-the-art performance on the majority of datasets and demonstrated strong
robustness in few-shot learning scenarios, particularly on unseen datasets.

The lack of resources for TS is particularly pronounced for TG2 tasks, which poses a significant
challenge in validating our proposed approach. This likely stems from the difficulty in precisely
describing TS with words (Yang & Lee, 2009; Liu et al., 2024a). The nature of automatically find-
ing textual descriptions for TS is akin to prompt optimisation for LLMs, where prompt variations
greatly impact performance (T et al., 2024). Although automated prompt generation methods like
random search (Zhou et al., 2023b), genetic algorithms (Liu et al., 2024c), and reinforcement learn-
ing (Guo et al., 2024a) have been developed, they were not applied for TG2. To address this gap,
we leverage on the recent advancements in LLM-based multi-agent systems for complex problem-
solving (Guo et al., 2024b) and propose a role-based LLM collaborative multi-agent framework to
generate a high-quality benchmark for TG2. The experimental results highlight the significance of
the proposed framework. Compared to the original text, the revised text achieves at least a 15%
performance boost. Additionally, multi-agent collaboration systems provide more comprehensive
outputs compared to the straightforward generated text.

To summarise, this paper makes the following novel contributions: First, We propose a multi-agent
framework to create a text guided time series generation TG2 benchmark. Our numeric experiments
show that the descriptions provide helpful information for time-series models. Second with this
benchmark, we analyse the impact of different types of time-series descriptions, which advances the
understanding of how LLM can be used to assist time series prediction and generation in a zero-shot
setting. Third, we propose BRIDGE, a novel text-based time series generation framework via LLMs
and diffusion. The proposed method outperforms all baselines on 10 out of 12 datasets and achieves
the best performance on data from unseen domains in a few-shot setting, demonstrating strong cross-
domain generalization. Finally, we show that the BRIDGE effectively addresses the lack of time-
series resources as forecasting models trained on synthetic data perform similarly compared to when
trained on real data.
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2 RELATED WORK

Large Language Models for Time Series: Recent studies explore LLMs for time series (TS)
analysis. Some, like Das et al. (2023), pre-train models from scratch, while others, such as Chronos
(Ansari et al., 2024), tokenize TS data to leverage NLP techniques. These methods achieve strong
performance but require significant computational resources, limiting scalability. Alternative ap-
proaches align LLMs with TS embeddings, as seen in EEG-to-Text (Wang & Ji, 2022) and GPT4TS
(Zhou et al., 2023a). Enhancements include trend decomposition (TEMPO (Cao et al., 2024)), two-
stage fine-tuning (LLM4TS (Chang et al., 2023)), and specialized embeddings or architectures (e.g.,
UniTime (Liu et al., 2024d), GATGPT (Chen et al., 2023), ST-LLM (Liu et al., 2024b)). Time-LLM
and Lag-Llama apply LLaMA for TS tasks (Jin et al., 2023; Rasul et al., 2023). Despite progress,
challenges remain in bridging the gap between discrete text and continuous TS data.

Time Series Generation: Traditional TS generation has used various generative models to cap-
ture temporal structure. GANs were among the first, using supervised and adversarial objectives to
encourage temporal coherence, as in TimeGAN (Yoon et al., 2019). VAEs adapt to TS by adding
decoder structures for trend and seasonal components (Desai et al., 2021). Advances include vector
quantization with bidirectional transformers, enhancing temporal consistency (Lee et al., 2023), and
mixed models combining GANs, normalizing flows, and ODEs for complex patterns (Jeon et al.,
2022). Denoising diffusion models (DDPMs) generate TS by reversing a noise-added Markov pro-
cess and support conditional generation, although current models lack domain-specific conditional
details (Sohl-Dickstein et al., 2015; Ho et al., 2020).

3 ITERATIVE OPTIMISATION: MULTI-AGENT COLLABORATION TO REFINE A
TEXT DESCRIPTION

In this section, we discuss the experimental need for iterative optimization and the detailed ar-
chitecture of the proposed multi-agent collaboration framework. Specifically, we first validate the
challenges of using LLMs as TS generators and directly optimising them. Then, we discuss the
hierarchical strategy of our multi-agent collaboration framework, which includes two main com-
ponents: the first divides multiple agents into two teams that independently execute tasks, and the
second employs an existing model (Liu et al., 2024a) for testing and providing feedback, enabling
the teams to iterate further on the results.

3.1 IS DIRECT OPTIMIZATION FEASIBLE?

We first explored whether it is feasible to directly use human-readable text descriptions to prompt
LLMs to improve performance. During the experiment, the LLMs still struggles to grasp the over-
all trend of gradual increase, even if we adopt Seasonal-trend decomposition using Loess (STL)
(Cleveland et al., 1990) to further decompose the TS, as shown in Appendix A.1. This is simi-
lar to the findings of Merrill et al. (2024), where LLMs still require additional assistance, such as
chain-of-thought reasoning or input in a format that the model can comprehend, to be effective.

3.2 MULTI-AGENT COLLABORATION SYSTEM FOR ITERATIVE OPTIMISATION

Step 1 Building the Initial Description: As noted in previous work (Merrill et al., 2024), gen-
erating fine-grained text descriptions remains a challenging task due to the limited availability of
extensive data resources. To address this, we take an intermediate step by narrating key information
related to time series in a standardized text format. Starting with a variety of initial queries, we
first identify and collect articles, papers, news, and reports that describe data similar to time series.
While direct search for relevant content is feasible, it is constrained by a maximum of K titles rele-
vant to the query keyword. To overcome this, we aim to gather relevant candidates based on content
similarity. For instance, a simple search for “time series generation” might return its definition,
but a reasoning-enabled agent can plan what types of articles are more likely to contain relevant
content, thereby diversifying the search results. Therefore, we propose a single-agent framework
inspired by ReAct (Yao et al., 2023), which prompts LLMs to generate dynamic reasoning traces for
collecting candidates and actions to interact with external environments (e.g., Google, Wikipedia)
in an interleaved manner (Madaan et al., 2023) (Framework pipeline can be find in Appendix A.2).
The agent analyzes and decomposes the query into sub-questions, using external tools to answer
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Figure 1: The pipeline of the proposed multi-agent collaborative framework consists of three main
stages: (i) Initial Text Generation: Templates are collected and extracted from OpenWeb to gen-
erate an initial text description. (ii) Multi-Agent Execution: Agents collaborate on task planning,
intra-group coordination, and inter-group discussions to generate and refine text descriptions. (iii)
Evaluation: The generated outputs are evaluated using statistical metrics and text quality dimensions,
such as clarity and accuracy.al metrics and text quality dimensions such as clarity and accuracy.

each sub-question iteratively until all are addressed. Afterward, another LLM extracts general time
series templates from the collected corpus. These templates contain descriptions of general trends,
seasonality, and background information. The detailed example can be viewed in Appendix A.3.

Step 2 Evaluating the Input/Revised Text: In this step, our goal is to provide the system with the
ability to evaluate text generations and provide feedback. Since the overall objective is to utilize
text to assist and guide, we define the testing phase as a TS forecasting task with accompanying
text—better text should lead to better TS forcasting performance. Specifically, the input consists
of a TS along with its textual description as conditions, and the goal is to forecast future TS. This
arises from the intuition that historical TS can serve as supplementary contextual information, re-
ducing the complexity of the generation process and providing a constraining effect.This approach
maximizes the evaluation of the text’s impact while minimizing the influence of the time series it-
self. A straightforward approach would be to use existing forecasting models fine-tuned on TS as
the backbone. However, these models generally input and output data in time series format (Zhou
et al., 2023a). Recent work has shown that advanced prompting strategies can leverage the capabil-
ities of large language models (LLMs) for zero-shot TS forecasting (Gruver et al., 2023). Thus, we
employed LSTPrompt as our evaluation backbone, which prompts off-the-shelf LLMs with chain-
of-thought (CoT) reasoning (Wei et al., 2022), enabling the integration of text as an additional input
modality (Liu et al., 2024a). The key to our refined framework lies in the definition of the evaluation
dimension, which directly influences the agent’s ability to correct text-time series pair errors and
provide high-quality feedback. On one hand, we define evaluation criteria that align with the modal
characteristics of both text and TS, allowing the agent to consider both simultaneously in order to
correct the data. On the other hand, we also allow the agent to propose more suitable evaluation
metrics. For the detailed initial evaluation criteria and definitions, refer to Appendix A.4.

Step 3 Iteratively Refining the Text Description: Initial descriptions may be coarse or contain
errors. To generate text that is optimized for LLM processing while remaining suitable for human
understanding, we propose a multi-agent collaboration system that simulates the iterative refinement
process of a team of human prompt engineers, leveraging the demonstrated capability of LLMs to
improve their own outputs (Zhang et al., 2024). As illustrated in Figure 1, the system operates
through three stages: Stage 1 Task Planning (assigning tasks and monitoring progress), Stage 3
Inter-group Discussion (independent teams iteratively refining outputs), and inter-team discussion
(collaborative consensus building). Refined outputs are validated and incorporated into a formal
dataset, while templates are added to a general library for future use. More Detail about system
structure, output and sample example can be find at Appendix A.5, Appendix A.6 and Appendix A.7.
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Figure 2: Overview of the proposed framework BRIDGE. The input text is processed into word
embeddings and, along with the corresponding time series, is fed into an assignment module to
orthogonalize with semantic prototypes. This is then used as a condition for the diffusion model.
When no text is provided, the model can also function as an unconditional diffusion model.

4 DIFFUSION-BASED TEXT ASSIST-TIME SERIES GENERATION MODEL

In this section, we describe our framework for TG2 in detail. As can be seen from Figure 2, the
proposed framework first converts and fuses different modality inputs into embeddings and then
assigns them with the corresponding semantic prototypes. Then, a diffusion model is conditioned
on the semantic prototypes and generate TS samples using few Text-TS pairs as demonstrations.

4.1 PROBLEM FORMULATION

Consider training time series datasets Ds gathered from a specific data source s ∈ S. Given the
dataset D = {Xi

1:τ}Ni=1 of N samples of time-series, covering a period of τ time steps, the goal of
TSG is to learn a model distribution pθ(X) that approximates the data distribution qD(X). In this
work, we aim to enable few-shot learning in cross-domain TSG, analogous to NLP where new data
is generated based on task descriptions and examples, even in an unseen domain.

Definition 1 (Text-Guided Time Series Generation (TG2)). Let Xs represent an observation from
domain s, which may originate from the training sets S or from an unseen domain. Given its corre-
sponding text description Us, our objective is to learn the conditional distribution pθ(X|Xs, Us) to
approximate the true data distribution qDs

(X), without providing a domain label s.

4.2 SEMANTIC PROTOTYPING

During model training, the data utilized covers multiple domains, necessitating the model to pos-
sess robust generalization capabilities to learn the distinct distribution characteristics of different
domains. However, during inference, domain labels are not provided; instead, only sample data and
its descriptions are available. Consequently, the model must infer the potential domain to which
the sample data belongs—if it aligns with any domains encountered during training—or deduce the
characteristics of the domain if it is novel. This highlights the need for models capable of effectively
analyzing and generalizing across diverse data distributions. To tackle this issue, we propose using
semantic prototypes to encode knowledge from different perspectives and employ adaptive proto-
type allocation to associate features with time series, referred to as Bases (Ni et al., 2023). Bases
represent a small set of fundamental features extracted from time series data. Each basis encap-
sulates certain core attributes of time series. While each observed sequence may exhibit different
realisations of these attributes, the bases should come from the same pool, meaning that every time
series in the dataset can be reconstructed by weighting these basis. Thus, we can utilize these bases
as common knowledge to bridge across domains. We define a set of latent arrays as prototype
P ∈ Rnp×d to represent domain-agnostic time-series commonsense. The prototypes P are initially
set with random orthogonal vectors and then fixed.
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4.3 SEMANTIC PROTOTYPE ASSIGNMENT

Although the same set of prototypes is used across different instances, the degree to which each
prototype explains different instances varies. To address this, we assign prototypes to each time
series and text description pair, which serves as a condition for the generation model. For each input
sequence x (comprising both the time series and text embeddings), a weight vector is generated,
the dimension of which corresponds to the number of prototypes. This is achieved via a feature
extractor ϕ. Each element of the vector ϕ(x)i reflects the contribution of each prototype unit pi in
the prototype set P , and these weights modify the attention mechanism used during generation. As
a result, the model is conditioned on the assigned weighted prototypes. The weights are applied
through an attention mask m, which operates on the attention weights for prototypes. To ensure
sparsity, we discard prototype units that are assigned with negative weights by setting their attention
weights to zero. Formally, the prototype assignments are transformed into attention mask m as
follows:

m = ϕ(x0, t0)− Iϕ(x0,t0)≤0 · ∞ (1)

where ϕ(x, t) ∈ RN×d is the output from the feature extraction layer that processes both time series
and text embeddings. Iϕ(x,t)≤0 is an indicator function that zeroes out negative weights, ensuring
that only retains non-negative values.

4.4 SEMANTIC PROTOTYPE ALIGNMENT

To condition the denoising diffusion process, we adapt the denoising objective using c as a condition,
influencing the model’s intermediate layers through cross-attention. This ensures that the generated
time series aligns with the specified conditional instruction. To achieve this, we aim to align the
condition and semantic prototypes during the training phase. A set number of query embeddings
are allocated to both the text and time series as input. These queries interact with each semantic
prototype through cross-attention layers (inserted every other transformer block z). We initialise the
weights of the cross-attention layers randomly and update them during training. Specifically, we
apply cross-attention to the feature representations using the following equations:

Q = WQ · cz, K = WK ·P, V = WV ·P (2)

where

z = FF
(

softmax
(
Q(K)T√

d
+m

)
· V

)
(3)

Here, z ∈ RN×d denotes the output from the attention block. WQ,WK ,WV ∈ Rd×d are learn-
able projection matrices applied on the sequence dimension. The attention output zfinal is passed to
another feedforward network to produce the final output ϵ̂ = FF(zfinal).

4.5 DIFFUSION BASED TG2 MODEL

As shown in Figure 2, instead of training separate models for each dataset, we propose a unified
training approach that leverages data from multiple domains simultaneously. While each dataset
may represent only a small fraction of the overall data distribution, this strategy allows the model
to capture a broader range of patterns by sharing information across domains. During generation,
both the time series and text data are fed into the model as joint embeddings, where we use an MLP
to project the text embeddings from the LLM into the same dimensional space as the time series
embeddings. The projected text is then prepended to the input embeddings, functioning as soft
prompts that condition the diffusion model based on the contextual information extracted from the
text. By constructing the conditioning input in this manner, the model generates samples that adhere
to the selected domain while avoiding being constrained by the general temporal patterns exhibited
in the selected samples. When the number of expected generated samples exceeds larger than the
number of input sample, we employ a strategy of repeatedly generating with each assignment in
selected samples until the number of expected samples is satisfied.

5 EXPERIMENT SETTING

Broadly speaking, our aim is to investigate the feasibility using text to guide TS generation. Specif-
ically, we ask: (i) What kinds of strategies are more efficient for the proposed multi-agent system?

6
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(ii) What types of text is helpful to generate time series? (iii) Does the proposed BRIDGE achieve
competitive performance in TSG compared to SOTA TSG models? (iv) Can synthetic data be used
to help improve the performance of TS task? (v) What is the role of text? Is it helpful? (vi) What is
the impact of different configurations of prototypes? To answer questions (i) and (ii), we conducted
experiments on SOTA models that allow text input. For questions (iii) and (iv), we evaluated the
generation quality on the same dataset settings. Finally, For questions (v) and (vi), we performed
ablation experiments.

Baseline Introduction We compare to SOTA TS methods for both TS generation and forecast-
ing tasks. For generation, we explore the performance of BRIDGE by comparing with condi-
tional (TimeVQVAE, Lee et al. 2023) and unconditional approaches (TimegGAN, Yoon et al. 2019;
GT-GAN, Jeon et al. 2022; TimeVAE, Desai et al. 2021, DDPM (Ho et al., 2020) ). For forecast-
ing, our goal is to establish the realism of synthetic data. Here, we compare the performance of
Time-LLM (Jin et al., 2023), LLM4TS (Chang et al., 2023) and TEMPO (Cao et al., 2024), GPT4TS
(Zhou et al., 2023a). Detailed descriptions can be found in Appendix C.2. More details about
Experiment Setup and Implementation can be found at Appendix D and Appendix E.

Datasets We evaluate the effectiveness of BRIDGE on 12 uni-variate datasets including Electricity,
Solar, Wind, Traffic, Taxi, Pedestrian, Air, Temperature, Rain, NN5, Fred-MD, Exchange. These
datasets have been widely used as benchmark datasets for TS generation tasks. We use ILI and M4
(Makridakis et al., 2018) datasets for forecasting task. Details of these datasets are in Appendix F.2.

Evaluation Metrics For time series generation, we measure Marginal distribution difference (MDD)
and Kullback-Leibler divergence (K-L) to quantify the distribution difference between real and syn-
thetic data. The detail are reported in Appendix G Following established evaluation protocols (Wu
et al., 2023), we measure the Mean Square Error (MSE) and Mean Absolute Error (MAE) for long-
term forecasting. For short-term forecasting on the M4 benchmark, we adopt the Symmetric Mean
Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error (MASE), and Overall Weighted
Average (OWA) as evaluation metrics (Oreshkin et al., 2020).

6 RESULTS AND ANALYSIS

6.1 LLM-BASED AGENT STRATEGIES ANALYSIS

Table 1: The impact of different strategies of agent
system. The ablations experiment on zero-short
setting (MAE reported).

Policy Airpassenger Sunspots

LLMTime LSTPrompt LLMTime LSTPrompt

Multi 40.94 12.39 48.64 42.37
Single (Micro) 44.27 14.22 56.80 45.70
Single (Macro) 42.57 13.83 54.51 45.01

We first verified what strategy is most use-
ful. Macro refers to a single team executing
high-level information adjustments, while Mi-
cro focuses on details. Multiple teams indicate
collaboration between two teams to complete
the task. Overall, collaboration among mul-
tiple teams outperforms any single-team strat-
egy, indicating that combining different strate-
gies leads to more comprehensive and appro-
priate textual outputs. From a strategic perspec-
tive, the macro single-team approach performs better than the micro single-team approach, suggest-
ing that overly detailed textual descriptions are still challenging to utilize effectively at this stage.
Both teams chose to include statistical information, aligning with previous work that these factors
most intuitively provide valuable insights, detail example can be find in Appendix A.7.

6.2 WHAT KIND OF TEXT IS USEFUL?

Conciseness leads to better performance: Table 2 shows that concise text inputs outperform
overly detailed ones, which can mislead the model. This is particularly evident in the case of
“w/o instance context”, where the MAE improves by 1.6 (compared to “Initial text”) on the Air-
Passenger dataset, indicating that generating text that fully aligns with human preferences re-
mains a challenging task. Notably, when it comes to longer sequence length, the context pro-
vides more useful information (48.64 vs 59.91 on Sunspots). Clearly specifying the length
of the prediction/generation can make the model’s performance more stable. This can be
seen from the performance of “w/o statistics”. After providing a clear sequence length and sta-
tistical values, the model’s performance improves. Background information helps the model.
Similar to the findings of other works (Jin et al., 2023; Merrill et al., 2024), backround infor-
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mation can significantly improve the model’s performance. This is likely because retrieving the
pre-trained knowledge from the LLM’s can offer additional contextual information as support.

Variant AirPassenger Sunspots

LLMTime LSTPrompt LLMTime LSTPrompt

Initial text 49.36 15.12 59.88 49.71
Revised text 40.94 12.39 48.64 42.37
w/o Instance Context 41.96 13.54 54.33 44.23
w/o Background 44.63 14.77 56.81 46.07
w/o Statistical Context 44.01 13.41 54.24 47.12
w/o Pattern 44.36 14.52 55.16 46.84
w/o Pattern+Statistic 44.30 14.27 56.89 45.65

Baseline 45.75 15.00 59.91 47.59

Table 2: Ablation study for zero-shot time series fore-
casting (MAE reported).

Direct pattern descriptions are more ef-
fective than detailed trend descriptions.
As mentioned in Section 3.1, when attempt-
ing to decompose the TS into seasonal,
trend, and residual components, the model’s
performance did not show significant im-
provement. After multiple iterations, the
most effective method was to provide the
overall upward/downward trends and ex-
plicitly identify the top k extreme points.

6.3 TIME SERIES GENERATION QUALITY ASSESSMENT

Table 3: Generation result on various univarite datasets. Marginal distribution distance scores
(MDD) and K-L divergence (K-L) are reported. A lower value indicates better performance. Best
results are highlighted in Red and the second best results are Blue.

Dataset Bridge Bridge w/o Text TimeVQVAE TimeGAN GT-GAN TimeVAE DDPM

M
ar

gi
na

lD
is

tr
ib

ut
io

n
D

is
ta

nc
e

Electricity 0.206± 0.050 0.252± 0.047 2.763± 0.088 2.443± 0.765 2.026± 0.280 3.306± 0.044 1.045± 0.385
Solar 375.533± 10.110 375.908± 10.230 466.174± 0.145 460.810± 14.078 476.196± 17.041 365.906± 6.365 379.256± 0.100
Wind 0.365± 0.062 0.435± 0.076 0.777± 0.028 1.115± 0.159 0.706± 0.106 0.943± 0.008 0.620± 0.140
Traffic 1.168± 0.020 1.209± 0.011 1.170± 0.028 1.733± 0.137 1.311± 0.032 0.984± 0.012 1.505± 0.058
Taxi 0.591± 0.051 0.812± 0.040 0.534± 0.032 1.278± 0.168 1.118± 0.157 0.697± 0.007 1.214± 0.186
Pedestrian 1.240± 0.047 1.075± 0.045 1.625± 0.060 1.574± 0.290 1.559± 0.117 0.777± 0.012 1.640± 0.130
Air 0.633± 0.045 1.105± 0.115 0.338± 0.012 2.089± 0.618 2.828± 0.172 1.369± 0.040 1.481± 0.057
Temperature 0.552± 0.025 0.618± 0.029 0.943± 0.035 1.164± 0.110 1.165± 0.072 2.044± 0.024 0.809± 0.147
Rain 9.554± 0.030 9.890± 0.055 9.243± 0.122 10.937± 4.039 6.473± 1.207 9.134± 0.477 9.812± 0.566
NN5 1.340± 0.032 1.891± 0.040 1.424± 0.043 2.758± 0.142 2.121± 0.094 2.871± 0.045 1.498± 0.245
Fred-MD 0.388± 0.082 0.614± 0.014 2.932± 0.133 4.028± 0.130 4.026± 0.087 2.902± 0.215 1.127± 0.403
Exchange 0.392± 0.048 0.489± 0.033 0.993± 0.058 1.553± 0.122 1.355± 0.072 1.331± 0.042 0.631± 0.584

K
-L

D
iv

er
ge

nc
e

Electricity 0.006± 0.003 0.008± 0.002 0.185± 0.018 0.395± 0.121 0.415± 0.040 0.580± 0.005 0.014± 0.002
Solar 0.032± 0.004 0.046± 0.002 0.726± 0.043 0.889± 0.288 0.102± 0.045 0.201± 0.008 0.291± 0.069
Wind 0.112± 0.032 0.144± 0.036 0.493± 0.081 4.528± 1.743 0.511± 0.129 0.553± 0.014 0.412± 0.144
Traffic 0.022± 0.006 0.055± 0.005 0.145± 0.015 2.134± 0.952 1.108± 0.171 0.212± 0.006 0.255± 0.154
Taxi 0.083± 0.016 0.192± 0.013 0.100± 0.014 1.160± 0.651 0.663± 0.127 0.120± 0.005 0.348± 0.147
Pedestrian 0.072± 0.007 0.040± 0.004 0.275± 0.021 0.881± 0.436 0.347± 0.085 0.052± 0.010 0.289± 0.164
Air 0.032± 0.012 0.106± 0.010 0.017± 0.004 0.588± 0.369 0.506± 0.091 0.176± 0.016 0.213± 0.085
Temperature 0.884± 0.022 0.085± 0.015 0.980± 0.190 8.775± 2.511 2.177± 0.323 1.910± 0.076 0.511± 0.129
Rain 0.013± 0.003 0.014± 0.002 0.008± 0.002 0.383± 0.089 0.462± 0.056 0.175± 0.011 0.043± 0.003
NN5 0.090± 0.011 0.146± 0.009 0.603± 0.107 4.054± 1.592 1.372± 0.180 1.284± 0.058 0.473± 0.135
Fred-MD 0.072± 0.043 0.118± 0.051 0.712± 0.054 5.371± 1.455 3.509± 0.299 0.376± 0.025 0.304± 0.079
Exchange 0.240± 0.112 0.352± 0.120 1.984± 0.836 4.376± 0.664 1.583± 0.932 2.011± 0.433 0.455± 0.268

As shown in Table 3, BRIDGE consistently outperforms existing baselines across a variety of
datasets. In terms of MDD, BRIDGE (w/o Text) ranks best on all but three datasets (i.e. pedes-
trian, where it ranks second and rain, traffic). For instance, on the Electricity dataset, BRIDGE
attains an MDD of 0.206, substantially lower than the second-best score model. Similarly, for the
Wind dataset, BRIDGE’s MDD of 0.365 significantly outperforms the second-best score of 0.435.
The KL divergence results further underscore BRIDGE’s capabilities, as it achieves the lowest K-L
divergence on all the dataset, where only ranking second on pedestrian and rain dataset. Notably,
for the Electricity dataset, BRIDGE’s K-L divergence of 0.006 is markedly better than the 0.008
achieved by BRIDGE without text conditioning, and far superior to other models like TimeVQVAE
(0.203) and TimeGAN (0.507) Interestingly, BRIDGE without text conditioning often achieves the
second-best performance, suggesting that the core architecture of BRIDGE is robust even without
additional textual information. For example, on the Pedestrian dataset, BRIDGE without text yields
the best K-L divergence of 0.040, closely followed by TimeVAE at 0.052. It is worth noting that the
proposed method significantly outperforms the DDPM. This indicates that, regardless of whether
text is provided as additional input information, the proposed prototype mechanism can provide
cross-domain contextual information to assist in generating target domain data. Furthermore, tex-
tual information in the form of word embeddings enhances this contextual information ( BRIDGE vs.
BRIDGE (w/o Text)), enabling the generation of more accurate target domain data. We also explored
the impact of pre-training knowledge from LLMs. The results show that the larger models have a
slight change in performance, but it is not significant, indicating that the pre-training knowledge has
a minor influence on performance. Detailed results can be found in the Appendix H.
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Table 4 shows the quality of generated data for the purposes of training models for downstream
tasks. We generated synthetic data on two additional datasets to assist existing SOTA models in TS
forecasting. All models were trained either using only real data or synthetic data and then tested
on real test sets. The results indicate that training with only synthetic data can achieve comparable
performance to real data across all models, as performance differences between real and synthetic
data are less visible than differences in performance between architectures. This suggests that the
generated data is sufficiently realistic, potentially allowing to share synthesised surrogates of other-
wise sensitive data. For comparison, we also employed KernelSynth (Ansari et al., 2024) methods.
Both methods effectively provided valuable synthetic data (compared to completely random data),
but our proposed approach produced data that more closely resembles real data. This underscores
its potential for generating meaningful synthetic data across domains.

Table 4: Comparison of MSE and MAE across various methods on time series forecasting. The
results are for four different forecasting horizons: H ∈ {24, 36, 48, 60} for ILI and H ∈ {6, 48} for
M4. Average results are reported. Full details in Appendix I.

Dataset Random LLM4TS TEMPO Time-LLM GPT4TS
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ILI
Synthetic

8.12 2.14
1.98 0.89 1.21 1.02 2.20 1.44 2.19 1.02

Real 1.86 0.86 0.96 0.82 2.00 1.20 1.90 0.90
KernelSynth 4.35 1.50 1.64 1.07 − − 3.80 1.42

SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA

M4
Synthetic

24.603 3.895 1.925
12.82 1.92 0.97 12.10 1.66 0.88 12.78 3.06 1.24 12.82 1.91 0.97

Real 12.08 1.67 0.89 11.88 1.61 0.86 12.33 2.87 0.89 12.36 1.77 0.92
KernelSynth 13.95 1.92 1.02 12.30 1.68 0.89 - - - 14.12 1.92 1.02

In order to verify that the semantic prototypes aid generalisation in the proposed model, we con-
ducted few-shot learning on an unseen stock dataset. The models used were all trained on the mixed
dataset. Table 5 shows that our model demonstrates robust few-shot capability, obtaining the best
general MDD and K-L scores compared to the baselines. Additionally, more examples can further
improve performance. This indicates that the proposed model can recall more accurate domain and
pattern information from the learned semantic prototypes to assist in TSG.

Methods MDD K-L

5-shots 10-shots 5-shots 10-shots

St
oc

k

TimeVQVAE 3.502 3.514 2.311 4.685
TimeGAN 3.834 3.765 14.347 13.823
GT-GAN 3.653 3.474 10.971 8.855
TimeVAE 3.738 3.338 6.048 4.479
Bridge 3.421 3.107 2.349 2.827

Table 5: Few-shot Performance of Unseen
Stock dataset. We compare the proposed
methods and baseline on 5,10-shots. Best re-
sults are highlighted in bold face.

Prototypes 4 8 16 4 8 16

M
ar

gi
na

lD
is

tr
ib

ut
io

n
D

is
ta

nc
e

Electricity 0.460 0.232 0.173

K
-L

D
iv

er
ge

nc
e

0.006 0.005 0.005
Solar 397.136 378.011 375.530 0.102 0.042 0.034
Wind 0.655 0.387 0.347 0.075 0.099 0.086
Traffic 1.343 1.203 1.167 0.034 0.031 0.020
Taxi 0.848 0.647 0.588 0.104 0.072 0.069
Pedestrian 1.548 1.311 1.238 0.088 0.072 0.067
Air 0.879 0.742 0.637 0.039 0.034 0.028
Temperature 0.714 0.583 0.550 0.949 0.907 0.891
Rain 10.737 10.001 9.516 0.026 0.014 0.010
NN5 1.950 1.432 1.352 0.288 0.146 0.088
Fred-MD 0.273 0.254 0.387 0.022 0.018 0.030
Exchange 0.416 0.398 0.394 0.141 0.112 0.132

Table 6: Ablation experiment on the impact
of the number of prototypes. We experiment
with the number of 4, 8, 16 separately.

6.4 ABLATION EXPERIMENT ON THE IMPACT OF PROTOTYPES AND TEXT

We further conducted ablation experiments. A s shown in Table 6, the number of prototypes signif-
icantly improves performance, indicating that the more prototypes there are, the more information
they contain, which greatly aids the generation process. A representative generated sample can be
seen in Figure 3. In general, conditional generation can significantly improve the accuracy and trend
of numerical distributions. As shown in subfigure (2), without conditional control, the range of gen-
erated time series data is twice that of normal, while under conditions it is similar to the input. The
performance of subfigure (1) is exactly the opposite. The value range of unconditional generation is
greatly reduced in the final stage, and the gap with the input is obvious. In addition, unconditional
generation also shows flaws in the trend in subgraph (2), and its fluctuation amplitude becomes
significantly larger after 150 steps.

Figure 4 shows 16 semantic prototypes used in our text-to-time series generation model. Each pro-
totype represents a distinct pattern in time series data, enabling the generation of diverse, domain-
specific series. For example, prototypes {0,2,5} capture cyclical patterns useful for seasonal trends.
Prototypes {6,7,13} represent trend patterns, including gradual changes and sharp transitions. Pro-
totypes {1,3,4} show high-frequency fluctuations, representing volatility. By combining these pro-
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Figure 3: Visualisation of generation
results from two different settings,
where ’input’ refers to the input data,
’unconditional’ represents the result
without text conditions, and ’condi-
tional’ refers to the generated result
with text conditions.

Figure 4: Visualization of semantic prototypes.
Each prototype represents a different pattern or
characteristic commonly found in time series data.

totypes, the model can generate rich, domain-specific time series data through translate text into time
series data with specific semantic concepts. Figure 5 shows the distribution of prototypes across var-
ious domains. Some prototypes, like Prototype 3 in ”kddcup” and ”electricity,” are widely relevant,
while others, like Prototype 13 in ”traffic,” are domain-specific. The sparsity of the heatmaps shows
that not all prototypes are equally important within a domain. For example, ”rain” primarily uses
prototypes {3,4,8}. This demonstrates the flexibility of the prototype-based approach, capturing
both general and domain-specific patterns. Example generated data is shown in Appendix J.

Figure 5: Prototype distribution across domains: Each heatmap shows prototype indices (x-axis,
0–15) and their frequency or importance (color intensity) in a specific domain

7 CONCLUSION

In this work, we explored the potential of using text to guide time series generation (TSG). We pro-
posed a multi-agent system for optimizing time series textual descriptions, as well as a TSG model
that incorporates text. Experiments demonstrate that concise text enhances TSG performance, with
our model outperforming baselines, particularly in few-shot learning, thereby demonstrating strong
generalization capabilities. Additionally, the results show that the designed semantic prototypes ef-
fectively utilize domain information. Our findings lay the groundwork for further advancing fully
human-preferred text-based generation while also highlighting the challenges of this task.
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Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson,
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A TEXT PREPARATION

A.1 USING LLM DIRECTLY FOR TIME SERIES FORECASTING

Directly employed In-context learning (ICL) to activate LLMs for text generation is also considered.
In this setup, the time series first adopts Seasonal-Trend decomposition using Loess (STL) (Cleve-
land et al., 1990), which is a robust method to decompose time series into long-term trend, seasonal,
and residual components. Then, descriptions are generated separately for the initial, intermediate,
final, and overall trends. It is important to note that this textual description is based on periodic-
ity rather than time, as the time series is more nuanced. Descriptions segmented by time showed
erroneous outputs in experiments, particularly in the form of regular fluctuations within specific in-
tervals. For detailed prompt design consult. Figure 6 shown a example of using GPT4o directly
generate time series with text and initial time series, result in stable fluctuation in a narrow range.

Figure 6: GPT4 directly output with text and time series as input.

A.2 PIPELINE FOR COLLECT THE TEXT CANDIDATE

Figure 7 shows how the single agent framework is proposed how to collect templates and build an
initial text description.

Step 1: Single Agent Text Collection Step 2: Ts-to-Text Generation Step 3: Self-refine

Best Text DescriptionText-to-Ts
Generation

Evaluation Feedback Refine

Iterate

Target Time Series

 Query

Reasoning

Tools

Web

Action

Observation

Agent Framework N Round

Initial Text Description

LLM LLM
Extract Template Few-shot Example LLM LLM LLM LLM

Figure 7: The pipeline of building text to time series dataset. The propsoed framework including
three steps: (i) Leverage the ReAct to inspire agent collect human-craft text about time series de-
scription. (ii) Generate text description from given target time series dataset. (iii) iteratively refine
the text description to fit the target time series.

A.3 TEMPLATE BANK EXAMPLE

The time series templates extracted from the collected corpus typically contain descriptions of key
patterns such as trends, seasonalities, and changes over time. For example, a typical template could
be structured as:
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“Overall, {entity} {describe general trend}. At the beginning, {detail initial}. As time pro-
gressed, {change description}, culminating in {end description} by {end time}”.

Additionally, the templates may include other relevant information, such as statistical metrics (e.g.,
minimum, maximum, standard deviation), dataset information, degree words (e.g., dramatically,
slightly) that describe the intensity of changes, and the time series length.”

A.4 EVALUATION DIMENSIONS

In this section, we detail the initial evaluation criteria and definitions used to assess the generated
text and its impact on TS forecasting. These criteria are designed to align with the modal character-
istics of both text and time series, enabling the agent to evaluate and correct the input-output pairs
effectively. We consider both text and TS metrics. Specifically, we consider following dimensions
for text:

• Accuracy of trend description: The description accurately identifies the steady increase
in the time series.

• Mention of seasonality: The description correctly notes the absence of seasonality in the
data.

• Completeness of information: The description covers the main aspects of the time series
but could mention the exact rate of increase.

• Clarity of description: The description is clear and easy to understand.

we consider following for time series: Specifically, we consider Mean Squared Error (MSE) (Hur-
vich, 1988), Kolmogorov-Smirnov Test (K-S Test) (Berger & Zhou, 2014) and Wasserstein Dis-
tance (WD) (Panaretos & Zemel, 2019) for measuring the difference between the generated and
target time series, and building a 5-point Likert scale for evaluate the text quality with 5 dimension
(i.e. Accuracy of trend description; Mention of seasonality; Reference to external factors; Clarity of
description; Completeness of information).

A.5 MULTI-AGENT COLLABORATION FRAMEWORK DETAILS

A.5.1 FRAMEWORK WORKFLOW

We propose a structured, multi-agent collaboration framework designed to iteratively optimize text
generation through systematic refinement. While the system is capable of operating with a single
team employing distinct strategies, our experimental results demonstrate that employing two inde-
pendent teams yields superior outcomes in terms of both quality and diversity of generated outputs.
As can be seen from Figure 8, the framework comprises three primary stages:

In Stage 1: Task Planning, a manager agent assumes responsibility for overseeing the workflow.
This agent coordinates all subsequent activities by distributing tasks and results from prior iterations
to ensure seamless progress and alignment among team members. The manager also defines the ob-
jectives for the teams, thereby establishing a structured foundation for collaboration. Stage 2: Intra-
group Collaboration constitutes the core of the system, wherein two independent teams of agents
work concurrently to refine the given text. Each team is composed of four roles: a planner, a scien-
tist, an engineer, and an observer. The planner serves as the team leader, formulating strategies and
supervising operations. The scientist analyzes the input data and formulates detailed optimization
plans. The engineer executes these plans, generating improved text outputs. The observer critically
evaluates the plans and outputs, raising questions to identify shortcomings and potential improve-
ments. Teams operate in iterative cycles, guided by the observer’s critiques. This self-refining loop
continues until the observer ceases to raise objections or a predefined maximum number of iterations
is reached. Through this iterative process, each team independently produces a refined output. In
Stage 3: Inter-group Discussion, the leaders of the two teams engage in a structured dialogue moder-
ated by the manager. This stage facilitates the integration of insights from both teams, encouraging
comparative evaluation and collaborative refinement of their outputs. The discussion continues until
a consensus is reached, resulting in a unified solution that incorporates the strengths of both teams.

The finalized output is then subjected to Post-Processing. This phase includes a validation step,
where the text is evaluated against a predefined model to ensure its quality and adherence to target
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Initial/Revised Text

Manager

Planner

Scientist

Scientist

Planner

Engineer

Engineer

Critic

Critic

LLM

[112,118,132,129,121,135,...]

Time Series

Background:<Dataset Description>
Statistics: <Min>, <Max>, <Median>,.<Standard Deviation>
Trend: <Trend description>
Seq_len: <Sequence Length>
...

[148,148 136,119,104,...]
Forecasting

Evaluation Metrics

The metrics result are: 
<MSE>, <MAE>, <Correlati
on>, <Cosine_Similarity>,
<JS_Distance>,<MDD >...

R
efined Text

Edit, add or delete any sec-
tion of the text description to
make the given evaluation
metrics performance better,
... 
Note: 
** You can only modify, enha-
nce or delete the content...
** You can also propose more
objective indicators...
** You can't modify the model,
historical TS and future TS...
...

Step 1 PlanningStep 2 Intra-group CollaborationStep 3 Inter-group Discussion

N

Figure 8: Detail workflow of proposed multi-agent collaborative framework

metrics. Approved outputs are incorporated into a formal dataset, expanding the training resources
available for future tasks. Additionally, any templates developed during the process are added to
a general template library, enabling reusability and continuous improvement in subsequent data
generation efforts.

A.5.2 ROLES AND RESPONSIBILITIES IN MULTI-AGENT SYSTEM

*Manager

• Lead and monitor the entire workflow of the system.
• Distribute tasks, data, and results from previous iterations to team leaders.
• Oversee inter-group discussions and ensure a consensus is reached.
• Approve final outputs and integrate them into the evaluation model for further refinement.

*Team Leaders (Planners)

• Plan and oversee the operations of their respective teams.
• Coordinate between team members to ensure tasks are completed efficiently.
• Represent their teams during inter-group discussions with the manager.
• Consolidate team outputs into a coherent proposal for refinement.

*Scientist

• Analyze the provided content and results.
• Formulate optimization plans to improve the text or dataset.
• Incorporate feedback from other team members, especially the observer, to refine strategies.
• Ensure that outputs align with optimization objectives.

*Engineer
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• Implement the plans formulated by the scientist.
• Generate new text or refine existing content according to the plan.
• Provide iterative updates on progress to the team leader and scientist.
• Ensure that outputs meet the specified quality standards.

*Observer

• Critique the scientist’s optimization plan, pointing out shortcomings or potential improve-
ments.

• Question decisions to ensure robustness and completeness of the solution.
• Act as a quality control mechanism within the team, promoting thorough analysis.
• Signal the end of intra-group iterations when no further issues are identified.

A.5.3 STAGES OF COLLABORATION

Stage 1: Task Planning
Role Focus: Manager

• The manager initiates the workflow and assigns responsibilities to the team leaders.

Stage 2: Intra-group Collaboration
Role Focus: Planner, Scientist, Engineer, and Observer

• Teams execute their tasks, with internal cycles involving:
– The scientist proposing plans.
– The engineer implementing them.
– The observer providing feedback until quality is satisfactory.

Stage 3: Inter-group Discussion
Role Focus: Manager and Team Leaders

• Leaders from each team present their refined outputs to the manager.
• Discussions between leaders and the manager lead to a unified, optimized output.

A.6 EXAMPLE OF INITIAL AND REFINED TEXT

Initial Text: This task focuses on predicting future values of a given time series based on historical
data. The historical data shows periodic spikes in values, followed by declines, indicating a strong
seasonal pattern. Notable fluctuations are observed at time points when values exceed 400, sug-
gesting external influences. The average value of the historical data is approximately 239.95, with
a variance of 8271.86, indicating significant fluctuations around the mean. Future Data Projections
indicate that expected values for the time series range between a minimum of 310 and a maximum
of 622, with a mean of 0.49 and a standard deviation of 92.75, suggesting increased variability
compared to the historical period. The median value is projected to be around 453.34. Anticipated
peaks are likely to occur at steps 5, 15, 25, and so on, while predicted dips are expected at steps 8,
18, 28, and similar intervals. Statistical Summary for the future time series reveals the following
quartiles: the first quartile (Q1) is **, the median is **, and the third quartile (Q3) is **. Periodicity
and Pattern Alignment show consistent high values expected every 10 steps, with auto-correlation
anticipated around these intervals, reflecting the cyclical nature observed in the historical data.

Iteration 1: This dataset provides monthly totals of US airline passengers from 1949 to 1960. The
prediction length is 29 time steps. **Future Data Description:** Future data projections indicate
that expected values for the time series range between a **minimum of 310** and a **maximum
of 622**, with a **mean of approximately 440.31** and a **standard deviation of about 79.52**,
suggesting variability similar to the historical period. The **median value** is projected to be
around **419**. The **first quartile (Q1)** is approximately **390.5**, and the **third quartile
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Algorithm 1 Generate Time Series from Text Input and Time Series Corpus

Require: K time series prompts x, prototype embeddings P
Ensure: Generated time series samples x̂

1: Initialise prototype embeddings P
2: Extract prototype prompts m with D,T
3: Randomly sample noise xN ∼ N (0, I)
4: for n from N to 1 do
5: Predict step noise with ϵ̃n = ϵ̃θ(xn, n, P,m)

6: Denoise xn−1 = xn−
√
1−ᾱnϵ√
αn

7: end for

(Q3)** is approximately **488.5**. Anticipated **peaks** are likely to occur at **steps 5, 15, and
25**, while predicted **dips** are expected at **steps 8, 18, and 28**, reflecting the cyclical pat-
terns observed in the historical data. **Periodicity and pattern alignment** indicate consistent high
values expected every **10 steps**, with **auto-correlation** anticipated around these intervals,
continuing the cyclical nature observed previously.

Iteration 2: Future Data Projections indicate that expected values for the time series range between
a minimum of 0.004 and a maximum of 0.98, with a mean of 0.49 and a standard deviation of 0.29,
suggesting increased variability compared to the historical period. The median value is projected to
be around 0.45. Anticipated peaks are likely to occur at steps 5, 15, 25, and so on, while predicted
dips are expected at steps 8, 18, 28, and similar intervals. Statistical Summary for the future time
series reveals the following quartiles: the first quartile (Q1) is 0.21, the median is 0.45, and the
third quartile (Q3) is 0.70. Periodicity and Pattern Alignment show consistent high values expected
every 10 steps, with auto-correlation anticipated around these intervals, reflecting the cyclical nature
observed in the historical data.

Iteration 3: The air passengers dataset provides monthly totals of US airline passengers from 1949
to 1960. Data Projections indicate that expected values for the time series range between a minimum
of 310 and a maximum of 622, with a mean of 453.34 and a standard deviation of 92.75, suggesting
increased variability compared to the historical period. Anticipated peaks are likely to occur at steps
5, 15, 25, and so on, while predicted dips are expected at steps 8, 18, 28, and similar intervals.

Refined Text: The air passengers dataset provides monthly totals of US airline passengers from
1949 to 1960. The prediction length is 29 time steps. Data Projections indicate that expected values
for the time series range between a minimum of 310 and a maximum of 622, with a mean of 453.34
and a standard deviation of 92.75, suggesting increased variability compared to the historical period.
Anticipated peaks are likely to occur at steps 5, 15, 25, and so on, while predicted dips are expected
at steps 8, 18, 28, and similar intervals.

A.7 EXAMPLE RESULTS OF DIFFERENT STRATEGIES IN THE PROPOSED MULTI-AGENT
SYSTEM.

Table 7,Table 8, Table 9 and Table 10 shows how multi agent system working together and decide
what kind of text should be revised and provided. The agents take turns speaking, and ultimately the
manager makes the decision.

B DIFFUSION-BASED TIME SERIES GENERATION

B.1 ALGORITHM FOR GENERATION

Algorithm 1 shown the diffusion process of generate new sample with text guide.

B.2 THE FORM OF INPUT AND OUTPUT

Input of Diffusion Model including a time series and corresponding text description. The two of
them will be processed by the encoder and LLama respectively, and the obtained embedding will
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Example Output of Collaboration Between Two Teams
Manager
Thank you both for your detailed presentations. Let’s break down the solutions from Team A
and Team B to decide on the best overall solution.
Team A’s Solution:

• Context and Scope: Provides a comprehensive introduction to the purpose and con-
text.

• Detailed Observations: Adds contextual insights on historical data and anomalies.
• Statistical Summaries: Incorporates key statistical measures.
• Domain-Specific Insights: Utilizes domain knowledge for depth.
• Proposed Framework: Implements an iterative feedback loop.

Team B’s Solution:
• Clarity and Specificity: Emphasizes enhancing understanding through clarity and

statistical depth.
• In-depth Statistical Summaries: Provides detailed statistical measures, including

quartiles and auto-correlation.
• Periodic Trends: Highlights specific expected patterns and trends.
• Example Descriptions: Well-structured and detailed historical and future descrip-

tions with statistical insights.
• Overall Metrics and Patterns: Integrated cleanly with example descriptions, improv-

ing the predictive model’s depth.
Key Comparisons and Considerations:

• Introduction and Context:
– Team A adds more contextual background to enhance understanding of the

task.
– Team B focuses on the specifics of the data without much introductory context.

• Statistical Depth:
– Team B goes deeper into statistical measures, including quartiles and auto-

correlation, which may provide a more comprehensive understanding.
– Team A offers core statistical insights but may lack some of the depth seen in

Team B’s approach.
• Clarity and Readability:

– Both teams provide clear and readable descriptions, but Team B’s focus on
eliminating redundancy improves conciseness.

Table 7: The demo output of the multi-agent collaboration framework for iterative text revision.
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Decision
Team A:
Introduces the task well, provides core statistical measures, includes domain-specific insights,
and proposes a valuable iterative improvement framework.

Team B:
Offers more detailed statistical summaries, clear patterns, and a reduction of redundant infor-
mation, improving clarity and potentially enhancing the predictive model’s accuracy.

Final Decision:
Incorporating the strengths of both solutions would be ideal. However, if we must choose
one, Team B’s solution edges slightly ahead due to its detailed statistical depth and the
refined approach to clarifying and specifying trends and patterns. This comprehensive statis-
tical summary can significantly enhance the predictive model’s accuracy, which is critical for
improving predictions.
Does everyone agree with this decision, or are there any additional factors or preferences that
should be considered before finalizing our choice?

Table 8: Summary of the decision-making process

Team A Planner and Team B Planner Discuss

Team A Planner:
Thank you for the thorough comparison. I agree that incorporating elements from both Team
A and Team B would yield the most robust solution. However, since we must choose one,
Team B’s solution appears to offer a deeper statistical analysis which can be extremely bene-
ficial for improving the predictive model’s accuracy.

Decision Recap:

• Context and Clarity:
– Team A’s contextual introduction adds understanding but Team B’s specific

focus on the task at hand makes their text more to the point.
• Statistical Depth:

– Team B’s detailed statistical summaries, including quartiles and auto-
correlation, provide a richer dataset for analysis.

• Readability and Redundancy:
– Team B’s elimination of redundancy and clear structure enhances readability

and makes the information more accessible.
• Iterative Feedback:

– Not explicitly addressed here but likely discussed in greater detail within Team
A’s framework.

Team B Planner:
I appreciate the detailed analysis and the balanced approach to deciding between the two
solutions. Integrating elements from both teams leverages their strengths to create a more
robust and comprehensive plan.

Table 9: Evaluation of Team A and Team B’s solutions.
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Final Implementation Plan Analysis
Consensus Plan:
Adoption of Team B’s Detailed Statistical Approach:

• Use Team B’s detailed statistical summaries, including quartiles and auto-
correlation, to provide a comprehensive understanding.

• Emphasize clarity and specificity to enhance the readability and usefulness of the
descriptions.

Incorporation of Team A’s Context, Iterative Feedback, and Domain Insights:

• Add a brief introduction from Team A’s plan to set the context and purpose.
• Implement Team A’s iterative feedback approach for continuous refinement based

on prediction performance.
• Wherever applicable, integrate domain-specific insights to provide additional depth

and relevance.

Final Implementation Plan List:
Historical Data Analysis:
The historical data analysis focuses on identifying key patterns, trends, and statistical insights.

Periods of High Volatility:
Time steps 1–20 show values fluctuating between [Min: 0.03, Max: 0.99, Avg: 0.55].
Stable Periods:
Time steps 21–40 exhibit a narrower range with values [Min: 0.18, Max: 0.76, Avg: 0.45].

Detailed Trends:

• Significant peaks at time steps: 1, 4, 8, 12, 16.
• Consistent dips at time steps: 30, 50, 70.

Statistical Insights:

• Overall Metrics: Min: 0.001, Max: 0.996, Mean: 0.50, Std Dev: 0.26.
• Quartile Ranges: Q1: Min: 0.01, Max: 0.79, Mean: 0.45.

Table 10: Summary of the Consensus Plan and Final Implementation Steps.
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be fused through a single-layer MLP as conditional input. The output of the diffusion model is a
synthetic time series.

B.3 MODEL ARCHITECTURE

We provide the outline of proposed diffusion model architecture for a single UNet block

Input: 1D Signal Text Input

Time Embed Encoder

TimestepEmbedSequential Text Embedding

ResBlock

Embedding Layers

MLP

Spatial1DTransformer

FeedForward

proj out

C BASELINE MODEL

C.1 TIME SERIES GENERATION MODEL

TimeVQVAE(Lee et al., 2023) is a generative model designed for sequential data. It combines
the strengths of a variational autoencoder (VAE) with vector quantisation to discretise latent space
representations, making it effective for time series data. The model consists of an encoder that
compresses the input data into a discrete latent space and a decoder that reconstructs the time series.
TimeVQVAE is particularly useful for generating realistic time series samples while maintaining
key temporal dependencies. The quantisation step helps in learning discrete representations that can
be reused for efficient time series modelling and generation.

TimegGAN (Yoon et al., 2019) is a variant of the GAN framework specifically tailored for time
series data. It combines both supervised and unsupervised learning approaches, using a generator
to create synthetic time series and a discriminator to differentiate between real and generated data.
Additionally, it integrates an embedding network to capture temporal dependencies and preserve
temporal correlations between generated samples. The model ensures that the generated time series
not only closely mimic the statistical properties of the original data but also maintain the correct
temporal ordering and dynamics. TimegGAN is particularly useful in applications requiring realistic
synthetic data generation, such as forecasting and anomaly detection.

GT-GAN (Jeon et al., 2022) introduces a novel architecture for time series generation by incorporat-
ing both global and local perspectives. The model features two generators: one focuses on capturing
the global trends across the entire time series, while the other focuses on local variations. The two
components work together to ensure that the generated time series exhibit realistic patterns on both
macro and micro levels. GT-GAN uses a two-stream discriminator that evaluates both the global
and local outputs, ensuring high fidelity in the generated data. This model is effective for generating
complex time series where both long-term trends and short-term fluctuations are important.
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TimeVAE (Desai et al., 2021) extends the traditional VAE architecture to model time series data. It
uses an encoder to map time series data into a continuous latent space, from which the decoder re-
constructs the original time series. The model captures uncertainty and variation in the data through
the latent space’s probabilistic structure, making it well-suited for applications where capturing la-
tent factors and generating multiple plausible future scenarios is important. TimeVAE can be applied
to various tasks, such as anomaly detection, forecasting, and data augmentation, by learning com-
plex temporal dependencies and generating realistic time series that adhere to the original data’s
statistical properties.

Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) extend the traditional genera-
tive model framework by utilizing a diffusion process to model data generation. DDPMs begin with
a Gaussian noise and iteratively refine it through a reverse diffusion process, gradually transforming
the noise into a realistic data sample. This process involves a series of denoising steps where the
model learns to remove noise from the data at each step, allowing for high-quality data generation.

C.2 TIME SERIES FORECASTING MODEL

Time-LLM (Jin et al., 2023) is a powerful TS LLM that outperforms specialized forecasting models,
which repurposes LLMs for time series forecasting by reprogramming input data and employing the
Prompt-as-Prefix (PaP) technique for enhanced context alignment.

GPT4TS (Zhou et al., 2023a) takes advantage of pre-trained language and vision models for general
time series analysis. By demonstrating that supervised fine-tuning (SFT) can successfully extend
LLM capabilities to time series tasks, GPT4TS bridges the gap between natural language processing
models and temporal data analysis. The model’s architecture shows the feasibility of applying large
pre-trained models to time series, leading to significant performance improvements in various time
series applications.

LLM4TS (Chang et al., 2023) is an innovative framework that repurposes pre-trained LLMs for
time-series forecasting, employing a two-stage fine-tuning strategy and a two-level aggregation
method to align with and enhance the model’s ability to process multi-scale temporal data, out-
performing state-of-the-art models in both fune-tuing and few-shot scenarios.

TEMPO (Cao et al., 2024) proposed using prompts to adapt to different time series distributions. It
demonstrates superior performance in zero-shot settings across diverse benchmark datasets, show-
casing its potential as a foundational model-building framework for capturing dynamic temporal
phenomena.

D EXPERIMENT SETUP

The time series length T for generation is set to 168 in a form of non-overlap uni-variate sequence
slices for all the datasets. For forecasting, we assessed performance over four different prediction
horizons H ∈ {24, 36, 48, 60} for ILI and H ∈ {6, 48} for M4.

E IMPLEMENTATION DETAIL

We implemented all the model and conduct all experiments on single NVIDIA Tesla H/A100 80GB
GPUs. For LLM used in proposed model is LLama3-8B (Dubey et al., 2024). For generation task,
we keep all model’s sequence length is 168 which is the max length of Pedestrian, Rain,
Temperature datasets. For evaluation of the synthesis data quality task, we keep the sequence
length of 256.

The reported result are all under following training settings. The number of prototypes are set to 16
for all the main evaluations. Models for each sequence length are trained for 50, 000 steps using a
batch size of 128 and a learning rate of 5 ∗ 10−5 with 1, 000 warm-up steps.
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F DATASET ANALYSIS

F.1 DETAILS OF DATASETS

In this section, we provide a detailed overview of the datasets used for model training in this paper:

Electricity: This dataset captures hourly electricity consumption for 321 clients between 2012 and
2014, measured in kilowatts (kW). It was originally sourced from the UCI repository.

Solar: Comprising 137 time series, this dataset records hourly solar power production in the state
of Alabama throughout 2006.

Wind: Wind: This dataset includes a single, extensive daily time series that tracks wind power
production (in megawatts) at 4-second intervals, starting from August 1, 2019. It was obtained from
the Australian Energy Market Operator (AEMO) platform.

Traffic: Covering 15 months of daily data (440 records), this dataset represents the occupancy rate
(ranging from 0 to 1) of various car lanes on the San Francisco Bay Area freeways over time.

Taxi This dataset contains spatio-temporal traffic time series of New York City taxi rides, recorded
every 30 minutes at 1,214 locations during January 2015 and January 2016.

Pedestrian: Featuring hourly pedestrian counts from 66 sensors in Melbourne, this dataset spans
from May 2009 to April 30, 2020, and is regularly updated as new data becomes available.

Air Quality: Used in the KDD Cup 2018 forecasting competition, this dataset includes hourly air
quality measurements from 59 stations in Beijing (35 stations) and London (24 stations) between
January 1, 2017, and March 31, 2018. The data includes various air quality metrics such as PM2.5,
PM10, NO2, CO, O3, and SO2. Missing values were imputed using leading zeros or the Last
Observation Carried Forward (LOCF) method.

Temperature: This dataset consists of 32,072 daily time series with temperature observations and
rain forecasts from 422 weather stations across Australia, collected between May 2, 2015, and April
26, 2017. Missing values were replaced with zeros, and the mean temperature column was extracted
for use.

Rain: Similar to the Temperature dataset, this dataset focuses on rain data extracted from the same
source.

NN5: Used in the NN5 forecasting competition, this dataset contains 111 time series from the
banking sector, with the goal of predicting daily cash withdrawals from ATMs in the UK. Missing
values were replaced by the median of the same weekday across the series.

Fred-MD: This dataset contains 107 monthly time series reflecting various macroeconomic indica-
tors, sourced from the Federal Reserve Bank’s FRED-MD database. The series have been differ-
enced and log-transformed following established practices in the literature.

Exchange: This dataset records daily exchange rates for eight currencies.

Stock: This dataset consists of daily stock prices for the symbol GOOG, which is listed on NAS-
DAQ.

F.2 DATASET STATISTICS

To test the quality of the synthetic data generated by our proposed model, we conducted tests on two
additional datasets. In the experiments, we trained the synthetic data to be the same as the original
data and tested it on the real datasets. The statistics of the datasets are in Table 11:

G EVALUATION METRICS

The calculations of these metrics are as follows:
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Domain Tasks Datasets Dim. Series Length Dataset Size Frequency

Long-Term ILI 7 24, 36, 48, 60 (617, 74, 170) 1 week Illness

Short-term
Forecasting

M4-Yearly 1 6 (23000, 0, 23000) Yearly Demographic
M4-Quarterly 1 8 (24000, 0, 24000) Quarterly Finance
M4-Monthly 1 18 (48000, 0, 48000) Monthly Industry
M4-Weekly 1 13 (359, 0, 359) Weekly Macro
M4-Daily 1 14 (4227, 0, 4227) Daily Micro

M4-Hourly 1 48 (414, 0, 414) Hourly Other

Table 11: Comparison of datasets for long-term and short-term forecasting tasks
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)
,

where s is the periodicity of the time series data, H denotes the number of data points (i.e., prediction
horizon in our cases), and Yh and Ŷh are the h-th ground truth and prediction, where h ∈ {1, . . . ,H}.

For generation, we consider Marginal Distribution Difference (MDD):

MDD(P,Q) =
∑
x∈X

|P (x)−Q(x)|

where P and Q represent the marginal distributions of the real and synthetic data, and X denotes
the set of possible values for the variable being analyzed.

Also Kullback-Leibler divergence (K-L)

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
where P and Q are the two probability distributions being compared, and X represents the set of
possible values.

H THE IMPACT OF LLMS ON THE DIFFUSION MODEL PERFORMANCE

The Table 12 compares the performance of Llama and GPT2 as encoders in our diffusion model
across various time series domains. Both models show similar performance in most domains, with
slight differences in specific cases. For example, Llama performs slightly better in the ”Electricity”
(0.173 vs 0.208) and ”Rain” (0.387 vs 0.427) domains, suggesting a better ability to capture fluc-
tuations in these time series. In contrast, GPT2 outperforms Llama in ”Air” (0.655 vs 0.637) and
”Temperature” (0.612 vs 0.550), indicating its strength in encoding gradual trends. Overall, both
models show strong performance across multiple domains, with only minor variations. These results
highlight that while Llama and GPT2 differ slightly in their handling of specific time series patterns,
both are effective encoders for our diffusion model, capable of capturing both domain-specific and
general temporal features.

I DATA AUGMENTATION RESULTS

For long-term forecasting (Table 13), we find that the LLM4TS trained via the synthetic data pro-
duces relatively low MSE and MAE values, such as ILI-24 Synthesis with an MSE of 1.84 and an
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Model Electricity Solar Wind Traffic Taxi Pedestrian
Llama 0.173 375.530 0.347 1.167 0.588 1.238
GPT2 0.208 375.538 0.356 1.189 0.624 1.143

Air Temperature Rain NN5 Fred-MD Exchange
Llama 0.637 0.550 9.516 1.352 0.387 0.394
GPT2 0.655 0.612 9.833 1.351 0.427 0.458

Table 12: Model performance across different domains. Result measured by MDD

MAE of 0.85, which are competitive with the performance on real-world datasets. In fact, for length
like 24 and 36, LLM4TS consistently performs well, showing competitive results in both MSE and
MAE, even when compared to training on real data. GPT4TS and Time-LLM, on the other hand, ex-
hibit a slight drop in performance when trained on synthetic data, but considerable accepted. In the
short-term forecasting scenario (Table 14), the results show similar trends. For example, in the M4-
Hourly Synthesis, LLM4TS achieves a competitive SMAPE of 33.06 and MASE of 10.252 when
trained on synthetic data, closely matching its performance on real data. This suggests that synthetic
data can effectively simulate real data patterns, making it a viable option for model training when
real-world data is limited or unavailable.

Methods LLM4TS TEMPO Time-LLM GPT4TS

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

ILI-24 KernelSynth 4.36 1.49 1.48 1.02 - - 3.92 1.45
ILI-36 KernelSynth 4.32 1.49 1.37 0.96 - - 3.87 1.43
ILI-48 KernelSynth 4.15 1.48 1.69 1.09 - - 3.77 1.40
ILI-60 KernelSynth 4.35 1.50 2.01 1.22 - - 3.62 1.39

ILI-24 Ours 1.84 0.85 1.00 0.87 2.05 1.29 2.23 0.99
ILI-36 Ours 1.86 0.86 1.22 0.99 2.13 1.34 2.13 0.97
ILI-48 Ours 1.88 0.88 1.34 1.08 2.35 1.60 2.28 1.05
ILI-60 Ours 2.37 0.99 1.49 1.14 2.30 1.55 2.35 1.09

ILI-24 Real 1.78 0.81 0.66 0.63 1.83 1.15 1.99 0.88
ILI-36 Real 1.75 0.82 0.92 0.80 1.90 1.17 1.90 0.90
ILI-48 Real 1.72 0.84 1.33 1.02 2.16 1.26 1.81 0.88
ILI-60 Real 2.20 0.95 0.91 0.80 2.11 1.23 1.87 0.92

Table 13: Comparison of MSE and MAE across various methods on Long-term forecasting. The
results are for four different forecasting horizons: H ∈ {24, 36, 48, 60}. Red values indicate the best
score, and blue values represent the second best.

J PROTOTYPES SAMPLE RESULT

Figure 9 represents the corresponding data visualization of different domains.
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Figure 9: Visualize data in different domains
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Methods Random LLM4TS TEMPO Time-LLM GPT4TS

SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA SMAPE MASE OWA

M4-Hourly KernelSynth - - - 21.662 3.415 1.302 19.768 1.583 0.868 - - - 21.339 2.252 1.050
M4-Daily KernelSynth - - - 3.601 3.975 1.198 3.498 3.877 1.166 - - - 3.700 3.979 1.214
M4-Weekly KernelSynth - - - 10.665 3.667 1.242 10.248 3.447 1.180 - - - 10.799 3.965 1.303
M4-Monthly KernelSynth - - - 14.477 1.077 1.008 13.991 1.066 0.986 - - - 14.695 1.095 1.024
M4-Quarterly KernelSynth - - - 12.063 1.457 1.079 11.784 1.422 1.053 - - - 11.971 1.414 1.059
M4-Yearly KernelSynth - - - 16.619 3.743 0.979 16.051 3.513 0.933 - - - 17.008 3.733 0.990
Average - - - 13.946 1.923 1.017 12.304 1.682 0.892 - - - 14.122 1.915 1.021

M4-Hourly Ours - - - 33.06 10.252 3.039 25.942 7.532 2.278 22.435 4.899 1.726 33.06 10.252 3.039
M4-Daily Ours - - - 4.749 5.391 1.602 3.606 3.997 1.202 3.891 4.012 1.411 4.749 5.391 1.602
M4-Weekly Ours - - - 12.979 5.196 1.644 11.905 3.97 1.365 11.850 3.762 1.355 12.979 5.196 1.644
M4-Monthly Ours - - - 13.157 0.981 0.917 12.975 0.96 0.901 13.877 1.111 1.017 13.157 0.981 0.917
M4-Quarterly Ours - - - 10.608 1.253 0.939 10.318 1.207 0.909 10.877 1.342 1.022 10.608 1.253 0.939
M4-Yearly Ours - - - 15.547 3.72 0.944 13.466 3.036 0.794 13.788 3.255 0.843 15.547 3.72 0.944
Average - - - 12.821 1.916 0.974 12.104 1.663 0.881 12.786 3.063 1.235 12.821 1.916 0.974

M4-Hourly Real 49.163 16.089 4.696 18.356 2.972 1.120 22.847 5.323 1.733 20.323 4.573 1.507 20.642 4.070 1.411
M4-Daily Real 4.97 5.531 1.66 3.224 3.452 1.056 3.052 3.251 0.997 3.376 3.651 1.111 3.205 3.455 1.053
M4-Weekly Real 15.084 5.533 1.819 12.400 4.848 1.550 10.544 3.377 1.183 11.330 3.666 1.278 12.433 4.779 1.539
M4-Monthly Real 22.756 1.959 1.71 12.817 0.947 0.890 12.698 0.934 0.879 13.327 1.023 0.943 12.916 0.958 0.898
M4-Quarterly Real 19.216 2.587 1.816 10.301 1.207 0.908 10.077 1.177 0.887 10.672 1.266 0.946 10.386 1.230 0.920
M4-Yearly Real 37.396 8.755 2.246 13.885 3.240 0.833 13.493 3.052 0.797 13.498 3.013 0.792 14.801 3.633 0.910
Average 24.603 3.895 1.925 12.075 1.665 0.881 11.878 1.604 0.857 12.330 2.865 0.892 12.362 1.771 0.919

Table 14: Time series forecasting results on unseen time series dataset. The forecasting horizons are
in [6, 48] and report value is the average. A lower value indicates better performance. Red: the best,
Blue: the second best.
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