
QCircuitNet: A Large-Scale Hierarchical Dataset for
Quantum Algorithm Design

Anonymous Author(s)
Affiliation
Address
email

Abstract

Quantum computing is an emerging field recognized for the significant speedup it1

offers over classical computing through quantum algorithms. However, designing2

and implementing quantum algorithms pose challenges due to the complex nature3

of quantum mechanics and the necessity for precise control over quantum states.4

To address these challenges, we leverage AI to simplify and enhance the process.5

Despite the significant advancements in AI, there has been a lack of datasets6

specifically tailored for this purpose. In this work, we introduce QCircuitNet, a7

benchmark and test dataset designed to evaluate AI’s capability in designing and8

implementing quantum algorithms in the form of quantum circuit codes. Unlike9

traditional AI code writing, this task is fundamentally different and significantly10

more complicated due to the highly flexible design space and the extreme demands11

for intricate manipulation of qubits. Our key contributions include: 1. The first12

comprehensive, structured universal quantum algorithm dataset. 2. A framework13

which formulates the task of quantum algorithm design for Large Language Models14

(LLMs), providing guidelines for expansion and potential evolution into a training15

dataset. 3. Automatic validation and verification functions, allowing for scalable16

and efficient evaluation methodologies. 4. A fair and stable benchmark that avoids17

data contamination, a particularly critical issue in quantum computing datasets. Our18

work aims to bridge the gap in available resources for AI-driven quantum algorithm19

design, offering a robust and scalable method for evaluating and improving AI20

models in this field. As we expand the dataset to include more algorithms and21

explore novel fine-tuning methods, we hope it will significantly contribute to both22

quantum algorithm design and implementation.23

1 Introduction24

Quantum computing is an emerging field in recent decades, which can attribute to the fact that algo-25

rithms on quantum computers may solve problems significantly faster than their classical counterparts.26

From the perspective of theoretical computer science, the design quantum algorithms have been27

investigated in various research directions - see the survey [Dalzell et al., 2023] and the quantum28

algorithm zoo [Zoo, 2024]. However, the design of quantum algorithms on quantum computers has29

been completed manually by researchers. This process is notably challenging due to highly flexible30

design space and extreme demands for a comprehensive understanding of mathematical tools and31

quantum properties.32

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.

For these reasons, quantum computing is often considered to have high professional barriers. As the33

discipline evolves, we aim to explore more possibilities for algorithm design and implementation34

in the quantum setting. This is aligned with recent advances among "AI for Science", including35

AlphaFold [Jumper et al., 2021], AlphaGeometry [Trinh et al., 2024], etc. Recently, large language36

models (LLMs) has also become crucial among AI for science approaches [Yang et al., 2024, Zhang37

et al., 2024, Yu et al., 2024]. Therefore, we attempt to gear LLMs for quantum algorithm design. As far38

we know, there has not been any dataset for AI in quantum algorithm design. Existing work combining39

quantum computing and AI are mostly targeting at exploiting quantum computing for AI; there are40

some papers that apply AI for quantum computing, but they consider niche problems [Nakayama41

et al., 2023, Schatzki et al., 2021] or limited functions [Tang et al., 2023, Fürrutter et al., 2024], not42

quantum algorithm datasets of general interest. See more discussions in Section 2.43

Key contributions. In this work, we propose QCircuitNet, the first comprehensive, structured44

dataset for quantum algorithm design. Technically, QCircuitNet has the following key contributions:45

• It formulates the task of quantum algorithm design for Large Language Models (LLMs), providing46

guidelines for expansion that may evolve to be a training dataset.47

• It has automatic validation and verification functions, allowing for scalable and efficient evaluation.48

• It provides a fair and stable benchmark that avoids data contamination, a particularly critical issue49

in quantum computing datasets.50

2 Related Work51

To the best of our knowledge, QCircuitNet is the first dataset tailored specifically for quantum52

algorithm design. Previous efforts combining quantum computing with artificial intelligence pri-53

marily fall under the category of Quantum Machine Learning (QML), which aims at leveraging the54

unique properties of quantum systems to enhance machine learning algorithms and achieve potential55

improvements over their classical counterparts [Schuld et al., 2015, Biamonte et al., 2017, Ciliberto56

et al., 2018]. Corresponding datasets often focus on encoding classical data into quantum states,57

which we may call "Quantum for AI". For instance, MNISQ [Placidi et al., 2023] is a dataset of58

quantum circuits representing the original MNIST dataset [LeCun et al., 1998] generated by the59

AQCE algorithm [Shirakawa et al., 2021]. Considering the intrinsic nature of quantum properties,60

another category of datasets focuses on collecting quantum data to demonstrate quantum advantages61

since classical machine learning methods could fail to characterize particular patterns of quantum62

data. For example, Nakayama et al. [2023] created a VQE-generated quantum circuit dataset for63

classification of variational ansatzes and shows the quantum supremacy on this task. NTangled64

[Schatzki et al., 2021] further emphasized on the different types and amounts of entanglement and65

composed quantum states with various multipartite entanglement for classification. While these66

datasets successfully demonstrate the supremacy of quantum computing, they address rather niche67

problems which might not have practical applications.68

There have also been efforts in the direction of "AI for Quantum", which explores the possibility of69

leveraging the huge potential of AI to facilitate the advancement of quantum computing. QDataSet70

[Perrier et al., 2022] collects data from simulations of one- and two-qubit systems and targets training71

classical machine learning algorithms for quantum control, quantum tomography, and noise mitigation.72

LLM4QPE [Tang et al., 2023] is a large language model style paradigm for predicting quantum73

system properties with pre-training and fine-tuning workflows. While the paradigm is interesting,74

the empirical experiments are limited to two downstream tasks: quantum phase classification and75

correlation prediction. Fürrutter et al. [2024] studied the application of diffusion models [Sohl-76

Dickstein et al., 2015, Rombach et al., 2022] to quantum circuit synthesis [Saeedi and Markov, 2013,77

J. et al., 2022]. Although their methodology is appealing, scalability issues must be addressed to78

achieve practical and meaningful unitary compilation.79

The aforementioned works represent meaningful explorations at the intersection of artificial intelli-80

gence and quantum computing. However, none of these datasets or models considers the task which81

2

interests the quantum computing community (from the theoretical side) the most: quantum algorithm82

design. Our work aims to take the first step in bridging this gap. It is worth noting that several83

quantum algorithm benchmarks already exist, such as QASMBench [Li et al., 2023] and VeriQBench84

[Chen et al., 2022]. However, these benchmarks are designed to evaluate the performance of NISQ85

(Noisy Intermediate-Scale Quantum) [Preskill, 2018] machines, rather than for training and evaluating86

AI models. For instance, QASMBench includes a diverse variety of quantum circuits from different87

domains based on the OpenQASM assembly representation [Cross et al., 2022], covering quantum88

circuits with qubit sizes ranging from 2 to 127. However, each algorithm is represented by only 2-389

QASM files at most. While this is sufficient for benchmarking the fidelity of quantum hardware90

and the efficiency of QC compilers, it fails as a dataset for AI in that it does not capture the design91

patterns of each algorithm and ignores the construction of different oracles, which are crucial to92

quantum computing. Similar limitations apply to VeriQBench.93

3 Preliminaries for Quantum Computing94

In this section, we will introduce necessary backgrounds for quantum computing related to this paper.95

Additional preliminaries can also be found in Appendix B. A more detailed introduction to quantum96

computing can be found in the standard textbook by Nielsen and Chuang [2000].97

Quantum states. In classical computing, the basic unit is a bit. In quantum computing, the basic98

unit is a qubit. Mathematically, n (n ∈ N) qubits forms an N -dimensional Hilbert space for N = 2n.99

An n-qubit quantum state |ϕ⟩ can be written as100

|ϕ⟩ =
N−1∑
i=0

αi|i⟩, where
N−1∑
i=0

|αi|2 = 1. (1)

Here |·⟩ represents a column vector, also known as a ket state. The tensor product of two quantum101

states |ϕ1⟩ =
∑N−1

i=0 αi|i⟩ and |ϕ2⟩ =
∑M−1

j=0 βj |j⟩ with M = 2m, m ∈ N is defined as102

|ϕ1⟩ ⊗ |ϕ2⟩ =
N−1∑
i=0

M−1∑
j=0

αiβj |i, j⟩, (2)

where |i, j⟩ is an (n+m)-qubit state with first n qubits being the state |i⟩ and the last m qubits being103

the state |j⟩. When there is no ambiguity, |ϕ1⟩ ⊗ |ϕ2⟩ can be abbreviated as |ϕ1⟩|ϕ2⟩.104

Quantum oracles. To study a Boolean function f : {0, 1}n → {0, 1}m, we need to gain its access.105

Classically, a standard setting is to being able to query the function, in the sense that if we input an106

x ∈ {0, 1}n, we will get the output f(x) ∈ {0, 1}m. In quantum computing, the counterpart is a107

quantum query, which is instantiated by a quantum oracle. Specifically, the function f is encoded as108

an oracle Uf such that for any x ∈ {0, 1}n, z ∈ {0, 1}m,109

Uf |x⟩|z⟩ = |x⟩|z ⊕ f(x)⟩, (3)

where ⊕ is the plus modulo 2. Note that a quantum query to the oracle is stronger than a classical110

query in the sense that the quantum query can be applied to a state in superposition: For an input111

state
∑

i ci|xi⟩|zi⟩ with
∑

i |ci|2 = 1, the output state is
∑

i ci|xi⟩|zi ⊕ f(xi)⟩; measuring this state112

gives xi and zi ⊕ f(xi) with probability |ci|2. A classical query for x can be regarded as the special113

setting with c1 = 1, x1 = x, z1 = 0m, and ci = 0 for all other i.114

Quantum gates. Similar to classical computing that can stem from logic synthesis with AND, OR,115

and NOT, quantum computing is also composed of basic quantum gates. For instance, the Hadamard116

H is the matrix 1√
2

[
1 1
1 −1

]
, satisfying H|0⟩ = 1√

2
(|0⟩ + |1⟩) and H|1⟩ = 1√

2
(|0⟩ − |1⟩). In117

general, an n-qubit quantum gate is a unitary matrix C2n×2n .118

3

4 QCircuitNet Dataset119

4.1 Task Suite120

For the general purpose of quantum algorithm design, we consider two categories of tasks: oracle121

construction and algorithm design. These two tasks are crucial for devising and implementing a122

complete quantum algorithm, with oracle construction serving as the premise for algorithm design.123

4.1.1 Task I: Oracle Construction124

The construction of such an oracle Uf using quantum gates is deeply rooted in the research topic125

of reversible quantum logic synthesis, which remains a challenge for complex Boolean functions.126

In this dataset, we mainly focus on the construction of textbook-level oracles: Bernstein-Vazirani127

Problem [Bernstein and Vazirani, 1993], Deutsch-Jozsa Problem [Deutsch and Jozsa, 1992], Simon’s128

Problem [Simon, 1997], and Grover’s algorithm for unstructured search [Grover, 1996] (including129

constructions of both the oracle and the diffusion operator). We also consider more advanced oracle130

construction tasks which we refer to as "Problem Encoding". For example, one can apply Grover’s131

oracle to solving constraint problems such as SAT and triangle finding [Ambainis, 2004]. The132

intrinsic nature of formulating problem encoding tasks for LLMs slightly differs from quantum logic133

synthesis, and we refer the readers to Appendix A for more detailed discussion.134

4.1.2 Task II: Quantum Algorithm Design135

A general description of a quantum algorithm in natural language could be verbose and vague.136

Considering that quantum circuits stand at the core of designing and implementing a quantum137

algorithm, and that they resemble a special type of "language", we decide to use quantum circuits138

as the main medium for LLMs to generate for algorithm design. There are certain crucial points to139

consider when designing this framework to formulate the task precisely:140

• From the perspective of quantum algorithm design, the oracle is usually provided as a blackbox141

gate since the goal of many algorithms is to determine the property of the function f(x) encoded142

by the oracle Uf . If the model has access to the gate implementation of the oracle, it can directly143

deduce the property from the circuit, failing the purpose of designing a quantum algorithm to144

decode the information. However, for all experiment platforms, a quantum circuit needs to145

be explicitly constructed to compile and run successfully, which means the oracle should be146

provided with exact gate implementation. Most tutorials and benchmarks (especially those based147

on OpenQASM) simply merge the circuit implementation of the oracle and the algorithm as a148

whole for demonstration purposes. In our task of gearing LLMs for quantum algorithm design,149

how to separate the algorithm circuits from oracle implementation to avoid information leakage is150

a critical point to consider.151

• A quantum algorithm constitutes not only the quantum circuit, but also the interpretation of execu-152

tion (typically measurement) results of the quantum circuit. For example, in Simon’s algorithm, the153

measurement results yi are not direct answer s to the problem, but rather satisfies the property of154

s · yi = 0. Linear equations need to be solved to obtain the final answer. In this case, for a complete155

algorithm design, the model should also specify the way to process the execution results to derive156

the answer to the original problem.157

• Quantum circuits for the same algorithm vary with different qubit number n. Although this is trivial158

for theoretical design, it needs to be considered when implementing concrete quantum circuits.159

Beyond quantum algorithm design, we also consider quantum teleportation and quantum key dis-160

tribution, since these protocols are widely used in quantum information. We cover their details in161

Appendix B.162

4.2 Dataset Structure163

The overall structure of QCircuitNet is illustrated as follows (more details are given in Appendix A):164

4

Figure 1: Structure of QCircuitNet. The components of QCircuitNet are presented in the frame on
the top-right. As a showcase, this figure presents the components for Simon’s problem [Simon, 1997],
including its problem description in natural language, post-processing function in python code, circuit
in a .qasm file, and oracle definition in a .inc file.

Design Principles. As discussed in Section 4.1, a critical consideration in formulating the frame-165

work is the dilemma between providing the oracle as a black box for quantum algorithm design and166

the need for its explicit construction to execute the circuit and interpret the results, making the algo-167

rithm design complete. Additionally, model training and reference present challenges, particularly168

for LLMs in generating complex and precise composite gates and evaluating the results efficiently.169

To address these obstacles, we highlight the following construction principles, which are specially170

designed to adapt to these two tasks:171

• For algorithm design tasks, as discussed in Section 4.1.2, we provide the oracle as a black-box gate172

named "Oracle" with the explicit definition in a separate "oracle.inc" library, which is supported by173

the OpenQASM 3.0 grammar. In this way, we make sure that the model can use the oracle without174

accessing its underlying function, which solves the problem of isolating oracle definition from the175

algorithm circuit.176

• For oracle construction tasks, we ask the model to directly output the quantum circuit in QASM177

format. For algorithm design task, we require both a quantum circuit and a post-processing function178

to derive the final answer from circuit execution results. Moreover, we ask the model to explicitly179

set the shots needed to run the circuit itself in order to characterize the query complexity, which is180

critical in the theoretical analysis of algorithms.181

• For available quantum gates, we provide the definition of some important composite gates not182

included in the standard QASM gate library in a "customgates.inc". Hierarchical definition for183

multi-controlled X gate contains 45060 lines for qubit number n = 14 in OpenQASM format,184

which is impossible for AI models to accurately generate at the time. Providing these as a .inc file185

guarantees the correctness of OpenQASM’s grammar while avoiding the generation of complicated186

gates, which is a distraction from the original design task.187

• To verify models’ output automatically without human evaluation, we compose verification func-188

tions to validate the syntax of QASM / Qiskit and the functionality of the implemented circuits189

/ codes. Since comprehensive Logic Equivalence Checking (LEC) might be inefficient for the190

throughput of LLM inference, we perform the verification by directly checking the correctness of191

output with extensive test cases.192

5

Based on theses principles, we proposed the framework of QCircuitNet. Below is a more detailed193

explanation for the 7 components of the dataset:194

1. Problem Description: carefully hand-crafted prompts stating the oracle to be constructed or the195

target problem to be solved in natural language and latex math formulas. If the problem involves196

the usage of a quantum oracle or composite gates beyond the standard gate library, the interfaces197

of the oracle / gate will also be included (input qubits, output qubits, function mechanism).198

2. Generation Code: one general Qiskit [Javadi-Abhari et al., 2024] code to create quantum circuits199

for oracles or algorithms of different settings, such as distinct secret strings or various qubit200

numbers. We choose Qiskit as the main experiment platform because it is a general quantum201

programming software widely used for the complete workflow from creating quantum circuits to202

transpiling, simulation, and execution on real hardware.203

3. Algorithm Circuit: a .qasm file storing the quantum circuit for each specific setting. We choose204

OpenQASM 3.0 [Cross et al., 2022] as the format to store the quantum circuits, because Qiskit,205

as a python library, can only create quantum circuits at runtime instead of explicitly saving the206

circuits at gate level.1207

4. Post-Processing Function: this is for Algorithm Design task only, see Section 4.1.2. The function208

takes a complete quantum circuit as input, uses the Qiskit AerSimulator to execute the circuit,209

and returns the final answer to the original problem according to the simulation results. For state210

preparation problems such as creating a GHZ state of n qubits, this function returns the qubit211

indices of the generated state.212

5. Oracle / Gate Definition: a .inc file to provide definitions of composite gates or oracles. For213

oracle construction tasks, this only includes the definition of composite gates required to build the214

oracle. For algorithm design tasks, we also provide the gate definition of the oracle in this file,215

which successfully delivers the oracle in a black-box way.216

6. Verification Function: a function to evaluate whether the implemented oracle / algorithm217

successfully achieves the desired purpose with grammar validation and test cases verification. The218

function returns -1 if there exist grammar errors, and returns a score between [0, 1] indicating the219

success rate on test cases.2220

7. Dataset Creation Script: the script to create the dataset from scratch in the format suitable for221

fine-tuning / evaluating LLMs. It contains the following functions: 1. generate primitive QASM222

circuits. 2. extract gate definitions and add include instructions to create algorithm circuit, the223

direct output of model. 3. validate and verify the correctness of the data points in the dataset. 4.224

concatenate algorithm circuit with problem description as a json file for the benchmark pipeline.225

This structure of QCircuitNet provides a general framework to formulate quantum algorithm design226

for large language models, with an easy extension to more advanced quantum algorithms.227

5 Experiments228

5.1 Methodology for Benchmarking229

We benchmark the quantum algorithm design capabilities of leading closed-source and open-source230

large language models using QCircuitNet. The workflow of our benchmark is illustrated in Figure 2.231

The total computation cost is approximately equivalent to two days on an A100 GPU.232

1Although currently the Qiskit APIs for importing and dumping OpenQASM 3.0 files are still in experimental
stage, we choose to adopt version 3.0 over 2.0 in that it supports parameterized circuits, which allows for
extending the framework to variational quantum algorithms [Cerezo et al., 2021] by saving parameterized
varational ansatzes.

2The verification function explicitly integrates the oracle / gate definition library with output algorithm circuit
since Qiskit importer for OpenQASM 3.0 does not support non-standard gate libraries currently.

6

Figure 2: Flowchart of benchmarking QCircuitNet.

Models. Recently, the GPT series models have become the benchmark for generative models due233

to their exceptional performance. Specifically, we include two models from OpenAI, GPT-3.5-turbo234

[Brown et al., 2020] and GPT-4 [OpenAI et al., 2024], in our benchmark. Additionally, the LLAMA235

series models [Touvron et al., 2023a,b] are widely recognized as leading open-source models, and236

we have selected LLAMA-3-8B for our study. For a comprehensive evaluation, we also benchmark237

Phi-3-medium-128k [Abdin et al., 2024] and Mistral-7B-v0.3 [Jiang et al., 2023].238

Prompts. We employ a few-shot learning framework, a prompting technique that has shown239

considerable success in generative AI [Xie et al., 2021]. In this approach, we utilize either 1 or 5240

examples, followed by a problem description. To ensure we do not train and test on the same quantum241

algorithm, we implement k-fold validation. This method involves using one problem as the test set242

while the remaining problems serve as the training set, rotating through each problem one at a time.243

Evaluation Metrics. We use three evaluation metrics:244

1. BLEU Score: this metric measures how closely the generated code matches the reference code,245

with a higher BLEU score indicating greater similarity.246

2. Byte Perplexity: this metric evaluates the model’s ability to predict the next byte in a sequence.247

Lower byte perplexity indicates better performance by reflecting the model’s predictive accuracy.248

3. Verification function: this function checks the syntax validation and the result correctness of the249

code produced by the language model, and returns a score depending on the performance. See250

Section 4.2 for more detailed discussion.251

5.2 Results252

The results for BLEU and verification function score are shown in Figure 3, Table 1, and Table 2. We253

include the results of Byte Perplexity and more experiments in Appendix C.254

As illustrated in the table, verification scores for the output of the model reveal that almost none can255

produce a correct algorithm, because a single mistake could make the whole algorithm fail. However,256

we can still partially assess the models’ ability to solve quantum problems by measuring the BLEU257

7

0 10 20 30 40 50 60 70 80

BLEU Score

Bernstein-Vazirani

Deutsch-Jozsa

Grover

Phase Estimation

Quantum Fourier Transform

Simon

GHZ State

Random Number Generator

Swap Test

W State

Algorithm Design

Models
gpt-4o-2024-05-13 (1-shot)
gpt-4o-2024-05-13 (5-shot)
Meta-Llama-3-8B (1-shot)
Meta-Llama-3-8B (5-shot)
gpt-3.5-turbo-0125 (1-shot)
gpt-3.5-turbo-0125 (5-shot)

0 10 20 30 40 50 60 70 80

BLEU Score

Bernstein Vazirani

Deutsch Jozsa

Diffusion Operator

Grover

Simon

Oracle Construction

Models
gpt-4o-2024-05-13 (1-shot)
gpt-4o-2024-05-13 (5-shot)
Meta-Llama-3-8B (1-shot)
Meta-Llama-3-8B (5-shot)
gpt-3.5-turbo-0125 (1-shot)
gpt-3.5-turbo-0125 (5-shot)
Phi-3-medium-128k-instruct (1-shot)
Phi-3-medium-128k-instruct (5-shot)
Mistral-7B-v0.3 (1-shot)
Mistral-7B-v0.3 (5-shot)

Figure 3: Benchmarking algorithm design and oracle construction in BLEU scores.

score. The figure indicates that GPT-4o significantly outperforms all other models. Additionally,258

nearly all models demonstrate the ability to learn quantum knowledge from context, as the five-shot259

prompt performs much better than the one-shot alternative.260

The figure also reveals the different difficulty levels for each algorithm. For simple quantum261

algorithms such as the Bernstein-Vazirani algorithm where directly applying more H gates to the qubits262

solves the problem, language models tend to perform well. However, for complicated algorithms263

such as the W state where the parameters vary with qubit number, the models tend to perform poorly.264

Table 1: Benchmarking algorithm design in verification function scores.

Model Shot Bernstein-
Vazirani

Deutsch-
Jozsa Grover Phase

Estimation

Quantum
Fourier

Transform
Simon GHZ State

Random
Number

Generator

Swap
Test W State

gpt-4o-2024-05-13 1 -0.8462 -0.5538 -0.7089 -1.0000 -1.0000 -0.6692 -0.8462 -1.0000 -1.0000 -1.0000
gpt-4o-2024-05-13 5 -0.3054 0.0135 -0.2071 -0.5357 -0.6154 -0.3692 -0.1538 -0.4967 -0.8700 -0.9231
Meta-Llama-3-8B 1 -0.2308 -0.7692 -0.7143 -0.8571 -0.9231 -1.0000 -0.6154 -0.9285 -1.0000 -0.3846
Meta-Llama-3-8B 5 0.0769 -0.2308 -0.5393 -1.0000 -0.7692 -0.8462 -0.3846 -0.7276 -1.0000 -0.1538
gpt-3.5-turbo-0125 1 -0.8462 -0.7154 -0.5679 -1.0000 -1.0000 -0.6231 -0.8462 -1.0000 -1.0000 -1.0000
gpt-3.5-turbo-0125 5 -0.6154 -0.0571 -0.0500 -1.0000 -0.6538 -0.1646 -0.2308 -0.4513 -0.8778 -0.8462

Table 2: Benchmarking oracle construction in verification function scores.

Model Shot Bernstein-
Vazirani

Deutsch-
Jozsa

Diffusion-
Operator Grover Simon

gpt-4o-2024-05-13 1 -0.3200 -0.0100 -0.8462 -0.9885 -0.4674
gpt-4o-2024-05-13 5 -0.1100 0.0800 -0.3077 -0.9540 -0.0870
Meta-Llama-3-8B 1 -0.7300 -0.5000 -0.3846 -1.0000 -0.6848
Meta-Llama-3-8B 5 -0.0500 0.1700 -0.8462 -1.0000 -0.6413
gpt-3.5-turbo-0125 1 -0.3500 -0.0400 -0.8462 -1.0000 -0.3696
gpt-3.5-turbo-0125 5 -0.1100 0.0200 -0.3077 -0.9770 -0.1087

Phi-3-medium-128k-instruct 1 -0.6800 -0.6100 -0.9231 -1.0000 -0.7500
Phi-3-medium-128k-instruct 5 -0.5400 -0.4300 -1.0000 -1.0000 -0.8370

Mistral-7B-v0.3 1 -0.4000 -0.4300 -0.9231 -0.9540 -0.6087
Mistral-7B-v0.3 5 -0.3700 -0.1300 -1.0000 -0.9195 -0.2391

5.3 Observations and Analysis265

The Challenge of LLM for Quantum Algorithm Design. As shown by the experiment results,266

the integration of LLMs into quantum algorithm design presents several challenges:267

8

1. Lack of data: Unlike classical computing and code generation, where vast datasets and extensive268

examples exist, the field of quantum computing is still nascent, with limited accessible data. This269

scarcity hampers the ability of LLMs to learn and generalize effectively.270

2. Distinct nature of each algorithm: Quantum algorithms can be seen as unitary maps but in271

exponential size linear spaces. This distinct nature makes it intractable for LLMs to generalize272

knowledge from one algorithm to another, posing challenges to transfer learning.273

3. Reasoning of underlying mechanism: Quantum algorithms involve deep comprehension of unitary274

transformations and the evolution of quantum states. Such reasoning goes beyond simple pattern275

recognition and is difficult for LLMs to grasp and apply accurately.276

4. Quantum programming language syntax: The syntax of quantum programming languages, such as277

Qiskit and OpenQASM, introduces an additional layer of complexity. As shown by the verification278

scores, the models can barely output circuit / codes with correct syntax, demonstrating that this is279

a non-trivial task, which challenges the current capabilities of LLMs.280

Usage of QCircuitNet Dataset. Our dataset helps provide guidance to address these challenges:281

1. Formulate the task: We propose framing algorithm design tasks in circuit or code form rather than282

natural language descriptions, which can be vague, or mathematical formulas, which are difficult283

to verify. This provides a concrete framework for LLMs to operate within.284

2. Clarify descriptions with concrete examples: The dataset includes detailed descriptions of repre-285

sentative problems in universal quantum algorithms, accompanied by concrete cases, which helps286

bridge the gap between abstract algorithms and practical implementations.287

3. Benchmark for fair evaluation: To improve the capability of LLMs in quantum algorithm design,288

we need a fair and robust evaluation method first. Our dataset includes metrics and benchmarks289

for such purpose, providing a foundation for developing and testing novel improvement methods.290

Implications for AI Learning. We observe a performance separation between writing general291

qiskit codes and explicit gate-level circuits in QASM. Since Qiskit provides detailed tutorial with292

general codes for several algorithms, this may imply a data contamination phenomenon where293

LLMs rely on memorization and retrieval rather than genuine algorithm design. Similarly, current294

benchmarks for AI code generation and syntax learning may also suffer from this unseen bias. Our295

dataset, based on QASM files created from scratch, may help circumvent this issue and serve as a296

stable and fair evaluation method for benchmarking AI syntax learning.297

6 Conclusions and Future Work298

In this paper, we propose QCircuitNet, the first comprehensive, structured universal quantum al-299

gorithm dataset and quantum circuit generation benchmark for AI models. It contains automatic300

validation and verification functions, allowing for scalable and efficient evaluation methodologies.301

Benchmarking of QCircuitNet on up-to-date LLMs are systematically conducted.302

Our work leaves several open questions for future investigation:303

• QCircuitNet is a benchmarking dataset for LLMs. It is of general interest to extend benchmarking304

to training, which will help LLMs better maneuver quantum algorithm design. This may need305

implementations of more advanced algorithms to make it a more meaningful training dataset.306

• Since quantum algorithms have fundamental difference from classical algorithms, novel fine-307

tuning methods to attempt quantum algorithm design and quantum circuit implementation, or even308

development of new quantum algorithms by LLMs are solicited.309

• Currently, variational quantum algorithms [Cerezo et al., 2021] can already be implemented on near-310

term NISQ machines [Preskill, 2018]. It would be also of general interest to extend QCircuitNet to311

contain the design and implementation of variational quantum algorithms.312

9

References313

Quantum algorithm zoo. https://quantumalgorithmzoo.org/, 2024. Accessed: 2024-05-30.314

M. Abdin, S. Ade Jacobs, A. A. Awan, J. Aneja, A. Awadallah, H. Awadalla, N. Bach, A. Bahree,315

A. Bakhtiari, J. Bao, H. Behl, A. Benhaim, M. Bilenko, J. Bjorck, S. Bubeck, Q. Cai, M. Cai,316

C. César Teodoro Mendes, W. Chen, V. Chaudhary, D. Chen, D. Chen, Y.-C. Chen, Y.-L. Chen,317

P. Chopra, X. Dai, A. Del Giorno, G. de Rosa, M. Dixon, R. Eldan, V. Fragoso, D. Iter, M. Gao,318

M. Gao, J. Gao, A. Garg, A. Goswami, S. Gunasekar, E. Haider, J. Hao, R. J. Hewett, J. Huynh,319

M. Javaheripi, X. Jin, P. Kauffmann, N. Karampatziakis, D. Kim, M. Khademi, L. Kurilenko, J. R.320

Lee, Y. T. Lee, Y. Li, Y. Li, C. Liang, L. Liden, C. Liu, M. Liu, W. Liu, E. Lin, Z. Lin, C. Luo,321

P. Madan, M. Mazzola, A. Mitra, H. Modi, A. Nguyen, B. Norick, B. Patra, D. Perez-Becker,322

T. Portet, R. Pryzant, H. Qin, M. Radmilac, C. Rosset, S. Roy, O. Ruwase, O. Saarikivi, A. Saied,323

A. Salim, M. Santacroce, S. Shah, N. Shang, H. Sharma, S. Shukla, X. Song, M. Tanaka, A. Tupini,324

X. Wang, L. Wang, C. Wang, Y. Wang, R. Ward, G. Wang, P. Witte, H. Wu, M. Wyatt, B. Xiao,325

C. Xu, J. Xu, W. Xu, S. Yadav, F. Yang, J. Yang, Z. Yang, Y. Yang, D. Yu, L. Yuan, C. Zhang,326

C. Zhang, J. Zhang, L. Lyna Zhang, Y. Zhang, Y. Zhang, Y. Zhang, and X. Zhou. Phi-3 technical327

report: A highly capable language model locally on your phone, 2024. arXiv:2404.14219328

A. Ambainis. Quantum search algorithms. ACM SIGACT News, 35(2):22–35, 2004.329

arXiv:quant-ph/0504012330

C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin tossing. In331

Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing,332

Bangalore, pages 175–179, 1984.333

C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle operators on Einstein-334

Podolsky-Rosen states. Phys. Rev. Lett., 69:2881–2884, Nov 1992. doi: 10.1103/PhysRevLett.69.335

2881. URL https://link.aps.org/doi/10.1103/PhysRevLett.69.2881.336

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. Teleporting an337

unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review338

Letters, 70(13):1895, 1993.339

E. Bernstein and U. Vazirani. Quantum complexity theory. In Proceedings of the Twenty-fifth Annual340

ACM Symposium on Theory of Computing, pages 11–20, 1993.341

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum machine342

learning. Nature, 549(7671):195–202, 2017. arXiv:1611.09347343

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,344

G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,345

D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,346

J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models347

are few-shot learners, 2020. arXiv:2005.14165348

M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai,349

X. Yuan, L. Cincio, and P. J. Coles. Variational quantum algorithms. Nature Reviews Physics, 3(9):350

625–644, 2021. arXiv:2012.09265351

K. Chen, W. Fang, J. Guan, X. Hong, M. Huang, J. Liu, Q. Wang, and M. Ying. VeriQBench: A352

benchmark for multiple types of quantum circuits, 2022. arXiv:2206.10880353

C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S. Severini, and L. Wossnig. Quan-354

tum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical,355

Physical and Engineering Sciences, 474(2209):20170551, 2018. arXiv:1707.08561356

10

https://quantumalgorithmzoo.org/
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/quant-ph/0504012
https://link.aps.org/doi/10.1103/PhysRevLett.69.2881
https://arxiv.org/abs/1611.09347
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2012.09265
https://arxiv.org/abs/2206.10880
https://arxiv.org/abs/1707.08561

A. Cross, A. Javadi-Abhari, T. Alexander, N. De Beaudrap, L. S. Bishop, S. Heidel, C. A. Ryan,357

P. Sivarajah, J. Smolin, J. M. Gambetta, and B. R. Johnson. OpenQASM 3: A broader and358

deeper quantum assembly language. ACM Transactions on Quantum Computing, 3(3):1–50, 2022.359

arXiv:2104.14722360

A. M. Dalzell, S. McArdle, M. Berta, P. Bienias, C.-F. Chen, A. Gilyén, C. T. Hann, M. J. Kastoryano,361

E. T. Khabiboulline, A. Kubica, G. Salton, S. Wang, and F. G. Brandao. Quantum algorithms: A362

survey of applications and end-to-end complexities, 2023. arXiv:2310.03011363

D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation. Proceedings of364

the Royal Society of London. Series A: Mathematical and Physical Sciences, 439(1907):553–558,365

1992.366

F. Fürrutter, G. Muñoz-Gil, and H. J. Briegel. Quantum circuit synthesis with diffusion models.367

Nature Machine Intelligence, pages 1–10, 2024. arXiv:2311.02041368

L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the369

Twenty-eighth Annual ACM Symposium on Theory of Computing, pages 212–219. ACM, 1996.370

arXiv:quant-ph/9605043371

A. J., A. A. Adedoyin, J. J. Ambrosiano, P. M. Anisimov, W. R. Casper, G. Chennupati, C. J. Coffrin,372

H. N. Djidjev, D. O. Gunter, S. Karra, N. W. Lemons, S. Lin, A. Malyzhenkov, D. D. L. Mascarenas,373

S. M. Mniszewski, B. T. Nadiga, D. O’Malley, D. A. Oyen, S. D. Pakin, L. Prasad, R. M. Roberts,374

P. R. Romero, N. Santhi, N. Sinitsyn, P. J. Swart, J. G. Wendelberger, B. Yoon, R. J. Zamora,375

W. Zhu, S. J. Eidenbenz, A. Bärtschi, P. J. Coles, M. D. Vuffray, and A. Y. Lokhov. Quantum376

algorithm implementations for beginners. ACM Transactions on Quantum Computing, 3(4), 7377

2022. doi: 10.1145/3517340. arXiv:1804.03719378

A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman, J. Gacon, S. Martiel, P. D.379

Nation, L. S. Bishop, A. W. Cross, B. R. Johnson, and J. M. Gambetta. Quantum computing with380

Qiskit, 2024. arXiv:2405.08810381

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. Singh Chaplot, D. de las Casas, F. Bressand,382

G. Lengyel, G. Lample, L. Saulnier, L. Renard Lavaud, M.-A. Lachaux, P. Stock, T. Le Scao,383

T. Lavril, T. Wang, T. Lacroix, and W. El Sayed. Mistral 7B, 2023. arXiv:2310.06825384

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,385

R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie,386

B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,387

M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals,388

A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis. Highly accurate protein structure389

prediction with AlphaFold. Nature, 596(7873):583–589, 2021.390

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document391

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.392

A. Li, S. Stein, S. Krishnamoorthy, and J. Ang. QASMBench: A low-level quantum benchmark suite393

for NISQ evaluation and simulation. ACM Transactions on Quantum Computing, 4(2):1–26, 2023.394

arXiv:2005.13018395

A. Nakayama, K. Mitarai, L. Placidi, T. Sugimoto, and K. Fujii. VQE-generated quantum circuit396

dataset for machine learning, 2023. arXiv:2302.09751397

M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information. Cambridge398

University Press, 2000.399

OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Al-400

tenschmidt, S. Altman, S. Anadkat, R. Avila, I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu,401

11

https://arxiv.org/abs/2104.14722
https://arxiv.org/abs/2310.03011
https://arxiv.org/abs/2311.02041
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/1804.03719
https://arxiv.org/abs/2405.08810
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2005.13018
https://arxiv.org/abs/2302.09751

H. Bao, M. Bavarian, J. Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner, L. Bog-402

donoff, O. Boiko, M. Boyd, A.-L. Brakman, G. Brockman, T. Brooks, M. Brundage, K. Button,403

T. Cai, R. Campbell, A. Cann, B. Carey, C. Carlson, R. Carmichael, B. Chan, C. Chang, F. Chantzis,404

D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B. Chess, C. Cho, C. Chu, H. W. Chung, D. Cum-405

mings, J. Currier, Y. Dai, C. Decareaux, T. Degry, N. Deutsch, D. Deville, A. Dhar, D. Dohan,406

S. Dowling, S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus, N. Felix, S. P.407

Fishman, J. Forte, I. Fulford, L. Gao, E. Georges, C. Gibson, V. Goel, T. Gogineni, G. Goh,408

R. Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray, R. Greene, J. Gross, S. S. Gu, Y. Guo,409

C. Hallacy, J. Han, J. Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse, A. Hickey, W. Hickey,410

P. Hoeschele, B. Houghton, K. Hsu, S. Hu, X. Hu, J. Huizinga, S. Jain, S. Jain, J. Jang, A. Jiang,411

R. Jiang, H. Jin, D. Jin, S. Jomoto, B. Jonn, H. Jun, T. Kaftan, Łukasz Kaiser, A. Kamali, I. Kan-412

itscheider, N. S. Keskar, T. Khan, L. Kilpatrick, J. W. Kim, C. Kim, Y. Kim, J. H. Kirchner,413

J. Kiros, M. Knight, D. Kokotajlo, Łukasz Kondraciuk, A. Kondrich, A. Konstantinidis, K. Kosic,414

G. Krueger, V. Kuo, M. Lampe, I. Lan, T. Lee, J. Leike, J. Leung, D. Levy, C. M. Li, R. Lim, M. Lin,415

S. Lin, M. Litwin, T. Lopez, R. Lowe, P. Lue, A. Makanju, K. Malfacini, S. Manning, T. Markov,416

Y. Markovski, B. Martin, K. Mayer, A. Mayne, B. McGrew, S. M. McKinney, C. McLeavey,417

P. McMillan, J. McNeil, D. Medina, A. Mehta, J. Menick, L. Metz, A. Mishchenko, P. Mishkin,418

V. Monaco, E. Morikawa, D. Mossing, T. Mu, M. Murati, O. Murk, D. Mély, A. Nair, R. Nakano,419

R. Nayak, A. Neelakantan, R. Ngo, H. Noh, L. Ouyang, C. O’Keefe, J. Pachocki, A. Paino,420

J. Palermo, A. Pantuliano, G. Parascandolo, J. Parish, E. Parparita, A. Passos, M. Pavlov, A. Peng,421

A. Perelman, F. de Avila Belbute Peres, M. Petrov, H. P. de Oliveira Pinto, Michael, Pokorny,422

M. Pokrass, V. H. Pong, T. Powell, A. Power, B. Power, E. Proehl, R. Puri, A. Radford, J. Rae,423

A. Ramesh, C. Raymond, F. Real, K. Rimbach, C. Ross, B. Rotsted, H. Roussez, N. Ryder,424

M. Saltarelli, T. Sanders, S. Santurkar, G. Sastry, H. Schmidt, D. Schnurr, J. Schulman, D. Selsam,425

K. Sheppard, T. Sherbakov, J. Shieh, S. Shoker, P. Shyam, S. Sidor, E. Sigler, M. Simens, J. Sitkin,426

K. Slama, I. Sohl, B. Sokolowsky, Y. Song, N. Staudacher, F. P. Such, N. Summers, I. Sutskever,427

J. Tang, N. Tezak, M. B. Thompson, P. Tillet, A. Tootoonchian, E. Tseng, P. Tuggle, N. Turley,428

J. Tworek, J. F. C. Uribe, A. Vallone, A. Vijayvergiya, C. Voss, C. Wainwright, J. J. Wang, A. Wang,429

B. Wang, J. Ward, J. Wei, C. Weinmann, A. Welihinda, P. Welinder, J. Weng, L. Weng, M. Wi-430

ethoff, D. Willner, C. Winter, S. Wolrich, H. Wong, L. Workman, S. Wu, J. Wu, M. Wu, K. Xiao,431

T. Xu, S. Yoo, K. Yu, Q. Yuan, W. Zaremba, R. Zellers, C. Zhang, M. Zhang, S. Zhao, T. Zheng,432

J. Zhuang, W. Zhuk, and B. Zoph. GPT-4 technical report, 2024. URL https://openai.com.433

arXiv:2303.08774434

E. Perrier, A. Youssry, and C. Ferrie. QDataSet, quantum datasets for machine learning. Scientific435

Data, 9(1):582, 2022. arXiv:2108.06661436

L. Placidi, R. Hataya, T. Mori, K. Aoyama, H. Morisaki, K. Mitarai, and K. Fujii. MNISQ: A437

large-scale quantum circuit dataset for machine learning on/for quantum computers in the NISQ438

era, 2023. arXiv:2306.16627439

J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018.440

arXiv:1801.00862441

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis442

with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision443

and Pattern Recognition, pages 10684–10695, 2022. arXiv:2112.10752444

M. Saeedi and I. L. Markov. Synthesis and optimization of reversible circuits—a survey. ACM445

Computing Surveys (CSUR), 45(2):1–34, 2013. arXiv:1110.2574446

L. Schatzki, A. Arrasmith, P. J. Coles, and M. Cerezo. Entangled datasets for quantum machine447

learning, 2021. arXiv:2109.03400448

M. Schuld, I. Sinayskiy, and F. Petruccione. An introduction to quantum machine learning. Contem-449

porary Physics, 56(2):172–185, 2015. arXiv:1409.3097450

12

https://openai.com
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2108.06661
https://arxiv.org/abs/2306.16627
https://arxiv.org/abs/1801.00862
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/1110.2574
https://arxiv.org/abs/2109.03400
https://arxiv.org/abs/1409.3097

T. Shirakawa, H. Ueda, and S. Yunoki. Automatic quantum circuit encoding of a given arbitrary451

quantum state, 2021. arXiv:2112.14524452

D. R. Simon. On the power of quantum computation. SIAM Journal on Computing, 26(5):1474–1483,453

1997.454

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised learning455

using nonequilibrium thermodynamics. In International Conference on Machine learning, pages456

2256–2265. PMLR, 2015. arXiv:1503.03585457

Y. Tang, H. Xiong, N. Yang, T. Xiao, and J. Yan. Q-TAPE: A task-agnostic pre-trained approach for458

quantum properties estimation. In The Twelfth International Conference on Learning Representa-459

tions, 2023.460

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,461

E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama: Open and efficient462

foundation language models, 2023a. arXiv:2302.13971463

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,464

P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton Ferrer, M. Chen, G. Cucurull, D. Esiobu,465

J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,466

R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. Singh Koura,467

M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,468

I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M.469

Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan,470

I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and471

T. Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023b. arXiv:2307.09288472

T. H. Trinh, Y. Wu, Q. V. Le, H. He, and T. Luong. Solving Olympiad geometry without human473

demonstrations. Nature, 625(7995):476–482, 2024.474

S. M. Xie, A. Raghunathan, P. Liang, and T. Ma. An explanation of in-context learning as475

implicit bayesian inference. In International Conference on Learning Representations, 2021.476

arXiv:2111.02080477

K. Yang, A. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R. J. Prenger, and A. Anandkumar.478

LeanDojo: Theorem proving with retrieval-augmented language models. Advances in Neural479

Information Processing Systems, 36, 2024. arXiv:2306.15626480

B. Yu, F. N. Baker, Z. Chen, X. Ning, and H. Sun. LlaSMol: Advancing large language models481

for chemistry with a large-scale, comprehensive, high-quality instruction tuning dataset, 2024.482

arXiv:2402.09391483

Z. Zhang, Y. Zhang, H. Yao, J. Luo, R. Zhao, B. Huang, J. Zhao, Y. Liao, K. Li, L. Zhao, et al. Xiwu:484

A basis flexible and learnable LLM for high energy physics, 2024. arXiv:2404.08001485

Checklist486

1. For all authors...487

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s488

contributions and scope? [Yes]489

(b) Did you describe the limitations of your work? [Yes] See Section 6.490

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Quantum491

computing is still a nascent technology at the moment. Therefore, our work does not492

have negative societal impacts from our perspective. In the future, we welieve that493

our dataset can be beneficial for quantum algorithm design and the field of quantum494

computing as a whole.495

13

https://arxiv.org/abs/2112.14524
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2111.02080
https://arxiv.org/abs/2306.15626
https://arxiv.org/abs/2402.09391
https://arxiv.org/abs/2404.08001

(d) Have you read the ethics review guidelines and ensured that your paper conforms to496

them? [Yes]497

2. If you are including theoretical results...498

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We do not499

have theoretical results.500

(b) Did you include complete proofs of all theoretical results? [N/A]501

3. If you ran experiments (e.g. for benchmarks)...502

(a) Did you include the code, data, and instructions needed to reproduce the main ex-503

perimental results (either in the supplemental material or as a URL)? [Yes] See504

supplemental material.505

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they506

were chosen)? [N/A] The experiments do not contain model training.507

(c) Did you report error bars (e.g., with respect to the random seed after running exper-508

iments multiple times)? [No] Neither random initialization nor stochastic gradient509

descent is in our experiments. There is no need for repeated experiments.510

(d) Did you include the total amount of compute and the type of resources used (e.g., type511

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5.512

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...513

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited514

Qiskit [Javadi-Abhari et al., 2024], OpenQASM [Cross et al., 2022], and QASM-515

Bench [Li et al., 2023] in our paper.516

(b) Did you mention the license of the assets? [Yes] The links of the aforementioned517

assets are given in reference.518

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]519

(d) Did you discuss whether and how consent was obtained from people whose data you’re520

using/curating? [N/A] Our dataset is proposed by ourselves.521

(e) Did you discuss whether the data you are using/curating contains personally identifiable522

information or offensive content? [N/A] Our dataset contains purely quantum circuits523

and does not contain personally identifiable information or offensive content.524

5. If you used crowdsourcing or conducted research with human subjects...525

(a) Did you include the full text of instructions given to participants and screenshots, if526

applicable? [N/A]527

(b) Did you describe any potential participant risks, with links to Institutional Review528

Board (IRB) approvals, if applicable? [N/A]529

(c) Did you include the estimated hourly wage paid to participants and the total amount530

spent on participant compensation? [N/A]531

14

A Details of QCircuitNet532

The QCircuitNet Dataset, along with its Croissant metadata, is available on Anonymous GitHub at533

the following link: https://anonymous.4open.science/r/QCircuitNet-DE28/534

QCircuitNet has the following directory structure:535

QCircuitNet
Oracle Construction All data for the oracle construction task

Quantum Logic SynthesisTextbook-level oracles used in the experiments
Problem EncodingAdvanced oracles encoding application scenarios

Algorithm DesignAll data for the quantum algorithm design task
Quantum ComputingTextbook-level universal quantum computing algorithms
Quantum InformationTextbook-level quantum information tasks and protocols

In each subdirectory, there is a folder for each specific algorithm. For instance, the folder structure536

for Simon’s algorithm is as follows:537

Algorithm Design
Quantum Computing

simon ...All data for the Simon’s Problem
simon-dataset.pyDataset creation script
simon-generation.pyQiskit generation code
simon-post-processing.pyPost-processing function
simon-utils.pyUtility functions for verification
simon-verification.pyVerification function
simon-description.txtProblem description
simon-verification.txt Verification results of the data points
full circuitRaw data of quantum circuits

simon-n2
simon-n2-s11-k11.qasmFull circuit for a concrete setting

simon-n3
simon-n3-s011-k001.qasm
simon-n3-s011-k101.qasm
simon-n3-s100-k001.qasm
simon-n3-s100-k101.qasm

...
test oracleExtracted oracle definitions

n2
trial1

oracle.incOracle definition as a .inc file
oracle-info.txtOracle information (such as key strings)

n3
trial1

oracle.inc
oracle-info.txt

trial2
oracle.inc
oracle-info.txt

trial3
oracle.inc
oracle-info.txt

trial4
oracle.inc
oracle-info.txt

...
simon-n2.qasmAlgorithm circuit for model output
simon-n3.qasm
simon-n4.qasm
simon-n5.qasm
...

15

We expect to extend QCircuitNet under this general structure.538

A.1 Format539

In this subsection, we provide concrete examples to illustrate the different components of QCircuitNet.540

We use the case of Simon’s Problem throughout the demonstration to achieve better consistency. For541

further details, please check the code repository.542

1. Problem Description: this is the carefully hand-crafted description of the task in natural language543

and latex math formulas. The description is provided as one template for each algorithm, and the544

concrete settings (such as the qubit number) are replaced when creating the data points in json.545

The file is named as "{algorithm_name}_description.txt".546

Problem Description Template for Simon’s Problem

Given a black box function f : {0, 1}n 7−→ {0, 1}n. The function is guaranteed to be
a two-to-one mapping according to a secret string s ∈ {0, 1}n, s ̸= 0n, where given
x1 ̸= x2, f(x1) = f(x2) ⇐⇒ x1 ⊕ x2 = s. Please design a quantum algorithm
to find s. The function is provided as a black-box oracle gate named "Oracle" in the
"oracle.inc" file which operates as Of |x⟩ |y⟩ = |x⟩ |y ⊕ f(x)⟩. The input qubits |x⟩ are
indexed from 0 to n−1, and the output qubits |f(x)⟩ are indexed from n to 2n−1. Please
provide the following components for the algorithm design with n ={qubit number}:
1. the corresponding quantum circuit implementation with {QASM / Qiskit}. 2. the
post-processing code run_and_analyze(circuit, aer_sim) in python which simulates the
circuit (QuantumCircuit) with aer_sim (AerSimulator) and returns the secret string s
according to the simulation results.

547

2. Generation Code: one general Qiskit code to create quantum circuits of different settings. Note548

that the oracle for the problem is provided as a black-box gate "oracle" here. This code is used to549

generate the raw data, but can also be used as a testing benchmark for writing Qiskit codes. The550

file is named as "{algorithm_name}_generation.py".551

552
from qiskit import QuantumCircuit553

554

555

def simon_algorithm(n, oracle):556

""" Generates a Simon algorithm circuit.557

558

Parameters:559

- n (int): number of qubits560

- s (str): the secret string of length n561

562

Returns:563

- QuantumCircuit: the Simon algorithm circuit564

"""565

Create a quantum circuit on 2n qubits566

simon_circuit = QuantumCircuit (2 * n, n)567

568

Initialize the first register to the |+> state569

simon_circuit.h(range(n))570

571

Append the Simon’s oracle572

simon_circuit.append(oracle , range (2 * n))573

574

Apply a H-gate to the first register575

simon_circuit.h(range(n))576

577

Measure the first register578

simon_circuit.measure(range(n), range(n))579

580

return simon_circuit581

16

582

Listing 1: Qiskit generation code for Simon’s algorithm.

3. Algorithm Circuit: the OpenQASM 3.0 format file storing the quantum circuit in gate level for583

each specific setting. Note that the explicit construction of "Oracle" is provided separately in584

"oracle.inc" file, which guarantees the usage of oracle in a black-box way. This filed is named as585

"{algorithm_name}_n{qubit_number}.qasm".586

587
OPENQASM 3.0;588

include "stdgates.inc";589

include "oracle.inc";590

bit [3] c;591

qubit [6] q;592

h q[0];593

h q[1];594

h q[2];595

Oracle q[0], q[1], q[2], q[3], q[4], q[5];596

h q[0];597

h q[1];598

h q[2];599

c[0] = measure q[0];600

c[1] = measure q[1];601

c[2] = measure q[2];602603

Listing 2: OpenQASM 3.0 Code for Simon’s algorithm with n = 3.

4. Post-Processing Function: this function simulates the quantum circuit and derives the final604

answer to the problem. The file is named as "{algorithm_name}_post_processing.py".605

606
from sympy import Matrix607

import numpy as np608

from qiskit import transpile609

610

611

def mod2(x):612

return x.as_numer_denom ()[0] % 2613

614

615

def solve_equation(string_list):616

"""617

A^T | I618

after the row echelon reduction , we can get the basis of the619

↪→ nullspace of A in I620

since we just need the string in binary form , so we can just621

↪→ use the basis622

if row == n-1 --> only one623

if row < n-1 --> get the first one (maybe correct or wrong)624

"""625

M = Matrix(string_list).T626

627

Augmented : M | I628

M_I = Matrix(np.hstack ([M, np.eye(M.shape[0], dtype=int)]))629

630

RREF row echelon form , indices of the pivot columns631

If x % 2 = 0, it will not be chosen as pivot (modulo 2)632

M_I_rref = M_I.rref(iszerofunc=lambda x: x % 2 == 0)633

634

Modulo 2635

M_I_final = M_I_rref [0]. applyfunc(mod2)636

637

Non -Trivial solution638

if all(value == 0 for value in M_I_final[-1, : M.shape [1]]):639

result_s = "".join(str(c) for c in M_I_final[-1, M.shape [1]640

↪→ :])641

17

642

Trivial solution643

else:644

result_s = "0" * M.shape [0]645

646

return result_s647

648

649

def run_and_analyze(circuit , aer_sim):650

n = circuit.num_qubits // 2651

circ = transpile(circuit , aer_sim)652

results = aer_sim.run(circ , shots=n).result ()653

counts = results.get_counts ()654

equations = []655

for result , count in counts.items():656

if result != "0" * n: # We don’t use all 0 string657

y = [int(bit) for bit in result]658

equations.append(y)659

if len(equations) == 0:660

prediction = "0" * n661

else:662

prediction = solve_equation(equations)663

return prediction664665

Listing 3: Post-processing code for Simon’s algorithm.

5. Oracle / Gate Definition: this .inc file provides the definitions of composite gates or oracles. The666

file is named "customgates.inc" for oracle construction tasks and "oracle.inc" for algorithm design667

tasks.668
669

gate Oracle _gate_q_0 , _gate_q_1 , _gate_q_2 , _gate_q_3 , _gate_q_4 ,670

↪→ _gate_q_5 {671

cx _gate_q_0 , _gate_q_3;672

cx _gate_q_1 , _gate_q_4;673

cx _gate_q_2 , _gate_q_5;674

cx _gate_q_2 , _gate_q_5;675

x _gate_q_3;676

}677678

Listing 4: One test case oracle for Simon’s algorithm with n = 3.

For algorithm design tasks, this .inc file is accompanied with an "oracle_info.txt" file to describe679

the encoded information of the oracle. This helps the verification function to check the correctness680

of the derived answer by the model. The above test case is equipped with the following information681

text:682

oracle_info.txt for Simon’s Problem with qubit number 3 and test case 2.

Secret string: 100
Key string: 001

683

6. Verification Function: the function to evaluate the output with grammar validation and test cases684

verification. The file is named as "{algorithm_name}_verification.py".685
686

from simon_utils import *687

688

689

def check_model(qasm_string , code_string , n):690

""" Check the Simon model."""691

Verify the syntax of the QASM code with the first test case692

↪→ oracle693

t = 1694

with open(f"test_oracle/n{n}/trial{t}/ oracle.inc", "r") as file695

↪→ :696

18

oracle_def = file.read()697

full_qasm = plug_in_oracle(qasm_string , oracle_def)698

circuit = verify_qasm_syntax(full_qasm)699

if circuit is None:700

return -1701

try:702

exec(code_string , globals ())703

aer_sim = AerSimulator ()704

total_success = 0705

total_fail = 0706

t_range = min(10, 4 ** (n - 2))707

shots = 10708

for t in range(1, 1 + t_range):709

print(f" Running Test Case {t}")710

with open(f"test_oracle/n{n}/trial{t}/ oracle.inc", "r")711

↪→ as file:712

oracle_def = file.read()713

full_qasm = plug_in_oracle(qasm_string , oracle_def)714

circuit = loads(full_qasm)715

with open(f"test_oracle/n{n}/trial{t}/ oracle_info.txt",716

↪→ "r") as file:717

content = file.read()718

match = re.search(r"Secret string: ([01]+)", content)719

if match:720

secret_string = match.group (1)721

else:722

raise ValueError("Secret string not found in the723

↪→ file.")724

725

cnt_success = 0726

cnt_fail = 0727

for shot in range(shots):728

prediction = run_and_analyze(circuit.copy(),729

↪→ aer_sim)730

if not isinstance(prediction , str):731

raise TypeError("Predicted secret string should732

↪→ be a string.")733

if prediction == secret_string:734

cnt_success += 1735

else:736

cnt_fail += 1737

print(f" Success: {cnt_success }/{ shots}, Fail: {738

↪→ cnt_fail }/{ shots}")739

total_success += cnt_success740

total_fail += cnt_fail741

print(f"Total Success: {total_success }; Total Fail: {742

↪→ total_fail}")743

return total_success / (total_fail + total_success)744

745

except Exception as e:746

print(f"Error: {e}")747

return -1748749

Listing 5: Verification function for Simon’s algorithm.

This verification function is accompanied with an "{algorithm_name}_utils.py" file to provide750

necessary utility functions.751

752
from qiskit.qasm3 import loads753

from qiskit_aer import AerSimulator754

import re755

756

757

def print_and_save(message , text):758

print(message)759

19

text.append(message)760

761

762

def plug_in_oracle(qasm_code , oracle_def):763

"""Plug -in the oracle definition into the QASM code."""764

oracle_pos = qasm_code.find(’include "oracle.inc";’)765

if oracle_pos == -1:766

raise ValueError("Oracle include statement not found in the767

↪→ file")768

full_qasm = (769

qasm_code [: oracle_pos]770

+ oracle_def771

+ qasm_code[oracle_pos + len(’include "oracle.inc";’) :]772

)773

return full_qasm774

775

776

def verify_qasm_syntax(output):777

""" Verify the syntax of the output and return the corresponding778

↪→ QuantumCircuit (if it is valid)."""779

assert isinstance(output , str)780

try:781

Parse the OpenQASM 3.0 code782

circuit = loads(output)783

print(784

" The OpenQASM 3.0 code is valid and has been785

↪→ successfully loaded as a QuantumCircuit."786

)787

return circuit788

except Exception as e:789

print(f" Error: The OpenQASM 3.0 code is not valid.790

↪→ Details: {e}")791

return None792793

Listing 6: Utility functions for verification of Simon’s algorithm.

7. Dataset Creation Script: this script involves all the code necessary to create the data points from794

scratch. The file is named as "{algorithm_name}_dataset.py". The main function looks like this:795

796
def main():797

parser = argparse.ArgumentParser ()798

parser.add_argument(799

"-f",800

"--func",801

choices =["qasm", "json", "gate", "check"],802

help="The function to call: generate qasm circuit , json803

↪→ dataset or extract gate definition.",804

)805

args = parser.parse_args ()806

if args.func == "qasm":807

generate_circuit_qasm ()808

elif args.func == "json":809

generate_dataset_json ()810

elif args.func == "gate":811

extract_gate_definition ()812

elif args.func == "check":813

check_dataset ()814815

Listing 7: Main function of the dataset script for Simon’s algorithm.

Here the "generate_circuit_qasm()" function generates the raw data of quantum circuits in Open-816

QASM 3.0 format where the algorithm circuit and the oracle definition are blended, then "ex-817

tract_gate_definition()" function extracts the definition of oracles and formulates the algorithm818

circuits into the format suitable for model output. The "check_dataset()" function is used to check819

20

the correctness of the created data points and "generate_dataset_json()" function to combine the820

data into json format for easy integration with the benchmarking pipeline.821

A.2 Discussion of more Tasks822

Problem Encoding. In Section 4.1.1, we mentioned another category of oracle construction tasks823

referred to as "Problem Encoding", which involves applying quantum algorithms, such as Grover’s824

algorithm, to solve practical problems such as SAT and triangle finding. The crux of this process825

is encoding the problem constraints into Grover’s oracle, thereby making this a type of oracle826

construction task. Unlike quantum logic synthesis, which encodes an explicit function f(x) as a827

unitary operator Uf , this task involves converting the constraints of a particular problem into the828

required oracle form. We provide implementations of several concrete problems in this directory as829

demonstrations and will include more applications in future work.830

Quantum Information Protocols. In the "Quantum Information" section of the "Algorithm De-831

sign" task, we have also implemented three important quantum information protocols: Quantum832

Teleportation, Superdense Coding, and Quantum Key Distribution (BB84). A brief introduction to833

these protocols can be found in Appendix B. We did not include the experiments for these protocols834

as they involve communication between two parties, which is challenging to characterize with a single835

OpenQASM 3.0 file. We recommend revising the post-processing function as a general classical836

function to schedule the communication and processing between different parties specifically for these837

protocols. The fundamental quantum circuits and processing codes are provided in the repository.838

A.3 Datasheet839

Here we present a datasheet for the documentation of QCircuitNet.840

Motivation841

• For what purpose was the dataset created? It was created as a benchmark for the capability of842

designing and implementing quantum algorithms for LLMs.843

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,844

company, institution, organization)? The authors of this paper.845

• Who funded the creation of the dataset? We will reveal the funding resources in the Acknowledge-846

ment section of the final version.847

Composition848

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, coun-849

tries)? The dataset comprises problem description, generation code, algorithm circuit, post-850

processing function, oracle / gate definition, verification function, and dataset creation script for851

various quantum algorithms.852

• How many instances are there in total (of each type, if appropriate)? The dataset has 5 algorithms853

for oracle construction task and 10 algorithms for algorithm design task used for experiments.854

There are 3 quantum information protocols and additional problem encoding tasks not included for855

experiments.856

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of857

instances from a larger set? The dataset contains instances with restricted qubit numbers due to the858

current scale of real quantum hardware.859

• What data does each instance consist of? Qiskit codes, OpenQASM 3.0 codes, python scripts, and860

necessary text information.861

• Are relationships between individual instances made explicit? Yes, the way to create different862

instances are clearly described in Appendix A.1.863

21

• Are there recommended data splits? Yes, we recommend splitting the data according to different864

algorithms in algorithm design task.865

• Are there any errors, sources of noise, or redundancies in the dataset? There might be some small866

issues due to the dumping process of Qiskit and programming mistakes (if any).867

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites,868

tweets, other datasets)? The dataset is self-contained.869

• Does the dataset contain data that might be considered confidential (e.g., data that is protected by870

legal privilege or by doctor-patient confidentiality, data that includes the content of individuals’871

non-public communications)? No.872

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or873

might otherwise cause anxiety? No.874

Collection Process875

• How was the data associated with each instance acquired? The data is created by first com-876

posing Qiskit codes for each algorithm and then converting to OpenQASM 3.0 files using877

qiskit.qasm3.dump function, with additional processing procedure.878

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or879

sensors, manual human curation, software programs, software APIs)? Manual human programming880

and Qiskit APIs.881

• Who was involved in the data collection process (e.g., students, crowd workers, contractors), and882

how were they compensated (e.g., how much were crowd workers paid)? Nobody other than the883

authors of the paper.884

• Over what timeframe was the data collected? The submitted version of the dataset was created in885

May and June 2024.886

Uses887

• Has the dataset been used for any tasks already? It has been used in this paper to benchmark888

LLM’s ability for quantum algorithm design.889

• Is there a repository that links to any or all papers or systems that use the dataset? The only paper890

which uses the dataset for now is this paper.891

Distribution892

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,893

organization) on behalf of which the dataset was created? Yes, the dataset will be made publicly894

available on the Internet after the review process.895

• How will the dataset be distributed (e.g., tarball on website, API, GitHub)? It will be distributed896

on the GitHub platform.897

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or898

under applicable terms of use (ToU)? The dataset is distributed under CC BY 4.0.899

• Have any third parties imposed IP-based or other restrictions on the data associated with the900

instances? No.901

• Do any export controls or other regulatory restrictions apply to the dataset or to individual902

instances? No.903

Maintenance904

• Who will be supporting/hosting/maintaining the dataset? The authors of this paper.905

22

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The email906

for contact will be provided after the review process.907

• Is there an erratum? Not at this time.908

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?909

Yes, it will be continually updated.910

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them911

to do so? Yes, they can do so with the GitHub platform.912

A.4 Copyright and Licensing Terms913

This work is distributed under a CC BY 4.0 license. The implementation of the code references914

open-source projects such as Qiskit, QuantumKatas, Cirq, and NWQBench. We bear responsibility915

in case of violation of rights.916

B Additional Preliminaries for Quantum Computing and Quantum917

Information918

Quantum circuit diagram. A quantum algorithm is composed of a series of quantum gates. By919

default, a quantum algorithm starts from the all-0 state |0n⟩. A quantum algorithm can be illustrated920

by its quantum gate diagram, drawn from left to right. The initial all-0 state is placed at the left side921

of the diagram. After that, whenever we apply a quantum gate, it is placed on the corresponding922

qubits, from left to right. At the end of the quantum gates, we need to measure and read the outputs,923

and these measurements are placed at the right side of the diagram. See Figure 4 for the quantum924

gate diagram of Simon’s algorithm [Simon, 1997].925

|0⟩ H

Uf

H

... · · · · · · ...
|0⟩ H H

|x⟩

|0⟩
... · · · · · · ...

|y⟩

|0⟩

Figure 4: Quantum gate diagram of Simon’s algorithm.

Superdense coding. Superdense coding [Bennett and Wiesner, 1992] is a quantum communication926

protocol that allows Alice to transmit two classical bits of information to Bob by sending only one927

qubit, given that they share a pair of entangled qubits. The protocol can be divided into five steps:928

1. Preparation: Charlie prepares a maximally entangled Bell state, such as |β00⟩ = 1√
2
(|00⟩+929

|11⟩).930

2. Sharing: Charlie sends the qubit 1 to Alice and the qubit 2 to Bob. Alice and Bob can be931

separated by an arbitrary distance.932

3. Encoding: Depending on the two classical bits zx ∈ {00, 01, 10, 11} that Alice wants to933

send, she applies the corresponding quantum gate operation to her qubit, transforming the934

23

|0⟩ H • ZzXx • H

|0⟩

Figure 5: Quantum circuit diagram for superdense coding.

Bell state |β00⟩ into one of the four Bell states:935

|β00⟩ =
1√
2
(|00⟩+ |11⟩) if zx = 00

|β01⟩ =
1√
2
(|01⟩+ |10⟩) if zx = 01

|β10⟩ =
1√
2
(|00⟩ − |11⟩) if zx = 10

|β11⟩ =
1√
2
(|01⟩ − |10⟩) if zx = 11

Alice achieves these transformations by applying the operation ZzXx to her qubit, where Z936

is the phase-flip gate, X is the bit-flip gate. Specifically:937

• If zx = 00, Alice applies Z0X0 = I (identity gate).938

• If zx = 01, Alice applies Z0X1 = X (bit-flip gate).939

• If zx = 10, Alice applies Z1X0 = Z (phase-flip gate).940

• If zx = 11, Alice applies Z1X1 = ZX = iY gate.941

4. Sending: Alice sends her qubit to Bob through a quantum channel.942

5. Decoding: Bob applies a CNOT gate followed by a Hadamard gate to the two qubits,943

transforming the entangled state into the corresponding computational basis state |zx⟩. By944

measuring the qubits, Bob obtains the two classical bits zx sent by Alice.945

Superdense coding exploits the properties of quantum entanglement to transmit two classical bits of946

information using only one qubit. The quantum circuit diagram for superdense coding is shown in947

Figure 5.948

Quantum teleportation. Quantum teleportation [Bennett et al., 1993] is a technique for transferring949

quantum information from a sender (Alice) to a receiver (Bob) using shared entanglement and classical950

communication. The protocol can be described as follows:951

1. Preparation: Telamon prepares a maximally entangled Bell state, such as |β00⟩ =952
1√
2
(|00⟩+ |11⟩).953

2. Sharing: Alice has qubit 1 in the state |ψ⟩ = α|0⟩+ β|1⟩, which she wants to teleport to954

Bob. Telamon shares qubit 2 with Alice and qubit 3 with Bob, creating the shared entangled955

state |β00⟩23.956

3. Encoding: Alice wants to teleport an unknown quantum state |ψ⟩ = α|0⟩+ β|1⟩ to Bob.957

She applies a CNOT gate to qubits 1 and 2, with qubit 1 as the control and qubit 2 as the958

target. Then, she applies a Hadamard gate to qubit 1. The resulting state of the three-qubit959

system is:960

|Ψ⟩ = 1

2
[|β00⟩(α|0⟩+ β|1⟩) + |β01⟩(α|1⟩+ β|0⟩)

+ |β10⟩(α|0⟩ − β|1⟩) + |β11⟩(α|1⟩ − β|0⟩)].

4. Measurement: Alice measures qubits 1 and 2 in the Bell basis and obtains one of four961

possible outcomes: |β00⟩, |β01⟩, |β10⟩, or |β11⟩. This measurement collapses the three-qubit962

24

|ψ⟩ • H •

|β00⟩A •

|β00⟩B Xx Zz

Figure 6: Quantum circuit diagram for quantum teleportation

state into one of the following:963

|β00⟩ ⊗ (α|0⟩+ β|1⟩)
|β01⟩ ⊗ (α|1⟩+ β|0⟩)
|β10⟩ ⊗ (α|0⟩ − β|1⟩)
|β11⟩ ⊗ (α|1⟩ − β|0⟩)

5. Classical Communication: Alice sends the result of her measurement (two classical bits)964

to Bob via a classical channel.965

6. Reconstruction: Depending on the classical information received from Alice, Bob applies966

the operation ZzXx to qubit 3, where z and x correspond to the two classical bits sent by967

Alice:968

• If Alice measured |β00⟩, she sends zx = 00, and Bob applies Z0X0 = I (identity969

operation).970

• If Alice measured |β01⟩, she sends zx = 01, and Bob applies Z0X1 = X (bit-flip).971

• If Alice measured |β10⟩, she sends zx = 10, and Bob applies Z1X0 = Z (phase-flip).972

• If Alice measured |β11⟩, she sends zx = 11, and Bob applies Z1X1 = ZX = iY973

(bit-flip and phase-flip).974

After applying the appropriate operation, Bob’s qubit 3 will be in the state |ψ⟩ = α|0⟩+β|1⟩,975

which is the original state that Alice wanted to teleport.976

The quantum circuit diagram for quantum teleportation is shown in Figure 6.977

Quantum key distribution. Quantum key distribution (QKD) [Bennett and Brassard, 1984] is a978

secure communication protocol that allows two parties, Alice and Bob, to produce a shared random979

secret key, which can then be used to encrypt and decrypt messages. The security of QKD is based980

on the fundamental principles of quantum mechanics that measuring a qubit can change its state. One981

of the most well-known QKD protocols is the BB84 protocol, which works as follows:982

1. Alice randomly generates a bit string and chooses a random basis (X or Z) for each bit. She983

then encodes the bits into qubits using the chosen bases and sends them to Bob through a984

quantum channel.985

2. Bob measures the received qubits in randomly chosen bases (X or Z) and records the results.986

3. Alice and Bob communicate over a public classical channel to compare their basis choices.987

They keep only the bits for which their basis choices coincide and discard the rest.988

4. Alice and Bob randomly select a subset of the remaining bits and compare their values. If989

the error rate is below a certain threshold, they conclude that no eavesdropping has occurred,990

and the remaining bits can be used as a secret key. If the error rate is too high, they abort the991

protocol, as it indicates the presence of an eavesdropper (Eve).992

The security of the BB84 protocol relies on the fact that any attempt by Eve to measure the qubits993

during transmission will introduce detectable errors, alerting Alice and Bob to the presence of an994

eavesdropper.995

25

C Additional Experiment Results996

C.1 Metrics997

BLEU Score. Bilingual Evaluation Understudy (BLEU) score is a metric used to evaluate the998

quality of machine-translated text compared to human-translated text. It measures how close the999

machine translation is to one or more reference translations. The BLEU score evaluates the quality1000

of text generated by comparing it with one or more reference texts. It does this by calculating the1001

n-gram precision, which means it looks at the overlap of n-grams (contiguous sequences of n words)1002

between the generated text and the reference text. Originally the BLEU score ranges from 0 to 1,1003

where 1 indicates a perfect match with the reference translations. Here rescaling the score makes it1004

ranges from 0 to 100.1005

The BLEU score, originally designed for machine translation, can also be effectively used for1006

evaluating algorithm generation tasks. Just as BLEU measures the similarity between machine-1007

translated text and human reference translations, it can measure the similarity between a generated1008

algorithm and a gold-standard algorithm. This involves comparing sequences of tokens to assess how1009

closely the generated output matches the reference solution. In the context of algorithm generation, n-1010

grams can represent sequences of tokens or operations in the code. BLEU score captures the precision1011

of these n-grams, ensuring that the generated code aligns closely with the expected sequences found1012

in the reference implementation.1013

The formula for BLEU score is given by:1014

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
.

where BP is the acronym for brevity penalty, wn is the weight for the n-gram precision (typically 1
N1015

for uniform weights), pn is the precision for n-grams. BP is calculated as:1016

BP =

{
1 if c > r

e1−
r
c if c ≤ r

.

where c is the length of the generated text and r is the length of the reference text. Furthermore,1017

n-gram precision pn is calculated as:1018

pn =

∑
C∈Candidates

∑
n−gram∈C min(Count(n− gram in candidate),Count(n− gram in references))∑

C∈Candidates
∑

n−gram∈C Count(n− gram in candidate)
.

This formulation ensures that the BLEU score takes into account both the precision of the generated1019

n-grams and the overall length of the translation, providing a balanced evaluation metric.1020

Byte Perplexity. Perplexity is a measure of how well a probability distribution or a probabilistic1021

model predicts a sample. In the context of language models, it quantifies the uncertainty of the model1022

when it comes to predicting the next element in a sequence. Byte perplexity specifically deals with1023

sequences of bytes, which are the raw binary data units used in computer systems. For our purposes,1024

we consider byte perplexity under UTF-8 encoding, a widely used character encoding standard that1025

represents each character as one or more bytes.1026

For a given language model, let p(xi|x<i) be the probability of the i-th byte xi given the preceding1027

bytes x<i. If we have a sequence of bytes x = (x1, x2, . . . , xN), the perplexity PP (x) of the model1028

on this sequence is defined as:1029

PP (x) = 2−
1
N

∑N
i=1 log2 p(xi|x<i).

A notable feature of byte perplexity is that, it does not rely on any specific tokenizer, making it1030

versatile for comparing different models. Therefore, byte perplexity can be used to measure the1031

26

performance in quantum algorithm generation tasks. In such tasks, a lower byte perplexity indicates a1032

better-performing model, as it means the model is more confident in its predictions of the next byte in1033

the sequence.1034

C.2 Experiment Results1035

Due to considerable variances in the experiments, we conducted additional rounds to obtain more1036

representative data.1037

The BLEU scores for various quantum algorithm design tasks are illustrated in Figure 7. This1038

figure not only displays the average performance of each model but also highlights the differences1039

in performance across individual quantum algorithm tasks. The first notable observation is that1040

the figure clearly demonstrates the varying levels of difficulty among quantum algorithms. For1041

example, models achieve higher BLEU scores on tasks such as Bernstein-Vazirani and Deutsch-1042

Jozsa, whereas they perform significantly worse on tasks like Grover, phase estimation, and quantum1043

Fourier transform. This indicates that the former tasks are considerably easier than the latter ones.1044

Another significant observation is that most models score higher in a five-shot prompt compared to a1045

one-shot prompt, which confirms the large language models’ ability to improve performance through1046

contextual learning.1047

Similar patterns are observed in oracle construction tasks, as illustrated in Figure 8. The figure1048

highlights that the Diffusion Operator task is notably more challenging than the Grover oracle1049

construction task. Interestingly, we found that adding more in-context examples actually reduced1050

the performance of the Phi-3-medium-128k-instruct and Mistral-7B-v0.3 models. This decline in1051

performance could be attributed to the significant differences between each oracle construction task,1052

which may be too out-of-distribution. Consequently, the additional examples might cause the models1053

to overfit to the specific examples provided in the context, rather than generalizing well across1054

different tasks.1055

In addition to evaluating the BLEU score, we conducted an experiment to measure the correctness of1056

the machine-generated algorithms, and the results are shown in Table 3.3 By running a verification1057

function, we discovered that phase estimation and the swap test are significantly more challenging1058

than other problems, leading most models to score -1 (indicating they cannot even generate the correct1059

syntax). Notably, the BLEU score for the swap test is above average compared to other algorithms,1060

yet almost none of the models produced a correct algorithm. This discrepancy highlights a critical1061

limitation of using BLEU as a metric for algorithm evaluation. BLEU measures average similarity,1062

but even a single mistake in an algorithm can render it entirely incorrect, thus failing to capture the1063

true accuracy and functionality of the generated algorithms. Another important finding is that in a1064

five-shot setting, GPT-4 and GPT-3.5 surpass all other models by a large margin. This demonstrates1065

their exceptional capabilities, particularly in long-context comprehension and in-context learning.1066

These models not only excel in understanding and generating text based on minimal examples but1067

also maintain high performance over extended sequences, highlighting their advanced architecture1068

and training methodologies.1069

3When we prepare supplementary materials, we observe that these experiments have considerable variances,
and they are hence executed by additional rounds to obtain more representative data. As a result, we refreshed
the data in Table 1 and Table 2 in the main body, and we also place Table 3 and Table 4 here.

27

Table 3: Benchmarking algorithm design in verification function scores.

Model Shot Bernstein-
Vazirani

Deutsch-
Jozsa Grover Phase

Estimation

Quantum
Fourier

Transform
Simon GHZ State

Random
Number

Generator

Swap
Test W State Average

gpt-4o-2024-05-13 1 -0.8462 -0.5538 -0.7089 -1.0000 -1.0000 -0.6692 -0.8462 -1.0000 -1.0000 -1.0000 -0.8624
gpt-4o-2024-05-13 5 -0.3054 0.0135 -0.2071 -0.5357 -0.6154 -0.3692 -0.1538 -0.4967 -0.8700 -0.9231 -0.4463
Meta-Llama-3-8B 1 -0.2308 -0.7692 -0.7143 -0.8571 -0.9231 -1.0000 -0.6154 -0.9285 -1.0000 -0.3846 -0.7423
Meta-Llama-3-8B 5 0.0769 -0.2308 -0.5393 -1.0000 -0.7692 -0.8462 -0.3846 -0.7276 -1.0000 -0.1538 -0.5575
gpt-3.5-turbo-0125 1 -0.8462 -0.7154 -0.5679 -1.0000 -1.0000 -0.6231 -0.8462 -1.0000 -1.0000 -1.0000 -0.8599
gpt-3.5-turbo-0125 5 -0.6154 -0.0571 -0.0500 -1.0000 -0.6538 -0.1646 -0.2308 -0.4513 -0.8778 -0.8462 -0.4947

Phi-3-medium-128k-instruct 1 -0.8462 -0.7750 -1.0000 -1.0000 -1.0000 -1.0000 -0.3846 -1.0000 -0.8878 -0.8462 -0.8740
Phi-3-medium-128k-instruct 5 -0.6577 -0.3821 -0.8286 -1.0000 -1.0000 -0.6100 -0.9231 -0.3569 -0.8333 -0.8462 -0.7438

Mistral-7B-v0.3 1 -0.8462 -0.8590 -0.7107 -1.0000 -1.0000 -0.9192 -0.7692 -1.0000 -1.0000 -0.6923 -0.8797
Mistral-7B-v0.3 5 -0.6246 -0.6667 -0.4071 -0.8571 -0.9231 -0.9115 -0.6923 -0.8820 -1.0000 -0.5385 -0.7503

The verification results of the oracle construction task, as shown in Table 4, confirm our previous1070

conclusions. In the five-shot setting, GPT-4 and GPT-3.5 consistently outperform all other models.1071

Additionally, this table highlights the inconsistency between BLEU scores and verification scores.1072

For instance, while the Diffusion Operator task achieves the lowest BLEU score, it is the Grover1073

oracle construction that receives the lowest verification score. This discrepancy suggests that BLEU1074

scores may not fully capture the performance of models in certain complex tasks.1075

Table 4: Benchmarking oracle construction in verification function scores.

Model Shot Bernstein-
Vazirani

Deutsch-
Jozsa

Diffusion-
Operator Grover Simon Average

gpt-4o-2024-05-13 1 -0.3200 -0.0100 -0.8462 -0.9885 -0.4674 -0.5264
gpt-4o-2024-05-13 5 -0.1100 0.0800 -0.3077 -0.9540 -0.0870 -0.2757
Meta-Llama-3-8B 1 -0.7300 -0.5000 -0.3846 -1.0000 -0.6848 -0.6599
Meta-Llama-3-8B 5 -0.0500 0.1700 -0.8462 -1.0000 -0.6413 -0.4735
gpt-3.5-turbo-0125 1 -0.3500 -0.0400 -0.8462 -1.0000 -0.3696 -0.5211
gpt-3.5-turbo-0125 5 -0.1100 0.0200 -0.3077 -0.9770 -0.1087 -0.2967

Phi-3-medium-128k-instruct 1 -0.6800 -0.6100 -0.9231 -1.0000 -0.7500 -0.7926
Phi-3-medium-128k-instruct 5 -0.5400 -0.4300 -1.0000 -1.0000 -0.8370 -0.7614

Mistral-7B-v0.3 1 -0.4000 -0.4300 -0.9231 -0.9540 -0.6087 -0.6632
Mistral-7B-v0.3 5 -0.3700 -0.1300 -1.0000 -0.9195 -0.2391 -0.5317

The Byte Perplexity results, shown in Figure 9 and Figure 10, provide valuable insights into the1076

performance of our model. Evaluated in a zero-shot setting, byte perplexity trends closely mirror1077

those observed with BLEU scores. This alignment suggests that our model’s predictive capabilities1078

are consistent across Perplexity and BLEU evaluation metrics. Specifically, in the context of quantum1079

algorithm design tasks, the results indicate that the Bernstein-Vazirani and Deutsch-Jozsa algorithms1080

are relatively straightforward for the model, whereas the Simon algorithm presents greater difficulty.1081

This differentiation highlights the varying levels of complexity inherent in these quantum algorithms.1082

C.3 Case Study1083

After carefully examining the model’s output, we observed several interesting patterns. We present a1084

series of case studies to illustrate these observations and provide possible explanations.1085

Low Score for GPT-4o in One-Shot Setting. At first glance, it is surprising that GPT-4o performs1086

poorly on many quantum algorithms in the algorithm design task in the one-shot setting compared to1087

Llama3-8B. Given that Llama3-8B has a relatively smaller parameter scale, the results should have1088

been the other way around. A closer examination of the model’s output reveals the potential reason:1089

while Llama3-8B closely mimics the input examples, GPT-4o tends to improvise, resulting in outputs1090

that are not well captured by the current syntax support. Here are several concrete examples.1091

This is the OpenQASM 3.0 code output for the W state with n = 7. In this code, GPT-4o uses the1092

advanced "for" loop syntax newly introduced in OpenQASM 3.0 to create the circuit. Although1093

the code fails to produce the W state, it is syntactically correct. However, the Qiskit.qasm3 import1094

module, which converts OpenQASM 3.0 files to QuantumCircuit objects and is used in our verification1095

28

0 10 20 30 40 50 60 70 80

BLEU Score

Bernstein-Vazirani

Deutsch-Jozsa

Grover

Phase Estimation

Quantum Fourier Transform

Simon

GHZ State

Random Number Generator

Swap Test

W State

Algorithm Design

Models
gpt-4o-2024-05-13 (1-shot)
gpt-4o-2024-05-13 (5-shot)
Meta-Llama-3-8B (1-shot)
Meta-Llama-3-8B (5-shot)
gpt-3.5-turbo-0125 (1-shot)
gpt-3.5-turbo-0125 (5-shot)
Phi-3-medium-128k-instruct (1-shot)
Phi-3-medium-128k-instruct (5-shot)
Mistral-7B-v0.3 (1-shot)
Mistral-7B-v0.3 (5-shot)

Figure 7: Benchmarking algorithm design in BLEU scores. The green dots represent each model’s
mean BLEU score across 10 algorithms, while the gray lines show how much its score on each
algorithm deviates from this mean.

function to check the correctness of the syntax of output OpenQASM codes, is still in the experimental1096

stage and does not support many of OpenQASM 3.0’s advanced features. As a result, GPT-4o’s use1097

of these features causes the code to fail syntax validation, resulting in a score of -1.1098

1099
OPENQASM 3.0;1100

include "stdgates.inc";1101

qubit [7] q;1102

h q[0];1103

for i in[1:6] {1104

cx q[i-1], q[i];1105

}11061107

Listing 8: OpenQASM 3.0 Code output by GPT-4o for W state with n = 7.

29

0 10 20 30 40 50 60 70 80

BLEU Score

Bernstein Vazirani

Deutsch Jozsa

Diffusion Operator

Grover

Simon

Oracle Construction

Models
gpt-4o-2024-05-13 (1-shot)
gpt-4o-2024-05-13 (5-shot)
Meta-Llama-3-8B (1-shot)
Meta-Llama-3-8B (5-shot)
gpt-3.5-turbo-0125 (1-shot)
gpt-3.5-turbo-0125 (5-shot)
Phi-3-medium-128k-instruct (1-shot)
Phi-3-medium-128k-instruct (5-shot)
Mistral-7B-v0.3 (1-shot)
Mistral-7B-v0.3 (5-shot)

Figure 8: Benchmarking oracle construction in BLEU scores. The green dots represent each model’s
mean BLEU score across 5 oracles, while the gray lines show how much its score on each oracle
deviates from this mean

Here is another example where GPT-4o decides to assign novel names to its qubit registers, leading1108

to a conflict in the symbol table in Scope.GLOBAL. If we substitute all the registers x, y, and s with1109

new names, the code can pass syntax validation successfully and is close to the correct solution.1110

1111
OPENQASM 3.0;1112

include "stdgates.inc";1113

include "oracle.inc";1114

bit [9] s;1115

qubit [10] x;1116

qubit [11] y;1117

h x[0];1118

h x[1];1119

h x[2];1120

h x[3];1121

30

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Perplexity

Bernstein Vazirani

Deutsch Jozsa

Grover

Phase Estimation

Quantum Fourier Transform

Simon

GHZ State

Random Number Generator

Swap Test

W State

Algorithm Design

Models
Meta-Llama-3-8B
Phi-3-medium-128k-instruct
Mistral-7B-v0.3

Figure 9: Benchmarking algorithm design in perplexity. The green dots represent each model’s
mean perplexity score across 10 algorithms, while the gray lines show how much its score on each
algorithm deviates from this mean.

h x[4];1122

h x[5];1123

h x[6];1124

h x[7];1125

h x[8];1126

Oracle x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], y;1127

h x[0];1128

h x[1];1129

h x[2];1130

h x[3];1131

h x[4];1132

h x[5];1133

h x[6];1134

h x[7];1135

31

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Perplexity

Bernstein Vazirani

Deutsch Jozsa

Diffusion Operator

Grover

Simon

Oracle Construction

Models
Meta-Llama-3-8B
Phi-3-medium-128k-instruct
Mistral-7B-v0.3

Figure 10: Benchmarking oracle construction in perplexity. The green dots represent each model’s
mean perplexity score across 5 oracles, while the gray lines show how much its score on each oracle
deviates from this mean.

h x[8];1136

measure x[0] -> s[0];1137

measure x[1] -> s[1];1138

measure x[2] -> s[2];1139

measure x[3] -> s[3];1140

measure x[4] -> s[4];1141

measure x[5] -> s[5];1142

measure x[6] -> s[6];1143

measure x[7] -> s[7];1144

measure x[8] -> s[8];11451146

Listing 9: OpenQASM 3.0 Code output by GPT-4o for Bernstein-Vazirani Problem with n = 9.

32

Since Llama3-8B tends to follow the provided example more closely, it avoids errors like this.1147

These factors may help explain why GPT-4o performs poorly in the one-shot setting compared to1148

Llama3-8B.1149

High Score for GPT-4o in Five-Shot Setting. In contrast to its relatively low score in the one-1150

shot setting, GPT-4o achieves the best overall performance in the five-shot setting for both oracle1151

construction and algorithm design tasks.1152

Unlike in the one-shot setting, where GPT-4o frequently uses advanced OpenQASM 3.0 features, it1153

learns from the examples in context and uses simpler syntax in the five-shot setting. For the W state1154

task, here is an output in the five-shot setting:1155

1156
OPENQASM 3.0;1157

include "stdgates.inc";1158

qubit [3] q;1159

h q[0];1160

cx q[0], q[1];1161

h q[1];1162

cx q[1], q[2];1163

h q[2];11641165

Listing 10: OpenQASM 3.0 Code output by GPT-4o for W state with n = 3.

This output avoids the use of "for" loops and successfully passes the syntax validation test, although1166

it still cannot generate the W state correctly.1167

In addition to adapting to plain syntax through in-context learning, GPT-4o achieves outstanding1168

performance on more complicated tasks such as phase estimation. Here is the model output of1169

GPT-4o on the phase estimation task with qubit number n = 2.1170

1171
OPENQASM 3.0;1172

include "stdgates.inc";1173

include "oracle.inc";1174

bit [2] c;1175

qubit [2] q;1176

Psi q[0];1177

h q[1];1178

CU_0 q[0], q[1];1179

h q[1];1180

c[0] = measure q[1];1181

c[1] = measure q[0];11821183

Listing 11: OpenQASM 3.0 Code output by GPT-4o for Phase Estimation with n = 2.

1184
from qiskit import transpile1185

1186

1187

def run_and_analyze(circuit , aer_sim):1188

""" Run the circuit and analyze the result."""1189

circ = transpile(circuit , aer_sim)1190

result = aer_sim.run(circ , shots =1).result ()1191

counts = result.get_counts ()1192

phase_str = list(counts.keys())[0]1193

phase = int(phase_str , 2) / 2**21194

return phase11951196

Listing 12: Post-processing code output by GPT-4o for Phase Estimation with n = 2.

This suite of OpenQASM 3.0 circuits and post-processing functions successfully outputs the phase1197

within the required precision for the test case, resulting in an impressive verification score of 1.0.1198

Despite the small number of qubits and differences from the reference implementation, the accuracy1199

achieved is noteworthy.1200

33

These phenomena reflect that GPT-4o has impressive in-context learning abilities and overall better1201

capabilities in designing and implementing quantum algorithms.1202

34

	Introduction
	Related Work
	Preliminaries for Quantum Computing
	QCircuitNet Dataset
	Task Suite
	Task I: Oracle Construction
	Task II: Quantum Algorithm Design

	Dataset Structure

	Experiments
	Methodology for Benchmarking
	Results
	Observations and Analysis

	Conclusions and Future Work
	Details of QCircuitNet
	Format
	Discussion of more Tasks
	Datasheet
	Copyright and Licensing Terms

	Additional Preliminaries for Quantum Computing and Quantum Information
	Additional Experiment Results
	Metrics
	Experiment Results
	Case Study

