
Appendix Outline572

. This appendix is organized as follows:573

• In Appendix A, we provide more detailed results on additional datasets for the different574

components discussed in Section 4. Specifically, in subsections Appendices A.1 to A.7, we575

present results on batch size, data augmentation, model architectures, pre-training, SSL,576

Sharpness-Aware Minimization, and label smoothing. These subsections delve into the577

specific effects and outcomes of each component.578

• In Appendix A.8, we examine the relationship between the training and test distributions579

in imbalanced training. We explore the optimal balance of training data and discuss the580

potentially destructive impact of collecting additional majority samples.581

• In Appendix A.9, we present additional and extended experimental results that compare the582

methods proposed in our paper with the baseline methods.583

• In Appendix A.10, we provide additional experimental results that illustrate how the training584

process evolves for imbalanced data.585

• In Appendix A.11, we include decision boundary visualizations for imbalanced training.586

Specifically, we demonstrate that Sharpness-Aware Minimization (SAM-A) helps decision587

regions take up similar volumes, whereas standard training routines tend to shrink-wrap the588

decision boundaries around minority samples.589

• In Appendix B, we provide detailed information on the hyperparameters, datasets, and590

architectures used in our experiments.591

• In Appendix C, we discuss the limitations of our study. This section addresses potential592

constraints, challenges, and areas for improvement in our research.593

• Lastly, in Appendix D, we discuss the broader impact of our work. This section explores the594

implications, significance, and potential applications of our findings beyond the scope of the595

immediate study.596

A Additional Experiments597

A.1 Batch Size598

To investigate the impact of batch size in the context of class imbalance, we train networks across599

various training ratios using different batch sizes. In order to compare the accuracy for each training600

ratio, we calculate the percentage improvement over the baseline (set as the best batch size of 128).601

Specifically, if we denote Accρb as the accuracy on the imbalanced dataset with training ratio ρ and602

batch size b, we define the adjusted accuracy newAcc
ρ
b as603

Ācc
ρ
b =

Accρb −Accρ128
Accρb

. (1)

Positive values represent higher accuracy compared to the baseline, while negative values denote604

lower accuracy. This normalization allows us to examine the relative effect of batch size. As shown605

in the main text and Figure 6, data with a high degree of class imbalance tends to benefit from smaller606

batch sizes, despite the fact that small batches often do not contain any minority samples.607

A.2 Data Augmentation608

In order to evaluate and compare the effectiveness of various popular augmentation tech-609

niques—including horizontal flips, random crops, AugMix [28], TrivialAugmentWide [49], and610

AutoAugment [11]—we investigate their impact on the accuracy of minority and majority classes611

across a range of training ratios.612

We measure the relative improvement in performance by comparing the accuracy achieved with data613

augmentation to that achieved without it. We thus plot the percentage improvement as a function of614

the training ratio in Figure 7.615
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Figure 6: Batch size matter more for imbalanced data where small batch sizes are best, whereas the curve
corresponding to balanced data is flat. Percentage improvement in test accuracy over the default batch size of
128 at different training ratios. Experiments conducted on CIFAR-10.

Our findings reveal that while the newer TrivialAugment method exhibits superior performance on616

balanced training data, the older AutoAugment method yields better results on highly imbalanced617

data.618
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Figure 7: Optimal augmentations depend on the imbalance ratio. We plot the percent improvement in test
accuracy for different augmentations compared to training without augmentations across train ratios for different
augmentations. We see that TrivialAugment, which is known to outperform AutoAugment on class-balanced
data, actually performs worse when data is severely imbalanced. Experiments conducted on CIFAR-100.

A.3 Model architecture619

In Figure 9, we illustrate the impact of model size on the performance of the CIFAR-10 dataset with620

a training ratio of 0.001. The trend observed is similar to the results discussed in the main text, where621

increasing the model size leads to overfitting in the case of imbalanced training.622
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Figure 8: Strong augmentations are particularly effective at improving minority class accuracy under
severe class imbalance. The percent improvement in test accuracy of TrivialAugment compared to training
without any augmentation as a function of the training ratio. Experiments conducted on CIFAR-10. Error bars
represent one standard error over 5 trials.
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Figure 9: Bigger architectures overfit on class-imbalanced data. Experiments conducted on CIFAR-10. Error
bars represent one standard error over 5 trials.

A.4 Pre-training623

To assess the effectiveness of pre-training, we fine-tune several pre-trained models on downstream624

datasets with varying training ratios. In addition to the main body, Figure 11 illustrates the percentage625

improvement in test accuracy compared to random initialization for supervised pre-training on626

ImageNet-1k and ImageNet-21k, as well as SimCLR on ImageNet-1k (which is a Self-Supervised627

Learning (SSL) method), measured by downstream performance on CIFAR-10. This comparison is628

made across different training ratios (Figure 4). Let AccρRand denote the accuracy of the model trained629

from random initialization at a training ratio ρ. The relative improvement is then defined by:630

Ācc
ρ
b =

Accρb −AccρRand

AccρRand
(2)
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Figure 10: Bigger architectures overfit on class-imbalanced data. Experiments were conducted on CINIC-10
with an imbalanced train ratio of 0.001. Error bars represent one standard error over 5 trials.

Positive values indicate an improvement in performance compared to random initialization. It is631

clear that all pre-training methods improve performance when compared to random initialization.632

Interestingly, these improvements are significantly more pronounced under imbalanced conditions.
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Figure 11: Pretraining yields bigger improvements on more imbalanced data. The improvement in the test
accuracy compared to training from random initialization. Experiments conducted on CIFAR-10.

633

A.5 SSL634

Self-supervised learning (SSL) has gained substantial traction as a method of representation learning635

across multiple domains, including computer vision, natural language processing, and tabular data636

[10, 36, 55]. Networks pretrained using SSL often demonstrate more transferable representations637

than those pretrained with supervision [21]. Pre-training traditionally consists of a two-stage process:638

initial learning on an upstream task followed by fine-tuning on a downstream task. However, the639

limitation in many use-cases is the lack of large-scale pretraining datasets. In order to solve this640

problem, our approach diverges from this two-stage process by merging supervised learning with an641
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auxiliary self-supervised loss function during from-scratch training, effectively eliminating the need642

for any pertaining.643

For this, we employ the Variance-Invariance-Covariance Regularization (VICReg) objective [4]:644

Given two batches of embeddings, Z = [f(x1), . . . , f(xB)] and Z ′ = [f(x′
1), . . . , f(x

′
B)], each of645

size (B ×K), where xi and x′
i are two distinct random augmentations of a sample Ii, we derive the646

covariance matrix C ∈ RK×K from [Z,Z ′].647

Consequently, the VICReg loss can be articulated as:648

LSSL=
1

K

K∑
k=1

αmax
(
0, γ −

√
Ck,k + ϵ

)
+β

∑
k′ ̸=k

(Ck,k′)
2

+ γ∥Z −Z ′∥2F /N.

In our experiments, the total loss is given by

LJoint−SSL = LSSL + λLSupervised.

Note that the SSL loss function is independent of the class-imbalanced labels.649

A.6 SAM650

Sharpness-Aware Minimization [18] is an optimization technique that seeks to find “flat” minima651

of the loss function, often leading to improved generalization. This method consists of taking an652

initial ascent step followed by a descent step, aiming to find parameters that minimize the increase653

in loss resulting from the ascent step. Huang et al. [33] demonstrate that flat minima correspond to654

wide-margin decision boundaries.655

Given a model parameterized by weights θ and a loss function L(θ) that we aim to minimize, SAM656

performs two steps in each iteration:657

1. First step (gradient ascent): Perform a scaled gradient ascent step from the current model658

weights θ:659

θ′ = θ + ρ|∇L(θ)|2
∇L(θ)

|∇L(θ)|2
(3)

2. Second step (weight update): Update the weights from θ in the negative direction of the660

gradient computed at the post-ascent parameter vector:661

θ = θ − η∇L (θ′) (4)

In the above steps, η represents the learning rate, ρ is a hyperparameter determining the size of the662

neighborhood around the current weights, and | · |2 denotes the Euclidean norm.663

SAM was initially developed for balanced datasets, where the decision boundaries for each class have664

comparable areas. However, this assumption does not hold true for imbalanced datasets. To address665

this, we adapted SAM for use with class-imbalanced datasets by increasing the flatness specifically666

for minority class loss terms. We propose a new method - SAM-Asymmetric (SAM-A). Our method667

adjusts the ascent step size (ρ) in SAM’s inner loop for minority classes by employing a step size668

inversely proportional to the classes’ proportions.669

Let pi be the proportion of class i in the training set. We define the class-conditional ascent step size670

as:671

ρi =
ρ

1− pi
, (5)

where ρ is a scaling factor.672

By doing this, we widen the margins around under-represented classes, potentially improving673

generalization in imbalanced datasets.674
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A.7 Label Smoothing675

Label smoothing is a regularization technique often used in training deep learning models. It676

mitigates the model’s excessive confidence in class labels, which can improve generalization and677

reduce overfitting. However, traditional label smoothing assumes a balanced class distribution, which678

is not always the case in real-world datasets.679

To adapt label smoothing for imbalanced training, we propose a class-conditional label smoothing680

technique. Instead of using a uniform smoothing parameter ϵ, we use a different ϵi for each class i,681

which is proportional to the inverse of the class’s proportion within the dataset.682

Let pi be the proportion of class i in the training set. We define the class-conditional smoothing683

parameter as:684

ϵi =
ϵ

1− pi
, (6)

where ϵ is a scaling factor.685

We then apply label smoothing as follows. Let p be the model’s output probability distribution over686

K classes, and let qi be the target distribution for class i. The smoothed target distribution is:687

qi,j = (1− ϵi)Iy=j +
ϵi
K

, (7)

where j ∈ 1, 2, ...,K, y is the true class, and I. is the indicator function.688

During training, we minimize the cross-entropy loss between the model’s predictions p and the689

class-conditional smoothed labels qi:690

L = −
K∑
i=1

qi,y log py (8)

By using class-conditional label smoothing, we apply more smoothing to the minority classes and691

less to the majority classes, which can help the model generalize better when the class distribution is692

imbalanced.693

A.8 Data Curation694

Common intuition dictates that training on data that is more balanced than the testing distribution695

can improve representation learning by preventing overfitting to minority samples [22, 8, 24]. In this696

section, we put that intuition to the test by examining the optimal balance of training data. Moreover,697

while minority class samples may be scarce, a practitioner may be able to collect additional majority698

class training samples at will, so we also examine the potentially destructive impact of collecting699

additional majority samples.700

A.8.1 The Relationship Between Train-Time and Test-Time Imbalance701

The literature on training routines for class imbalance in machine learning is filled with methods702

designed for scenarios in which training data is highly imbalanced but testing data is balanced.703

However, data encountered during deployment is typically also imbalanced. Therefore, we disentangle704

training and testing balances and investigate how sensitive models are to discrepancies between705

the two. This study may be particularly important if one considers collecting training data for a706

downstream application. Should we gather training data with the same balance we anticipate during707

testing? How worried should we be if the data we encounter during deployment is more or less708

balanced than the training data we gathered?709

We begin by illustrating three scenarios in Figure 12: (1) identical training and testing ratios, (2)710

balanced training, and (3) the training ratio with the lowest test error (optimal training ratio). We see711

that training on data with the same imbalance as the testing data is superior to training on balanced712

data, and the two strategies only approach equal performance when the testing data becomes balanced.713

We share additional results over different datasets and models in Figure 20, Figure 21, and Figure 22.714
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We then plot for each test ratio the corresponding train ratio that results in the lowest test error in715

Figure 13. If the two ratios are perfectly aligned, then points will lie on the diagonal. Indeed, the716

points are close to the diagonal, indicating that it is best to train with a very similar imbalance ratio to717

the test dataset, especially for highly imbalanced testing scenarios.718

In these previous experiments, we fixed the size of the training set, but what happens as we gather719

more and more training data? In Figure 16, we train and evaluate a network on different imbalance720

ratios across training set sizes, and we plot the misalignment between the train and test ratios, referring721

to the average distance between the optimal train ratio and the specified test ratio. As the amount of722

training data increases, we see that the optimal training ratio becomes more and more close to the723

ratio of the test data.724
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Figure 12: Imbalanced training data is optimal for imbalanced testing scenarios. Test accuracy as a function
of the test ratio for different training setups. Experiments conducted on CIFAR-100.

A.8.2 When More Data Degrades Performance725

In practice, a practitioner may not have precise control over the data they collect. Will collecting726

additional samples always help performance? Instead of fixing the total number of samples and727
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Figure 13: The optimal train ratio is closely aligned with the test ratio. Experiments conducted on CIFAR-
100.
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Figure 14: The optimal train ratio is closely aligned with the test ratio. Experiments conducted on CINIC-10.
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Figure 15: Test accuracy on the minority classes as a function of the test ratio for different training setups.
‘Equal’ denotes the same balance between training and testing, and ‘Optimal’ is the optimal trainset balance
amongst the ratios we try. Experiments conducted on CIFAR-10.
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Figure 16: Alignment between train and test proportions improves as the number of training samples
increases. Train/test misalignment is calculated by taking the mean over test ratios of the difference between the
best train ratio (train ratio that gives maximum test accuracy) and the test ratio. If misalignment is 0, then the
best train ratio is always the same as the test ratio.
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Figure 17: The potentially destructive effects of adding majority class samples. We fix the number of
minority samples to be 200 and vary the number of majority samples. Experiments conducted on CIFAR-100.

Table 5: Our training routines exceed previous state-of-the-art or improve existing methods when
combined. Split class accuracy for classes with Few, Med and Many examples of WideResNet-28×10 on
long-tailed CIFAR-100 and CINIC-10. Error bars correspond to one standard error over 5 trials.

CINIC-10 CIFAR-100

Method Few Med Many Few Med Many

ERM 40.5± 0.4 64.1± 0.3 90.1± 0.5 20.1± 0.3 42.3± 0.3 70.5± 0.6

Reweighting 36.6± 0.5 63.1± 0.3 87.8± 0.3 17.1± 0.4 39.3± 0.3 67.1± 0.4

Resampling 37.4± 0.5 63.6± 0.6 87.9± 0.4 18.4± 0.2 38.1± 0.2 68.9± 0.3

Focal Loss 39.1± 0.2 63.9± 0.2 88.2± 0.5 19.8± 0.4 39.0± 0.5 69.3± 0.6

LDAM-DRW 40.1± 0.4 64.3± 0.4 89.8± 0.3 20.8± 0.5 42.1± 0.3 70.6± 0.4

M2m 42.8± 0.7 64.1± 0.6 90.3± 0.4 20.1± 0.6 41.8± 0.4 69.4± 0.5

SAM-A 43.2± 0.3 62.3± 0.6 89.7± 0.3 22.5± 0.4 40.3± 0.3 70.1± 0.4

Joint-SSL + SAM-A 43.9± 0.4 63.3± 0.5 90.4± 0.5 22.9± 0.3 41.3± 0.6 69.9± 0.6

Joint-SSL +
SAM-A + M2m 44.1± 0.3 64.2± 0.4 90.9± 0.3 23.9± 0.4 42.3± 0.2 70.4± 0.3

varying their imbalance ratio, we now fix the number of samples from the minority class and vary the728

number of total majority class samples.729

In Figure 17, we see that increasing the number of samples from the majority class initially boosts730

performance on a balanced test set. Nevertheless, in both cases, the performance reaches an optimum731

before the growing training data imbalance eventually degrades test accuracy. Thus, adding training732

data can help, but if we add enough majority samples, we must be careful not to cause too sharp a733

mismatch between training and testing distributions. Notably, the optimal training set ratio is nearly734

balanced, matching the test set, even when we are allowed to gather extra samples from one class735

without having to forego samples from another.736

A.9 Benchmarking Results737

In Table 5, we present additional experimental results that compare the methods proposed in our738

paper with the baseline methods. In accordance with Kang et al. [34], we also report the accuracy739

across three distinct subsets: (1) Many-shot classes, which contain more than 100 training samples.740

(2) Medium-shot classes, comprising 20 to 100 samples, and (3) Few-shot classes, including classes741

with fewer than 20 samples.742
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A.10 Regularization and Overfitting743

In order to determine whether the performance differences among various methods stem from their744

optimization abilities or their generalization to unseen test samples, we evaluate the training error745

without any regularization or specialized optimization method. Specifically, we train a ResNet-50746

network on CIFAR-10 and CIFAR-100 datasets using SGD with an initial learning rate of 0.5 and747

cosine annealing, across different levels of training data imbalance. As seen in Figure 18, although748

fitting all training examples takes longer as we increase the imbalance ratio of our datasets, the749

empirical risk minimization successfully fits all training data eventually, including minority samples.750
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Figure 18: Imbalanced data is harder to fit. Training accuracy every epoch for imbalanced training with
various imbalance ratios. Experiments conducted on CIFAR-10.

A.11 Decision Boundary Visualizations751

To explore the differences between classifiers trained on imbalanced data, we visualize their decision752

boundaries. A variety of methods have been established for visualizing the decision boundaries of753

deep learning models, offering valuable insights into their intricate internal operations. Apart from754

the methods discussed in the main text, we utilize the approach introduced by Somepalli et al. [56]755

to visualize the decision boundaries of a ResNet-50 network trained on the CIFAR-10 dataset. In756

Figure 19, we display the decision boundaries resulting from standard training (right), which yields757

narrow margins around minority classes (green, grey, and orange), and SAM-A (left), which notably758

broadens these margins and all the classes occupy similar area in input space.759

B Experimental Details760

In this section, we provide additional implementation details that were not included in the main text.761

(a) After naive training (b) After SAM training

Figure 19: SAM-A makes decision regions take up similar volumes, whereas standard training routines
shrink wrap the decision boundaries around minority samples. Experiments conducted on a CIFAR-10 with
ResNet-18.
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(a) ResNet on CIFAR-10 Dataset
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(b) XGBoost on Adult Dataset
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(c) SVM on Forest Cover Dataset
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(d) ResNet on CIFAR-10 Dataset
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(e) XGBoost on Adult Dataset
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(f) SVM on Forest Cover Dataset

Figure 20: Test error split by majority and minority classes for balanced test sets. We see similar trends across
all models and datasets.
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Figure 21: Additional metrics for XGBoost on the Adult dataset.

For the CIFAR-10, CIFAR-100, and CINIC-10 datasets, we follow the imbalanced setup proposed by762

Liu et al. [45], using an exponential distribution to create imbalances between classes. Across all763

methods, we use TrivialAugment [49] combined with CutMix as our augmentation policy, supple-764

mented by label smoothing and an exponential moving weight average. Our model of choice is the765

WideResNet-28×10 [62].766

We employ the SGD optimizer with momentum 0.9 and weight decay coefficient 210−4. Our models767

are trained for 300 epochs with cosine annealing and a linear warm-up of the learning rate. The768

learning rate is initialized at 0.1.769

For the APTOS 2019 Blindness Detection, SIIM-ISIC Melanoma Classification, and EuroSAT770

datasets, we largely follow the approach detailed in Fang et al. [17], utilizing the ResNeXt-50-32×4d771

model, which was identified as the best model for these datasets in the comparison by Fang et al.772

[17].773

Our implementation was done in PyTorch, utilizing the PyTorch Lightning library for training. All of774

our models were trained on V100 GPUs.775
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Figure 22: Additional metrics for SVM on the Forest Cover dataset.

776

C Limitations777

In our paper, we found that existing methods for class imbalance are unreliable on real-world datasets.778

While our tuned routine was effective on the real-world datasets we considered, these general trends779

raise the concern that solutions which are effective on some class-imbalanced datasets may fail on780

others. A second limitation of our work is that some tools we utilize are only applicable in certain781

domains. For example, data augmentations and self-supervised learning for tabular data are not782

widely accepted.783

D Broader Impacts784

Across a wide variety of high-impact domains, ranging from credit card fraud detection to disease785

diagnosis, data is severely class-imbalanced. Therefore, performance increases for class-imbalanced786

data is highly valuable. With this potential for value also comes the potential that proposed methods787

make false promises which won’t benefit real-world practitioners and may in fact cause harm when788

deployed in sensitive applications. For this reason, we release our numerical results across diverse789

datasets, and we also include implementation details for the sake of transparency and reproducibility.790

As with all new state-of-the-art methods, our improvements may also improve models used for791

malicious intentions.792
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