
Learning Transferable Features for Point Cloud
Detection via 3D Contrastive Co-training

–Supplementary Material–

This supplementary material consists of four parts, including details about the dataset configurations
(Sec. 1), technical details of hard sample mining (Sec. 2), implementation details of the proposed
3D-CoCo framework (Sec. 3) and additional experimental results (Sec. 4).

1 Datasets

Table 1 provides more details about the datasets used in the paper, including the number of point
clouds, sensor configurations, and specific environments, which indicates the existence of the do-
main shift. Fig. 1 gives three showcases that are randomly selected from the above datasets. It is
obvious that the distributions of the 3D patterns are very diverse.

Dataset Size Sensor Environment
#Training #Validation LiDAR Type Beam Angles Location Rainy Night

Waymo 158081 39987 1×64+4×200-beam [-24°, 4°] USA Yes Yes
nuScenes 28130 6018 1×32-beam [-16°,11°] USA, Singapore Yes Yes

KITTI 3712 3769 1×64-beam [-24°,4°] Germany No No

Table 1: Details of the datasets that indicate the existence of the domain shift.

KITTI nuScenes Waymo

Figure 1: The visualization of LiDAR point clouds from the frontal view.

2 Hard Sample Mining

To construct hard samples for contrastive alignment, we transform the point clouds of the target
domain from two aspects, i.e., object density and object completeness.

Object density. For each point pn = (xn, yn, zn, in) of a point cloud P = (p1, p2, . . . , pN ), we
first calculate its elevation angle θn and the perspective angle ϕn to the LiDAR sensor:
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We then arrange the points according to their elevation angles θ and use a sampling interval δ to
slice them into L separate lines as virtual laser beams, where δ is set to 0.4 for KITTI and 1.3
for nuScenes. For Waymo data where point clouds are transferred from range images, we directly
extract virtual laser beams according to the corresponding horizontal axis of range coordinate. At
last, we uniformly sample the virtual beams by random step ∆L to reserve L′ beams, where

L′ = ⌈L/∆L⌉, ∆L ∈ [1, L). (2)
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Figure 2: The visualization of mined hard examples for the categories of Car and Pedestrian.

Specifically, considering that Waymo integrates points from 5 sensors, we process data of each
sensor respectively and integrate the transformed points as results.

Object completeness. We denote the perspective range of P as ∆ϕ. To simulate the patterns of
severe occlusions, we transform P by randomly removing the points that locate within a subinterval
of ∆ϕ, where

∆ϕ = ϕmax − ϕmin

ϕmin = min({ϕn}n=1:N )

ϕmax = max({ϕn}n=1:N ).

(3)

Notably, in real scenes, hard samples tend to appear at a great distance, therefore we also move the
transformed patterns to a remote location c′ according to

c′ = (∆L × cx,∆L × cy, cz), (4)

where c = (cx, cy, cz) is the original center of the point cloud P . Fig. 2 provides more showcases
of the transformed point clouds.

3 Implementation Details

We use the complete training and validation sets of nuScenes and KITTI, and sample 1/5
training scenes and 1/4 validation scenes for Waymo. For all datasets, the coordinate ori-
gins are shifted to the ground plane and the detection range is set to [−2m, 4m] for the Z
axis. For the other two axes, the detection ranges are

(
[0m, 70.4m], [−40m, 40m]

)
for KITTI,(

[−51.2m, 51.2m], [−51.2m, 51.2m]
)

for nuScenes, and
(
[−75.2m, 75.2m], [−75.2m, 75.2m]

)
for Waymo.

At training time, we augment the datasets by applying point cloud flipping (along the X and Y axes),
global scaling, global rotation, and random global translation (the entire point cloud scene is moved
by a random distance) to the raw point clouds. We also adopt the GT-Sampling data augmentation
strategy from [2], which pastes the ground-truth boxes and their inside points from other scenes to
the same locations of current training scenes.

As mentioned in the main manuscript, the progressive training procedure is the key to improve the
quality of pseudo-labels. Specifically, after the warm-up process, we update pseudo-labels every
3 epoches for KITTI. In order to save the computation time of generating pseudo-labels on large
datasets, we update pseudo-labels every 5 epoches for nuScenes and Waymo.

4 Additional Experimental Results
t-SNE visualization. In Fig. 3, we use t-SNE [1] to visualize the distribution of features from the
source and target domains, produced by three models (i.e., the baseline model trained on the source
domain, the self-training method, and 3D-CoCo). Due to the domain gap, as shown by the Source
Only model, the features of different categories (i.e., background or foreground car) in two domains
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Figure 3: The t-SNE visualization of sample features. (a) The source only model is trained without
any adaptation technique. (b) The self-training method applies the pseudo-labels on target data for
re-training, but it fails to align the distribution of features from the source and target domains without
any access to the source data. (c) The proposed 3D-CoCo framework leverages both labeled source
data and unlabeled target data for co-training, which obviously enhances the intra-class compactness
and encourages inter-class separability in the feature space. N: nuScenes; K: KITTI; W: Waymo.

Task Method VoxelNet
APBEV Closed Gap AP3D Closed Gap

N → K
Source Only 17.1 - 12.7 -
3D-CoCo 27.2 +38.40% 24.9 +46.92%
Oracle 43.4 - 38.7 -

W → K
Source Only 48.3 - 45.3 -
3D-CoCo 38.1 - 36.0 -
Oracle 43.4 - 38.7 -

W → N
Source Only 16.0 - 13.6 -
3D-CoCo 19.5 +18.23% 15.9 +16.91%
Oracle 35.2 - 27.2 -

N → W
Source Only 9.1 - 9.1 -
3D-CoCo 21.8 +21.38% 15.9 +12.93%
Oracle 68.5 - 61.7 -

Table 2: Adaptation results on the Pedestrian category. N: nuScenes; K: KITTI; W: Waymo.

are heavily overlapped, which indicates poor generalization performance. After domain adaptation,
we observe that the feature distribution of the self-training method is still irregular, while that of
3D-CoCo shows better clustering properties, in the sense that the features of the same category in
the two domains are better aligned and those from different categories are separated more clearly.

The Pedestrian category. In addition to the Car category that is shown in the main manuscript,
we here provide more experimental results on the Pedestrian category. Table 2 gives the adap-
tation results of 3D-CoCo with the VoxelNet encoder. It validates the effectiveness of 3D-CoCo
with consistent improvements over the Source Only model on a variety of adaptation tasks, in-
cluding nuScenes→KITTI, nuScenes→Waymo, and Waymo→nuScenes. The only exception on
Waymo→KITTI, where the Source Only model outperforms 3D-CoCo and even the Oracle model,
is largely caused by the limited number of training samples of Pedestrian on the target KITTI dataset.
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Methods APBEV AP3D
Pooling-based 75.8 62.9

Keypoint-based (ours) 77.1 65.6

Table 3: Comparison of extraction methods.

Methods APBEV AP3D

R = 3 78.4 64.1
R = 5 75.9 62.4
R = 7 77.1 65.6

Table 4: Sensitivity analysis of R.

Methods APBEV AP3D
τ = 0.01 75.7 61.7
τ = 0.07 77.1 65.6
τ = 0.2 74.7 61.4

Table 5: Sensitivity analysis of τ .

Methods APBEV AP3D

λ = 0.25 76.0 62.6
λ = 0.5 77.1 65.6
λ = 1.0 76.1 63.5

Table 6: Sensitivity analysis of λ.

Comparison of extraction methods. We use another feature extraction method based on average
pooling as a compared method on the nuScenes→KITTI benchmark in Table 3. We believe that the
average pooling method tends to result in more ambiguous features.

Sensitivity analysis. We conduct extra sensitivity analysis on other hyper-parameters, including
the sample number of keypoints R, temperature parameter τ and the loss weight λ of adaptation
loss. We show the results in Table 4, 5 and 6.

Analysis of error bars. We run 3D-CoCo and the self-training method for 5 times. As shown
in Fig. 4, compared to the self-training method, 3D-CoCo achieves a higher median value of the
accuracy and a more concentrated distribution of the results. It indicates that 3D-CoCo not only
boosts accuracy but also performs more stably.

Qualitative results. We show the qualitative results in Fig. 5, which illustrates that 3D-CoCo
improves the adaptive detection performance by greatly reducing the false positive predictions and
increasing the localization accuracy. Specifically, when adapted from sparse source domain (i.e.,
nuScenes) to dense target domain (i.e., Waymo or KITTI), the Source Only model tends to easily
produce false positives due to the increase of point cloud density, while 3D-CoCo can effectively
avoid those erroneous predictions. Besides, due to changes in the physical environments and the size
of objects, the domain shifts are also reflected in the inaccurate 3D bounding boxes produced by the
Source Only model. We observe that our proposed 3D-CoCo achieves higher localization accuracy
of the 3D bounding boxes.
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Figure 4: The box-plot on AP3D (Left) and APBEV (Right) for 3D-CoCo and self-training (ST).
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Figure 5: Qualitative results on four adaptation tasks. N: nuScenes; K: KITTI; W: Waymo. Red:
Ground-truth; Green: Predictions by the Source Only model; Yellow: Predictions by 3D-CoCo.
Obviously, the predictions of 3D-CoCo align better with the ground-truth bounding boxes.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section Abstract and Introduction

(b) Did you describe the limitations of your work? [Yes] As discussed in Section 6, our
approach follows the typical unsupervised domain adaptation setup in 2D vision, and
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thus takes more memory footprint than existing 3D self-training methods at training
time.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work
is only for academic research purpose.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] We report the

experimental results in comparison with most related works to verify the effectiveness
of our method.

(b) Did you include complete proofs of all theoretical results? [N/A]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [No] Our code is
proprietary, but we will release the code once the paper is accepted.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section Experiments and Supplementary materials.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Supplementary Materials. We provide the error bars
of both our method and baselines.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Our model is trained on Ubuntu
system, 8 V100 GPUs with 32G.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See the Reference

part.
(b) Did you mention the license of the assets? [No] The data and models used in our work

are publicly released.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [Yes] The data and models used in our work are publicly re-
leased.

(e) Did you discuss whether the data you are using/curating contains personally identi-
fiable information or offensive content? [Yes] The data used in our work does not
contain personally identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] Our work does not involve human subjects. And the following
items are the same.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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