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1 Datasets

CUB-200-2011. The Caltech-UCSD Birds-200 [14] is a dataset for fine-grained recognition, com-
prising of 11,788 images of 200 bird species. The dataset provides keypoint annotations for 15 part
locations and a foreground segmentation mask per image. We use the official train split for training
our model. (Dataset license: none; copyrights for individual images remain with their creators. User
agreement: none)

DeepFashion. DeepFashion (In-Shop Clothes Retrieval Benchmark) [10] is a fashion dataset
containing 52,712 densely labelled images of people in different clothing items. The labels include
15 categories and a background class. We use the entire dataset and train on the official train split. For
evaluation, we combine query and gallery splits (6922 images). (Dataset license: non-commercial
research purposes only; images are not property of the dataset creators. User agreement: yes)

PASCAL-Part. PASCAL-Part [2] is an extension of the PASCAL VOC 2010 dataset [5] providing
part level annotations for the 20 categories. In total, the dataset contains 10,103 training and validation
images and 9,637 testing images. We train a single model for each of the following 10 categories:
sheep, horse, cow, motorbike, plane, bus, car, bike, dog, cat. We only consider images for which
the respective object category occupies at least 20% of the image (measured by its bounding box)
during training and evaluation. (Dataset license: none; the dataset includes images obtained from
Flickr — use of these images must respect the corresponding terms of use. User agreement: none)

2 Experiment Details

Implementation details. We train our model with SGD using a learning rate of 10−5, weight decay
of 5 · 10−4, batch size of 6 and image size of 256× 256. For the contrastive and feature objectives
(Lf and Lc) we use features from a VGG19 [13] pre-trained on ImageNet [12]. We empirically
found that using layers relu3_2 and relu5_4 with weight factors 0.33 and 1 respectively works
best here. brightness (±30For the equivariance loss (Le), we use the following image transformations:
color jitter as in [8] — brightness (±30%), contrast (±30%), saturation (±30%), and hue (±30%) —
random rotations (±60◦) and translations (±10%). For CUB-200-2011 and DeepFashion, we train
our models using λf = 5, λc = 2.3 · 103, λv = 30, λe = 5.7 · 103. For PASCAL-Part we use
λf = 5, λc = 2.3 · 103, λv = 30, λe = 5.7 · 104, i.e. higher equivariance. We performed Bayesian
hyper-parameter sweeps to tune the weights using Weights & Biases.1 For all datasets, we train our
model on foreground pixels only, using ground truth foreground-background masks. To ensure fair
comparisons, at test time we use binary masks predicted from a DeepLab-v2 with ResNet-50 [6]
as backbone (same architecture as our part segmentation network), which is trained for foreground-
background segmentation on each dataset. In Table 3 of the main paper, we have also presented a fully
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unsupervised approach, using an unsupervised method [11] to obtain binary masks on CUB-200-2011
for both training and evaluating our method.

Computation time. We have used NVIDIA Tesla P40 and RTX 6000 GPUs to train the model. On
a Tesla P40 it takes 2.2 days to train the model.

Baselines. We compare our model to prior work and a K-means baseline, for which we provide
details below.

• DFF [3]: Following the original paper and publicly available code,2 we apply non-negative
matrix factorization to the activations of the last convolutional layer of VGG19 (relu5_4).
The computed factors decompose an image into parts, thus the method can be used for
part co-segmentation and, under certain conditions, is equivalent to spectral clustering [4].
DFF does not require training but needs to be applied over the whole test set at once during
inference in order to ensure that the parts correspond semantically across samples.

• K-means baseline: A critical component of our method, as well as SCOPS and DFF, is
deep feature similarity within semantic regions of an image/object. As such, we deem
feature clustering a relevant baseline and perform K-means clustering3 (with K = 4) on
VGG19 features for each dataset. As in [8], we use concatenated features from layers
relu5_2 and relu5_4 (combined feature dimension is 1024), which we found works best
for K-means. We upsample the feature maps to 64× 64 and normalize each feature vector
to unit norm prior to clustering. We perform clustering on the foreground features only,
using foreground masks predicted with a DeepLab-v2 [1] trained on each dataset. We run
K-means for 100 steps and report the best out of 5 initializations. We find that K-means is
a strong baseline and in some cases it outperforms prior work.

Evaluation details. For the evaluation on CUB-200-2011, we follow prior work [8] and compute
the landmark regression error, i.e. we fit a linear regression model (using the training set) to map
predicted keypoints to ground truth keypoints. Since our method produces segmentation masks, we
use the mask centers as keypoints. For compatibility with previous work, we evaluate the fitted
model on the test split provided by [9] on the first three classes (CUB-001, CUB-002, CUB-003). In
addition, we report the landmark regression error for all 200 classes. We train a single linear regressor
for all classes combined.

Due to problems with the keypoint error that we have discussed in the main paper, we advocate the use
of different metrics for evaluating part segmentation in future work. The proposed metrics (FG-)NMI
and (FG-)ARI can be computed on both keypoint (CUB-200-2011) or pixel-wise (DeepFashion,
PASCAL-Part) annotations. We emphasize the difference between FG-NMI/ARI and NMI/ARI. For
all datasets, we compute FG-NMI and FG-ARI on images cropped around the object of interest (using
its bounding box) and on foreground pixels only. As a result, these metrics reflect the quality of part
segmentation without any influence from the background. In addition, we compute NMI and ARI on
the full image (i.e. uncropped, with its smaller size resized to 256 pixels, including the background
pixels) for CUB-200-2011 and DeepFashion. Since on PASCAL-Part there can be multiple instances
of the same category in one image, we also crop the image to the target objects’ bounding boxes for
NMI/ARI calculation (but evaluate with background pixels in this case). The metrics are computed on
the corresponding test sets. On CUB-200-2011 we compute the FG scores on the test split provided
by [9] (same as the landmark regression error). Full-image NMI and ARI are computed on the official
CUB test set for fair comparisons with [7].

3 Additional Results

3.1 Number of parts

Since part discovery depends on the chosen K, we evaluate our model for different values, namely
K = 4, 6, 8. We report quantitative results for CUB-200-2011 and DeepFashion in Table 1. We note
that NMI is not comparable across different numbers of classes/parts. ARI is adjusted for chance and
should thus be comparable across K. We show additional qualitative results for K = 4 in Figures 1
and 2 and for K = 6, 8 in Figure 3.

2https://github.com/edocollins/DFF
3using the the implementation from https://github.com/facebookresearch/faiss
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Table 1: Evaluation of different number of parts. We show results for different values of K on
CUB-200-2011 and DeepFashion.

CUB-200-2011 (kp) DeepFashion (fg)

Variant FG-NMI FG-ARI NMI ARI FG-NMI FG-ARI NMI ARI

K = 4 46.0 21.0 43.5 19.6 44.8 46.6 68.1 90.6
K = 6 47.2 23.0 44.4 20.7 43.5 42.2 66.2 91.0
K = 8 58.2 34.0 51.5 28.3 39.2 30.7 62.4 90.6

3.2 Variability in results

To obtain a robust measure for the performance of our method, we have trained our model with
K = 4 multiple times (with 5 different random seeds) and report the mean and standard deviation in
Table 2.

Table 2: Variability in results. We run our model with K = 4 on CUB-200-2011 and DeepFashion
with 5 different seeds and report mean ± standard deviation of NMI and ARI.

Dataset FG-NMI FG-ARI NMI ARI

CUB 45.3 ± 2.8 20.5 ± 1.5 42.8 ± 1.7 19.2 ± 0.5
DeepFashion 44.6 ± 0.4 46.1 ± 0.6 68.2 ± 0.2 90.7 ± 0.1

3.3 Failure cases

In Figure 5 we show failure cases of our model on CUB-2011 dataset. In most of the examples we
observe the leading reason of failure is the low quality of the predicted object mask.

3.4 Qualitative Results on Loss Ablation

We show additional qualitative results on CUB for loss ablationin Figure 6. We observe that when
any of the losses is removed from the full model visual quality drops.
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Figure 1: CUB-200-2011 Dataset. Additional qualitative examples for SCOPS [8] and our method.
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Figure 2: DeepFashion Dataset. Additional qualitative examples for SCOPS [8] and our method.
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(a) CUB, K=6

(b) CUB, K=8

(c) DeepFashion, K=6

(d) DeepFashion, K=8

Figure 3: Qualitative examples of our model prediction for K=6 and K=8 on CUB-200-2011 and
DeepFashion.
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Figure 4: PASCAL-Part Dataset. Additional qualitative results for PASCAL-Part dataset for our
model and the K-means baseline.

8



Im
ag

e
S

C
O

P
S

O
u
rs

Figure 5: CUB-200-2011 Dataset. Qualitative examples of a failure mode for our model along with
SCOPS [8] predictions. Most failures occur due to subpar background predictions.

Image              (a) Full Model         (b) λ! = 0 (c) λ" = 0 (d) λ# = 0 (e) λ$ = 0

Figure 6: CUB-200-2011 Dataset. Qualitative examples of loss ablation. We show qualitative
results for the (a) full model, when we remove one of (b) feature loss, (c) contrastive loss, (d) visual
consistency loss, and (e) equivariance loss from our models predictions quality worsens.
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