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ABSTRACT

Contrastive learning typically matches pairs of related views among a number of
unrelated negative views. Views can be generated (e.g. by augmentations) or be
observed. We investigate matching when there are more than two related views
which we call poly-view tasks, and derive new representation learning objectives
using information maximization and sufficient statistics. We show that with un-
limited computation, one should maximize the number of related views, and with
a fixed compute budget, it is beneficial to decrease the number of unique samples
whilst increasing the number of views of those samples. In particular, poly-view
contrastive models trained for 128 epochs with batch size 256 outperform Sim-
CLR trained for 1024 epochs at batch size 4096 on ImageNet1k, challenging the
belief that contrastive models require large batch sizes and many training epochs.

1 INTRODUCTION

Self-Supervised Learning (SSL) trains models to solve tasks designed take advantage of the structure
and relationships within unlabeled data (Bengio et al., 2013; Balestriero et al., 2023; Logeswaran
& Lee, 2018; Baevski et al., 2020; Grill et al., 2020). Contrastive learning is one form of SSL
that learns representations by maximizing the similarity between conditionally sampled views of a
single data instance (positives) and minimizing the similarity between independently sampled views
of other data instances (negatives) (Qi & Su, 2017; van den Oord et al., 2018; Bachman et al., 2019;
Hénaff et al., 2019; He et al., 2019; Tian et al., 2020a;b; Chen et al., 2020a).

One principle behind contrastive learning is Mutual Information (MI) maximization (van den Oord
et al., 2018; Hjelm et al., 2019). Many works have elucidated the relationship between contrastive
learning and information theory (Poole et al., 2019; Tschannen et al., 2020; Lee et al., 2023; Gálvez
et al., 2023). However, MI maximization is only part of the story (Tschannen et al., 2020); successful
contrastive algorithms rely on negative sampling (Wang & Isola, 2020; Robinson et al., 2021; Song
et al., 2016; Sohn, 2016) and data augmentation (Bachman et al., 2019; Tian et al., 2020b; Chen
et al., 2020a; Fort et al., 2021; Balestriero et al., 2022b;a) to achieve strong performance.

While it is possible to design tasks that draw any number of views, contrastive works typically solve
pairwise tasks, i.e. they maximize the similarity of exactly two views, or positive pairs (Balestriero
et al., 2023; Tian et al., 2020a). The effect of more views, or increased view multiplicity (Bachman
et al., 2019), was investigated in SSL (van den Oord et al., 2018; Hjelm et al., 2019; Tian et al.,
2020a; Caron et al., 2020). However, these works optimize a linear combination of pairwise tasks;
increasing view multiplicity mainly improves the gradient signal to noise ratio of an equivalent lower
view multiplicity task, as was observed in supervised learning (Hoffer et al., 2019; Fort et al., 2021).

In this work, we investigate increasing view multiplicity in contrastive learning and the design of
SSL tasks that use many views. We call these tasks poly-view to distinguish them from multi-view, as
multi usually means exactly two (Tian et al., 2020a; Balestriero et al., 2023). In addition to improved
signal to noise (Hoffer et al., 2019; Fort et al., 2021), poly-view tasks allow a model to access many
related views at once, increasing the total information about the problem. We show theoretically and
empirically that this has a positive impact on learning. We make the following contributions:

1. We generalize the information-theoretic foundation of existing contrastive tasks to poly-view
(Section 2.3), resulting in a new family of representation learning algorithms.

∗Work done during an internship at Apple. For a detailed breakdown of author contributions see Appendix I.
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2. We use the framework of sufficient statistics to provide an additional perspective on contrastive
representation learning in the presence of multiple views, and show that in the case of two
views, this reduces to the well-known SimCLR loss, providing a new interpretation of con-
trastive learning (Section 2.4) and another new family of representation learning objectives.

3. Finally, we demonstrate poly-view contrastive learning is useful for image representation learn-
ing. We show that higher view multiplicity enables a new compute Pareto front for contrastive
learning, where it is beneficial to reduce the batch size and increase multiplicity (Section 3.2).
This front shows that poly-view contrastive models trained for 128 epochs with batch size 256
outperforms SimCLR trained for 1024 epochs at batch size 4096 on ImageNet1k.

2 VIEW MULTIPLICITY IN CONTRASTIVE LEARNING

We seek to understand the role of view multiplicity in contrastive learning (Definition 2.1).
Definition 2.1 (View Multiplicity). The view multiplicity M is the number of views per sample. In
batched sampling, drawing K samples results in V = M×K views per batch. (Hoffer et al., 2019).

Multiple data views may occur naturally as in CLIP (Radford et al., 2021) or, as is our primary
interest, be samples from an augmentation policy as is common in SSL. Our goal is to develop tasks
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Figure 1: (a) The role of multiplicity in contrastive learning. I(x;y) present the MI between two random
variables x and y, while I(x;Y) is the MI between x and the set of Random Variable (RV)s Y. LMethod denotes
the contrastive lower-bound achieved by each method, ignoring the constants. In the multi-crop box, ℓα(x,y)
is the contrastive lower-bound produced by the α-th crop/view. (b) The multiple view sample generation
with generative factor c, where the main sample is generated through the generative process ρ, and views
are generated through different view-generation processes ηα for α ∈ [M ], e.g. augmentations. The goal is to
find the map h⋆ such that the reconstructed generative factor ĉ recovers c, hence the identity map.

that can use multiplicity M . We start by presenting the generative process underlying multiplicity
(Section 2.1). We then consider optimizing many pairwise tasks (Section 2.2), known as Multi-Crop,
and show that Multi-Crop reduces the variance of the corresponding paired objective but cannot
improve bounds on quantities like MI. Next, we revisit the information theoretic origin of InfoNCE,
and derive new objectives that solve tasks across all views and do not decompose into pairwise tasks
(Section 2.3). Finally, as the framework of sufficient statistics is natural at high multiplicity, we use
it to derive new objectives which solve tasks across all views (Section 2.4). All of these objectives
are related, as is shown in Figure 1a. Before proceeding, we introduce our notation.

Notation We denote vector and set of random variables (RVs) as x and X, with corresponding
densities px and pX, and realizations x and X . Vector realizations x live in spaces denoted by
X . The conditional distribution of y given a realization x is denoted py|x=x. The expectation of a
scalar function f : X 7→ R is E[f(x)] = Ex∼px [f(x)]. For a ≤ c ≤ b, Xa:b = {xa,xa+1, . . . ,xb}
represents a set of RVs, and X

( ̸=c)
a:b = Xa:b \ {xc}. The density of Xa:b is the joint of its constituent

RVs. MI between x and y is denoted I(x;y) and is defined over RV sets as I(X;Y). We denote
the Shannon and differential entropy of x as H(x), and the Kullback-Leibler Divergence (KLD)
between densities p and q by DKL (p ∥ q). Finally, we write the integer set {1, . . . ,K} as [K], and
use Latin and Greek alphabet to index samples and views respectively.
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2.1 GENERATIVE PROCESS AND INFOMAX FOR VIEW MULTIPLICITY

We present the causal graph underlying M view X1:M = {xα ; α ∈ [M ]} generation in Figure 1b.

The InfoMax principle (Linsker, 1988) proposes to reconstruct an unknown c by optimizing h⋆ =
argmaxh∈H I(x, h(x)). To avoid trivial solutions, two-view contrastive methods (van den Oord
et al., 2018; Hjelm et al., 2019; Hénaff et al., 2019; Tian et al., 2020a) perform InfoMax through
a proxy task that instead maximizes a lower bound on the MI between two views I(h(x1);h(x2)).
These methods rely on information about c being in the information shared between each pair of
views. A natural extension to two-view contrastive learning is to consider many views, where the
total amount of information about c is potentially larger. In Sections 2.2 to 2.4, we investigate
different approaches to solving this generalized InfoMax, beginning with Multi-Crop (Section 2.2)
before considering more general MI approaches (Section 2.3) and sufficient statistics (Section 2.4).

2.2 LINEAR COMBINATIONS OF PAIR-WISE TASKS

The first approach combines objectives on pairs xα, xβ from the set of M views X1:M

LMulti-Crop(X1:M ) =
1

M(M − 1)

M∑
α=1

M∑
β ̸=α

LPair(xα,xβ). (1)

The objective Equation 1 is the all-pairs formulation of Tian et al. (2020a), and corresponds to
Multi-Crop (Caron et al., 2020; 2021) in the presence of M global views1. For convenience, we will
refer to the objective Equation 1 as Multi-Crop. Multi-Crop has been used numerous times in SSL,
here we will show how it achieves improved model performance through its connection to InfoMax.
Proposition 2.1. For K independent samples and multiplicity M denoted X1:K,1:M , the Multi-Crop
of any LPair in Equation 1 has the same MI lower bound as the corresponding LPair:

I(x1;x2) ≥ log(K)− E [LMulti-Crop(X1:K,1:M )] = log(K)− E [LPair(X1:K,1:2)] , (2)

where the expectation is over K independent samples (see Appendix C.1 for the proof).

Proposition 2.1 shows that increasing view multiplicity in Multi-Crop does not improve the MI
lower-bound compared to vanilla InfoNCE with two views. However, Multi-Crop does improve the
variance of the MI estimate (Proposition 2.2).
Proposition 2.2. For K independent samples and multiplicity M , M ≥ 3, denoted X1:K,1:M , the
Multi-Crop of any LPair in Equation 1 has a lower sample variance than the corresponding LPair:

Var [LMulti-Crop(X1:M )] ≤ 2(2M − 1)

3M(M − 1)
Var [LPair(x1,x2)] < Var [LPair(x1,x2)] , (3)

where the variance is over K independent samples (see Appendix C.2 for the proof).

Propositions 2.1 and 2.2 show that better Multi-Crop performance follows from improved gradient
signal to noise ratio as in the supervised case (Fort et al., 2021) and supports the observations of
Balestriero et al. (2022b). See Appendix D for further discussion about Multi-Crop.

2.3 GENERALIZED INFORMATION MAXIMIZATION AS CONTRASTIVE LEARNING

In this subsection, we develop our first objectives that use M views at once and do not decompose
into objectives over pairs of views as in Section 2.2.

2.3.1 GENERALIZED MUTUAL INFORMATION BETWEEN M VIEWS

As InfoNCE optimizes a lower bound on of the MI between two views (van den Oord et al., 2018;
Poole et al., 2019), consider the One-vs-Rest MI (Definition 2.2).

1The original Multi-Crop also takes a mixture of smaller views and compares them to larger views, resulting
in a more complicated augmentation policy. As our work is focused on studying the effect of multiplicity, we
do not investigate the extra benefits obtainable by also changing the augmentation policy. For investigations
into augmentations, see Tian et al. (2020b).
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Definition 2.2 (One-vs-Rest MI). The One-vs-Rest MI for any α ∈ [M ] given a set of M ≥ 2
Random Variables (RVs) X1:M = {xα ; α ∈ [M ]} is

I
(
xα;X

̸=α
1:M

)
= DKL

(
pX1:M

∥ pxαpX ̸=α
1:M

)
. (4)

One-vs-Rest MI (Definition 2.2) aligns with generalized InfoMax (Section 2.1); the larger set X ̸=α
1:M

can contain more information about the generative factor c. Note that due to the data processing in-
equality I(xα;X

̸=α
1:M ) ≤ I(xα; c), estimating One-vs-Rest MI gives us a lower-bound on InfoMax.

Estimating One-vs-Rest MI Contrastive learning estimates a lower-bound to the MI using a
sample-based estimator, for example InfoNCE (van den Oord et al., 2018; Poole et al., 2019) and
INWJ (Hjelm et al., 2019; Nguyen et al., 2008). Theorem 2.1 generalizes the INWJ lower-bound for
the One-vs-Rest MI (see Appendix C.3 for the proof).
Theorem 2.1 (Generalized INWJ). For any M ≥ 2, α ∈ [M ], a set of M random variables X1:M ,
and for any positive function F (M) : X × XM−1 7→ R+

I(xα;X
̸=α
1:M )≥EpX1:M

[
F (M)(xα,X

̸=α
1:M )

]
−Epxαp

X̸
=α
1:M

[
eF

(M)(xα,X ̸=α
1:M )

]
+ 1= IGenNWJ. (5)

We can use the IGenNWJ lower bound (Theorem 2.1) for any function F (M) : X × XM−1 7→ R+.
In order to efficiently maximize the MI, we want the bound in Equation 5 to be as tight as possible,
which we can measure using the MI Gap (Definition 2.3).
Definition 2.3 (MI Gap). For any M ≥ 2, α ∈ [M ], a set of M random variables X1:M , and map
g
(M)
α : X × XM−1 7→ R+ of the form

g(M)
α (xα,X

̸=α
1:M ) =

pxαpX ̸=α
1:M

pX1:M

eF
(M)(xα,X ̸=α

1:M), (6)

the MI Gap GMI

(
X1:M ; g

(M)
α

)
is

GMI

(
X1:M ; g(M)

α

)
= I

(
xα;X

̸=α
1:M

)
− IGenNWJ = EpX1:M

[
g(M)
α − log

(
g(M)
α

)
− 1
]
, (7)

where we have written g
(M)
α instead of g(M)

α (xα,X
̸=α
1:M ) when the arguments are clear.

The map g
(M)
α in Equation 6 aggregates over M views and is called the aggregation function.

2.3.2 PROPERTIES OF THE AGGREGATION FUNCTION

The choice of g(M)
α is important as it determines the MI Gap (Definition 2.3) at any multiplicity M .

As we wish to employ g
(M)
α to obtain a lower bound on One-vs-Rest MI, it should be

1. Interchangeable: I(xα;X
̸=α
1:M )= I(X ̸=α

1:M ;xα) =⇒ g
(M)
α (xα,X

̸=α
1:M )= g

(M)
α (X ̸=α

1:M ,xα),

2. Reorderable: I(xα;X
̸=α
1:M )= I[xα; Π(X ̸=α

1:M )] =⇒ g
(M)
α (xα,X

̸=α
1:M )= g

(M)
α [xα,Π(X ̸=α

1:M )],
where Π({x1, . . . , xN})= {xΠ1

, . . . , xΠN
} is a permutation operator, and

3. Expandable: g(M)
α can accommodate different sized rest-sets X ̸=α

1:M , i.e. can expand to any M .

We seek non-trivial lower bounds for the One-vs-Rest MI (Equation 5), and to minimize the MI
Gap (Equation 7). The Data Processing Inequality (DPI) gives I(xα;X

̸=α
1:M ) ≥ I (xα;xβ) for all

xβ ∈ X ̸=α
1:M . So, I(xα;X

̸=α
1:M ) ≥ (M − 1)−1

∑
β I (xα;xβ)

2, provides a baseline for the lower-
bound for One-vs-Rest MI, leading us to introduce the following requirement:

4. Valid: The aggregation function g
(M)
α should give a gap that is at most the gap given by the

mean of pairwise comparisons with g
(2)
α

GMI

(
X1:M ; g(M)

α

)
≤ 1

M − 1

∑
β ̸=α

GMI

(
{xα,xβ}; g(2)α

)
. (8)

2We note that the objective introduced by Tian et al. (2020a) for the multi-view setting is indeed the average
lower-bound we present here.
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2.3.3 POLY-VIEW INFOMAX CONTRASTIVE OBJECTIVES

We now present the first poly-view objectives, corresponding to choices of F (M) and its aggregation
function g

(M)
α with the properties outlined in Section 2.3.2. For any function F (2), define F (M), and

their aggregation functions correspondingly by Equation 6 as following:

Arithmetic average: F (M)
(
xα,X

̸=α
1:M

)
= log

 1

M − 1

∑
β ̸=α

eF
(2)(xα,xβ)

 , (9)

Geometric average: F (M)
(
xα,X

̸=α
1:M

)
=

1

M − 1

∑
β ̸=α

F (2)(xα,xβ). (10)

Both functions satisfy the properties in Section 2.3.2 (see Appendix C.4 for proof).

To establish a connection to contrastive losses, we introduce notation for sampling the causal graph
in Figure 1b. From the joint distribution pX1:M

, we draw K independent samples denoted by:

{Xi,1:M}Ki=1 = {(xi,1, . . . ,xi,M )}Ki=1 =
{
{xi,α}Mα=1

}K

i=1
= X1:K,1:M i.e. Xi,α = xi,α. (11)

Evaluating the functions in Equations 9 and 10 in Theorem 2.1 reveals the lower bound on One-vs-
Rest MI and the Poly-view Contrastive Losses (Theorem 2.2, see Appendix C.5 for the proof).
Theorem 2.2 (Arithmetic and Geometric PVC lower bound One-vs-Rest MI). For any K, M ≥ 2,
B = KM , α ∈ [M ], any scalar function f : C × C 7→ R, and map h : X 7→ C, we have

I
(
xα;X

̸=α
1:M

)
≥ c(B,M) +E

 1

K

K∑
i=1

log
1

M − 1

∑
β ̸=α

ℓi,α,β

≡ c(B,M)−LArithmetic PVC, (12)

I
(
xα;X

̸=α
1:M

)
≥ c(B,M) +E

 1

K

K∑
i=1

1

M − 1

∑
β ̸=α

log ℓi,α,β

≡ c(B,M)−LGeometric PVC, (13)

where c(B,M) = log(B−M +1), the expectation is over K independent samples X1:K,1:M , and

ℓi,α,β (X1:K,1:M ) =
ef(x̃i,α,x̃i,β)

ef(x̃i,α,x̃i,β) +
∑

j ̸=i

∑M
γ=1 e

f(x̃j,γ ,x̃i,β)
, x̃i,α = h(xi,α). (14)

We have written ℓi,α,β instead of ℓi,α,β (X1:K,1:M ) where the meaning is clear.

Maximizing lower-bound means maximizing map h, leading to h⋆ in Figure 1b. In Appendix C.5,
we show F (2)(X̃i,α,xi,β) = c(B,M) + log ℓi,α,β , where X̃i,α = {Xj,β}j ̸=i,β

⋃ {xi,α}.

Tightness of MI Gap Valid property (Equation 8) ensures that the lower-bound for a fixed M has
a smaller MI Gap than the average MI Gap of those views. Without loss of generality, taking α = 1,
a valid solution guarantees that the MI Gap for M > 2 is smaller than the MI Gap for M = 2. The
DPI implies that for N ≥ M and fixed α, I

(
xα;X

̸=α
1:M

)
≤ I

(
xα;X

̸=α
1:N

)
. One would expect the

lower-bound to be also increasing, which indeed is the case. In fact, we can prove more; consider
that the MI Gap is monotonically non-increasing with respect to M 3, i.e. the MI Gap would either
become tighter or stay the same as M grows. We show that the aggregation functions by Equations 9
and 10 have this property (Theorem 2.3, see Appendix C.6 for the proof).
Theorem 2.3. For fixed α, the MI Gap of Arithmetic and Geometric PVC are monotonically non-
increasing with M :

GMI(X1:M2
; g(M2)

α ) ≤ GMI(X1:M1
; g(M1)

α ) ∀ M1 ≤ M2. (15)

Recovering existing methods Arithmetic and Geometric PVC optimize One-vs-Rest MI. M = 2
gives the two-view MI that SimCLR maximizes and the corresponding loss (see Appendix E.2).
Additionally, for a choice of F (2), we recover SigLIP (Zhai et al., 2023b), providing an information-
theoretic perspective for that class of methods (see Appendix E.3).

3Note that this guarantees that the lower-bound is increasing with respect to M .
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2.4 FINDING GENERALIZED SUFFICIENT STATISTICS AS CONTRASTIVE LEARNING

Now we develop our second objectives that use M views at once. Using a probabilistic perspective of
the causal graph (Figure 1b), we show how to recover the generative factors with sufficient statistics
(Section 2.4.1). We then explain how sufficient statistics connects to InfoMax, and derive further
poly-view contrastive losses (Section 2.4.2). Finally, we will see that the approaches of MI lower-
bound maximization of Section 2.3, and sufficient statistics are connected.

2.4.1 REPRESENTATIONS ARE POLY-VIEW SUFFICIENT STATISTICS

To develop an intuition for the utility of sufficient statistics for representation learning, we begin in
the simplified setting of an invertible generative process, h = ρ−1, and a lossless view generation
procedure ηα: I(c; ηα(x)) = I(c;x). If the function space H is large enough, then ∃ h ∈ H such
that ĉ = h(x) = c. Using the DPI for invertible functions, we have

max
h∈H

I(x;h(x)) = I(x; c) = max
h∈H

I(h(x); c). (16)

If we let h⋆ = argmaxh∈H I(x;h(x)), then h⋆(x) is a sufficient statistic of x with respect to c (see
e.g. Cover & Thomas (2006)), and the information maximization here is related to InfoMax.

If we knew the conditional distribution px|c, finding the sufficient statistics T (x) of x with respect
to c gives T = h⋆. In general, we do not know px|c, and generative processes are typically lossy.

Therefore, to make progress and find h⋆ = argmaxh∈H I(x;h(x)) with sufficient statistics, we
need to estimate px|c. For this purpose, we use view multiplicity; we know from DPI that a larger
set of views X1:M may contain more information about c, i.e. I(X1:M2

; c) ≥ I(X1:M1
; c) for

M2 ≥ M1. Our assumptions for finding the sufficient statistics Ty(x) of x with respect to y are

1. The poly-view conditional pxα|X ̸=α
1:M

is a better estimate for pxα|c for larger M ,

2. All views have the same generative factor: Tc(xα) = Tc(xβ),

The representations are given by a neural network and are therefore finite-dimensional. It means
that the generative factor is assumed to be finite-dimensional. Fisher-Darmois-Koopman-Pitman
theorem (Daum, 1986) proves that the conditional distributions pxα|X̸=α

1:M
and pxα|c are exponential

families, i.e. for some functions r1, r2, T and reorderable function (Section 2.3.2) Q:

pxα|X ̸=α
1:M

= r1(xα) r2(X
̸=α
1:M ) exp

(
TX ̸=α

1:M
(xα) ·Q(X ̸=α

1:M )
)
, (17)

pxα|c = r⋆1(xα) r
⋆
2(c) exp (Tc(xα) ·Q⋆(c)) . (18)

The first assumption says that for any M , it is enough to find the sufficient statistics of xα with
respect to X ̸=α

1:M as an estimate for Tc(xα). Since the estimation of the true conditional distribution
becomes more accurate as M grows,

lim sup
M→∞

∥Tc(xα)− TX ̸=α
1:M

(xα)∥ → 0, lim sup
M→∞

∥Q⋆(c)−Q(X ̸=α
1:M )∥ → 0. (19)

We see that sufficient statistics gives us a new perspective on InfoMax for representation learning:
representations for x are sufficient statistics of x with respect to the generative factor c, which can
be approximated by sufficient statistics of one view xα with respect to the other views X̸=α

1:M .

2.4.2 POLY-VIEW SUFFICIENT CONTRASTIVE OBJECTIVES

As in Section 2.3.3, we begin by outlining our notation for samples from the empirical distribution.
Let us assume that we have the following dataset of K independent M -tuples:

D = {(xi,α,X
̸=α
i,1:M )}

⋃
{(xj,α,X

̸=α
j,1:M )}Kj ̸=i. (20)

Following Section 2.4.1, the goal is to distinguish between conditionals pxi,α|X ̸=α
i,1:M

and pxi,α|X ̸=γ
j,1:M

for any j ̸= i and γ, i.e. classify xi,α correctly ∀ i ∈ [K], giving the following procedure for finding
the sufficient statistics T ⋆ and Q⋆.

T ⋆, Q⋆ = argmax
T,Q

pxi,α|X ̸=α
i,1:M

pxi,α|X ̸=α
i,1:M

+
∑K

j ̸=i

∑M
γ=1 pxi,α|X̸=γ

j,1:M

= argmax
T,Q

ℓ̃i,α, (21)
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leading to the the sufficient statistics contrastive loss (Equation 22),

LSuffStats = −E

[
1

K

K∑
i=1

1

M

M∑
α=1

log ℓ̃i,α

]
, ℓ̃i,α =

eT
T
i,αQi,α̃

eT
T
i,αQi,α̃ +

∑K
j=1

∑M
γ=1 e

TT
i,αQj,γ̃

, (22)

where xT denotes vector transposition, Ti,α ≡ T (xi,α), and Qi,α̃ ≡ Q(X ̸=α
i,1:M ).

Designing Q As Q parameterizes the conditional (Equation 17), it is reorderable. Choices for Q
include DeepSets (Zaheer et al., 2017) and Transformers (Vaswani et al., 2017). Requiring M = 2 to
recover SimCLR (Chen et al., 2020a) implies Q(x) = T (x), so for simplicity, we restrict ourselves
to pooling operators over T . Finally, we want the representation space to have no special direction,
which translates to orthogonal invariance of the product of T and Q

[OT (xα)]
T
Q ({OT (xβ) : β ̸= α}) = T (xα)

TQ ({T (xβ) : β ̸= α}) , (23)

i.e. Q is equivariant Q ({OT (xβ) : β ̸= α}) = OQ ({T (xβ) : β ̸= α}) which is satisfied by

Q(X̸=α
1:M ) = Q ({T (xβ) : β ̸= α}) = 1

M − 1

M∑
β ̸=α

T (xβ) ≡ T (X ̸=α
1:M ) ≡ T α̃. (24)

With the choice Q = T α̃, when M = 2, LSuffStats (Equation 22) recovers SimCLR (see Appendix E.2
for the detailed connection), and therefore lower bounds two-view MI. For general M , LSuffStats
lower bounds One-vs-Rest MI (Theorem 2.4).
Theorem 2.4 (Sufficient Statistics lower bound One-vs-Rest MI). For any K, M ≥ 2, B = KM ,
α ∈ [M ], and the choice of Q in Equation 24, we have (see Appendix C.7 for the proof)

I
(
xα;X

̸=α
1:M

)
≥ c(B,M) + E

[
1

K

K∑
i=1

log ℓ̃i,α

]
, (25)

where c(B,M) = log(B −M + 1), the expectation is over K independent samples X1:K,1:M .

Theorem 2.4 completes the connection between Sufficient Statistics and InfoMax (Section 2.1). We
note that contrary to Average and Geometric PVC (Equations 9 and 10), the Sufficient Statistics
objective for M > 2 (Equation 25) cannot be written using F (2) as a function basis.

3 EXPERIMENTS

3.1 SYNTHETIC 1D GAUSSIAN

Our first interests are to check our intuition and to validate how well each objective bounds the
One-vs-Rest MI as described in Theorems 2.2 and 2.4. We begin with a 1D Gaussian setting, which
for the generative graph (Figure 1b) corresponds to Independent and Identically Distributed (i.i.d.)
samples ci ∼ N(0, σ2

0) for i ∈ [K], ρ is identity map, and views xi,α ∼ N(ci, σ
2) for each α ∈ [M ]

and i. One can compute One-vs-Rest MI in closed form (see Appendix E.6 for the proof):

I(xi,α;X
̸=α
i,1:M ) =

1

2
log

[(
1 +

σ2
0

σ2

)(
1− σ2

0

σ2 +Mσ2
0

)]
, (26)

which, as anticipated (Section 2.1), is an increasing function of M . Using the closed form for
Gaussian differential entropy, we see:

lim sup
M→∞

I(xα;X
̸=α
1:M ) = H(xα)− H(xα|c) = I(xα; c), (27)

i.e. One-vs-Rest MI becomes a better proxy for InfoMax as M increases. Finally, we can evaluate
the conditional distribution for large M and see (see Appendix E.6 for the proof):

lim
M→∞

pxi,α|X ̸=α
i,1:M

= pxi,α|ci
, (28)

validating our first assumption for Sufficient Statistics (Section 2.4.1).
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To empirically validate our claims we train a Multi-Layer Perceptron (MLP) with the architecture
(1->32, GeLU, 32->32) using the objectives presented in Sections 2.2, 2.3.3 and 2.4 on the
synthetic Gaussian setup. We use AdamW (Loshchilov & Hutter, 2019) with learning rate 5× 10−4

and weight decay 5×10−3, generate K = 1024 1D samples in each batch, M views of each sample,
and train each method for 200 epochs.

We compare One-vs-Rest lower bounds of these different objectives to the true value (Equation 26).
In Figure 2, we see that increasing multiplicity M decreases the MI Gap for Geometric, Arith-
metic and Sufficient, with Geometric having the lowest gap, whereas for Multi-Crop, the MI Gap
increases, validating Theorem 2.3 and Proposition 2.1. The Multi-Crop loss expectation is also
M -invariant, whereas its variance reduces, as was proven in Section 2.2.
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Figure 2: Comparing MI bounds with true MI in the Gaussian setting. Each method is trained for 200 with
multiplicities M ∈ {2, 4, 8, 10}. Left to right: 1) True One-vs-Rest MI (Equation 26); 2) MI Gaps decrease
as M grows for all methods except Multi-Crop due to the log(K) factor; 3) Relative MI = True MI / Lower
Bound MI; and 4) losses for each objective. Bands indicate the mean and standard deviation across 16 runs.
Points indicate final model performance of corresponding hyperparameters.

3.2 REAL-WORLD IMAGE REPRESENTATION LEARNING

We investigate image representation learning on ImageNet1k (Russakovsky et al., 2014) following
SimCLR (Chen et al., 2020a). Full experimental details are in Appendix F.1, and pseudo-code for
loss calculations are in Appendix F.3.2. We consider two settings as in Fort et al. (2021):

1. Growing Batch, where we draw views V = K ×M with multiplicity M whilst preserving the
number of unique samples K in a batch.

2. Fixed Batch, where we hold the total number of views V = K × M fixed by reducing the
number of unique samples K as we increase the multiplicity M .

We investigate these scenarios at multiplicity M = 8 for different training epochs in Figure 3a.
We observe that, given a number of training epochs or model updates, one should maximize view
multiplicity in both Fixed and Growing Batch settings, validating the claims of Sections 2.3 and 2.4.

To understand any practical benefits, we introduce Relative Compute4(Equation 29), which is the
total amount of compute used for the run compared to a SimCLR run at 128 epochs,

Relative Compute(M,Epochs) =
M

2
× Epochs

128
. (29)

In the Growing Batch case, there are only minor gains with respect to the batch size 4096 SimCLR
baseline when measuring relative compute. In the Fixed Batch case, we observe a new Pareto front in
Relative Compute. Better performance can be obtained by reducing the number of unique samples
while increasing view multiplicity when using Geometric PVC or Sufficient Statistics. Notably, a
batch size 256 Geometric PVC trained for 128 epochs outperforms a batch size 4096 SimCLR
trained for 1024 epochs. We also note that better performance is not achievable with Multi-Crop,
which is compute-equivalent to SimCLR.

To further understand the role of multiplicity, we hold Epochs = 128 and vary multiplicity M in
Figure 3b. Increasing multiplicity is never harmful, with Geometric PVC performing the strongest
overall. We note that Multi-Crop outperforms Sufficient Statistics in the Growing Batch setting.

4Note that there is no dependence on the number of unique samples per batch K, as increasing K both
increases the compute required per update step and decreases the number of steps per epoch.
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Figure 3: Contrastive ResNet 50 trained on ImageNet1k for different epochs or with different view multiplicities.
Blue, red, orange and black dashed lines represent Geometric, Multi-Crop, Sufficient Statistics, and SimCLR
respectively. Bands indicate the mean and standard deviation across three runs. Points indicate final model per-
formance of corresponding hyperparameters. We use K = 4096 for Growing Batch and K = (2/M)× 4096
for Fixed Batch. (a) Each method is trained with a multiplicity M = 8 except the M = 2 SimCLR baseline.
We compare models in terms of performance against training epochs (left), total updates (middle) which is af-
fected by batch size K, and relative compute (right) which is defined in Equation 29. See Appendix F.3.1 for a
FLOPs comparison. b) Each method is trained for 128 epochs for each multiplicity M ∈ {2, 3, 4, 6, 8, 12, 16}.

4 RELATED WORK

We present work related to view multiplicity here and additional related work in Appendix G.

View multiplicity Hoffer et al. (2019) showed that multiplicity improves both generalization and
convergence of neural networks, helping the performance scaling. Balestriero et al. (2022b) showed
that more augmentations in two-view contrastive learning helps the estimation of the MI lower-
bound to have smaller variance and better convergence. Similarly, Tian et al. (2020a) studied multi-
ple positive views in contrastive learning, however, their work enhances the loss variance by averag-
ing over multiple two-view losses. While similar to the extension we present in Section 2.3.3, Tian
et al. (2020a) do not consider the multiplicity effect in negatives, and the log(K) factor, resulting to
just a more accurate lower-bound. Song & Ermon (2020), however, increases the log(K) factor by
including positives to solve a multi-label classification problem. In the supervised setting, Fort et al.
(2021) studied the effect of augmentation multiplicity in both growing and fixed batch size, showing
that the signal to noise ratio increases in both cases, resulting to a better performance overall.

5 CONCLUSION

In self-supervised learning, the multi in multi-view representation learning typically refers to two
views per unique sample. Given the influence of positives, and the number of negatives in contrastive
learning, we investigated the role of the number of positives.

We showed that Multi-Crop, a popular self-supervised approach, which optimizes a combination of
pair-wise tasks, reduces the variance of estimators, but cannot change expectations or, equivalently,
bounds. To go beyond Multi-Crop, we used information theory and sufficient statistics to derive new
families of representation learning methods which we call poly-view contrastive.

We studied the properties of these poly-view contrastive methods algorithms, and find that it is
beneficial to decrease the number of unique samples whilst increasing the number of views of those
samples. In particular, poly-view contrastive models trained for 128 epochs with batch size 256
outperform SimCLR trained for 1024 epochs at batch size 4096 on ImageNet1k, challenging the
belief that contrastive models require large batch sizes and many training epochs.
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A BROADER IMPACT

This work shows different ways that view multiplicity can be incorporated into the design of repre-
sentation learning tasks. There are a number of benefits:

1. The improved compute Pareto front shown in Section 3.2, provides a way for practitioners to
achieve the desired level of model performance at reduced computational cost.

2. Increasing view multiplicity has a higher potential of fully capturing the aspects of a sample,
as is reinforced by the limiting behavior of the synthetic setting (Section 3.1). This has the
potential to learn more accurate representations for underrepresented samples.

We also note the potential undesirable consequences of our proposed methods:

1. We found that for a fixed number of updates, the best results are achieved by maximizing the
multiplicity M . If a user is not compute limited, they may choose a high value of M , leading
to greater energy consumption.

2. In the case one wants to maximize views that naturally occur in data as in CLIP (Radford
et al., 2021), the intentional collection of additional views may be encouraged. This presents
a number of challenges: 1) the collection of extensive data about a single subject increases the
effort needed to collect data responsibly; 2) the collection of more than one type of data can
be resource intensive; and 3) not all data collection processes are equal, and a larger number of
collected views increases the chance that at least one of the views is not a good representation
of the subject, which may negatively influence model training.

The environmental impact of each of these two points may be significant.

B LIMITATIONS

The work presented attempts to present a fair analysis of the different methods discussed. Despite
this, we acknowledge that the work has the following limitations, which are mainly related to the
real-world analysis on ImageNet1k (Section 3.2):

1. Our ImageNet1k analysis is restricted to variations of SimCLR contrastive learning method.
However, there are other variations of contrastive learning, for example van den Oord et al.
(2018); Chen et al. (2020b; 2021); Caron et al. (2020). There are also other types of Self-
Supervised Learning (SSL) methods that train models to solve tasks involving multiple views
of data, for example Grill et al. (2020); Caron et al. (2021). While we expect our results to
transfer to these methods, we cannot say this conclusively.

2. Our ImageNet1k analysis is also restricted to the performance of the ResNet 50 architecture.
It is possible to train SimCLR with a Vision Transformer (ViT) backbone (Chen et al., 2021;
Zhai et al., 2023a), and anticipate the effect of increasing view multiplicity to be stronger in this
case, as ViTs has a less strong prior on image structure, and augmentation plays a larger role in
the training (Dosovitskiy et al., 2021). However, we cannot make any conclusive statements.

3. The largest number of views we consider is 16. It would be interesting to see the model
behavior in for e.g. two unique samples per batch, and 2048 views per sample, or increasing
the number of views beyond 16 for a larger setting. However, these settings are not practical
for us to investigate, limiting the concrete statements we make for real world applications to
views M ≤ 16.

4. Although we presented some sensitivity analysis regarding augmentation policy choice in Ap-
pendix F.3, all of the augmentations we consider for ImageNet1k are variations on the SimCLR
augmentation policy.

5. Our method is less applicable in the case of naturally occurring (multi-modal) data, as here M
is limited by the data available and cannot be arbitrarily increased.

6. Our empirical analysis is limited to synthetic data and the computer vision dataset ImageNet1k.
While we don’t anticipate significantly different conclusions for other domains, we are unable
to make any conclusive empirical statements.
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7. There are alternatives to One-vs-Rest Mutual Information (MI) when considering M variables.
We introduce an alternative partitioning in Appendix E.1, but do not investigate as it is less
simple to work with.

8. In all of our experiments, hyperparameters are fixed to be those of the reference SimCLR
model. In principle it is possible that a different conclusion could be drawn if a hyperparameter
search was done per multiplicity configuration, and then the best performing hyperparameters
for each point were compared to each other.

C PROOFS OF THEOREMS

C.1 MI LOWER-BOUND WITH MULTI-CROP

Proposition 2.1. For K independent samples and multiplicity M denoted X1:K,1:M , the Multi-Crop
of any LPair in Equation 1 has the same MI lower bound as the corresponding LPair

I(x1;x2) ≥ log(K)− E [LMulti-Crop(X1:K,1:M )] = log(K)− E [LPair(X1:K,1:2)] , (30)

where the expectation is over K independent samples.

Proof. Note that for the pair objective Lpair, we have the following lower-bound for the pair MI
using INWJ (Hjelm et al., 2019; Nguyen et al., 2008) sample estimator:

I(xα;xβ) ≥ log(K)− E
[
Lpair(X1:K,{α,β})

]
. (31)

If the views are uniformly and independently generated, i.e. ηα ∼ Uniform(Γ), where Γ is the set
of view-generating processes, then

I(xα;xβ) = I(xγ ;xν) ∀α ̸= β, γ ̸= ν ∈ [M ]. (32)

Following Equations 31 and 32, we have

I(x1;x2) =
1

M(M − 1)

M∑
α=1

∑
β ̸=α

I(xα;xβ) (33)

≥ log(K)− E

 1

M(M − 1)

M∑
α=1

∑
β ̸=α

Lpair(X1:K,{α,β})

 (34)

= log(K)− E [LMulti-Crop(X1:K,1:M )] . (35)

Moreover, we can rewrite the Multi-Crop objective as follows in expectation:

E [LMulti-Crop(X1:K,1:M )] = E

 1

M(M − 1)

M∑
α=1

∑
β ̸=α

Lpair(X1:K,{α,β})

 (36)

= E [EΓ [Lpair(X1:K,1:2)]] , (37)

where the second equality is due to the fact that all the views are uniformly and independently
sampled from the set Γ. Now, getting expectation over all the randomness lead us to

E [LMulti-Crop(X1:K,1:M )] = E [EΓ [Lpair(X1:K,1:2)]] = E [Lpair(X1:K,1:2)] . (38)

This completes the proof.

C.2 LOWER VARIANCE OF MULTI-CROP MI BOUND

Proposition 2.2. For K independent samples and multiplicity M , M ≥ 3, denoted X1:K,1:M , the
Multi-Crop of any LPair in Equation 1 has a lower sample variance than the corresponding LPair

Var [LMulti-Crop(X1:M )] ≤ 2(2M − 1)

3M(M − 1)
Var [LPair(x1,x2)] < Var [LPair(x1,x2)] , (39)

where the variance is over K independent samples.
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Proof. We start with computing the variance of both side of Equation 1. Note that for any two pairs
of (xα,xβ) and (xγ ,xν) such that {α, β} ∩ {γ, ν} = ∅, we have

Cov [Lpair(xα,xβ),Lpair(xγ ,xν)] = 0, (40)

where Cov denotes the covariance operator. This is due to the fact that view generation processes are
conditionally independent (condition on x). Thus, for any realization of x, the conditional covari-
ance would be zero, which leads to the expectation of the conditional covariance, and consequently
Equation 40 be zero. We can also rewrite Equation 1 as follows:

LMulti-Crop(X1:M ) =
1

M(M − 1)

M∑
α=1

M∑
β ̸=α

LPair(xα,xβ) (41)

=
2

M(M − 1)

M∑
α=1

M∑
β>α

LPair(xα,xβ). (42)

Having the pairwise loss to be symmetric, we can now compute the variance of both sides as follows:

Var [LMulti-Crop(X1:M )] =
4

M2(M − 1)2

[
M∑
α=1

M∑
β>α

Var [LPair(xα,xβ)] +

2
∑
α

∑
γ

∑
β

Cov [LPair(xα,xγ),LPair(xγ ,xβ)]

]
.

(43)

One way to count the number of elements in the covariance term is to note that we can sample α, β,
and γ from [M ] but only one of the ordered sequence of these three is acceptable due to the ordering
condition in Equation 42, which results in M(M−1)(M−2)

6 choices, where M ≥ 3.

Another main point here is that due to the identically distributed view-generative processes,

Var [LPair(xα,xβ)] = Var [LPair(xγ ,xν)] ∀α ̸= β, γ ̸= ν ∈ [M ]. (44)

Thus, using the variance-covariance inequality, we can write that∣∣∣Cov [LPair(xα,xγ),LPair(xγ ,xβ)]
∣∣∣ ≤ Var [LPair(xα,xγ)] = Var [LPair(xγ ,xβ)] . (45)

Substituting Equations 44 and 45 in Equation 43, we have the following:

Var [LMulti-Crop(X1:M )] ≤ 4

M2(M − 1)2

[
M(M − 1)

2
Var [LPair(x1,x2)] +

2
M(M − 1)(M − 2)

6
Var [LPair(x1,x2)]

]
.

(46)

Simplifying the right hand side, we get

Var [LMulti-Crop(X1:M )] ≤ 2(2M − 1)

3M(M − 1)
Var [LPair(x1,x2)] < Var [LPair(x1,x2)] , (47)

for any M ≥ 3. If M = 2, the claim is trivial as both sides are equal. Thus, the proof is complete
and Multi-Crop objective has strictly lower variance compared to the pair objective in the presence
of view multiplicity.

C.3 GENERALIZED INWJ

Theorem 2.1. For any M ≥ 2, α ∈ [M ], a set of M random variables X1:M , and for any positive
function F (M) : X × XM−1 7→ R+

I(xα;X
̸=α
1:M )≥EpX1:M

[
F (M)(xα,X

̸=α
1:M )

]
−Epxαp

X
̸=α
1:M

[
eF

(M)(xα,X ̸=α
1:M )

]
+1= IGenNWJ. (48)
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Proof. We start by the definition of MI:

I
(
xα;X

̸=α
1:M

)
=EpX1:M

[
log

p(xα,X
̸=α
1:M )

p(xα)p(X
̸=α
1:M )

]
(49)

=EpX1:M

[
log

p(xα,X
̸=α
1:M )eF

(M)(xα,X ̸=α
1:M )

p(xα)p(X
̸=α
1:M )eF

(M)(xα,X ̸=α
1:M )

]
(50)

=EpX1:M

[
F (M)(xα,X

̸=α
1:M )

]
−EpX1:M

[
log

p(xα)p(X
̸=α
1:M )eF

(M)(xα,X ̸=α
1:M )

p(xα,X
̸=α
1:M )

]
(51)

Now, we note that the argument of the second term of right hand side in Equation 51 is always
positive. For any z ≥ 0, we have that log(z) ≤ z − 1. Thus, we have:

I
(
xα;X

̸=α
1:M

)
=EpX1:M

[
F (M)(xα,X

̸=α
1:M )

]
−EpX1:M

[
log

p(xα)p(X
̸=α
1:M )eF

(M)(xα,X ̸=α
1:M )

p(xα,X
̸=α
1:M )

]
(52)

≥EpX1:M

[
F (M)(xα,X

̸=α
1:M )

]
−EpX1:M

[
p(xα)p(X

̸=α
1:M )

p(xα,X
̸=α
1:M )

eF
(M)(xα,X ̸=α

1:M )

]
+1. (53)

Now, we can use the change of measure for the second term on the right hand side and the proof is
complete:

I
(
xα;X

̸=α
1:M

)
≥EpX1:M

[
F (M)(xα,X

̸=α
1:M )

]
−EpX1:M

[
p(xα)p(X

̸=α
1:M )eF

(M)(xα,X ̸=α
1:M )

p(xα,X
̸=α
1:M )

]
+1 (54)

=EpX1:M

[
F (M)

(
xα,X

̸=α
1:M

)]
−Epxαp

X
̸=α
1:M

[
eF

(M)(xα,X ̸=α
1:M)

]
+1 (55)

=IGenNWJ. (56)

C.4 VALIDITY PROPERTY

Theorem C.1. Both aggregation functions introduced by Equation 9 and Equation 10 satisfy the
Validity property, i.e. Equation 8.

Proof. Let us define zβ = exp(F (2)(xα,xβ)) for a given xα and β ̸= α. Thus, we can rewrite
Equations 9 and 10 as follows:

Arithmetic: F (M)
(
xα,X

̸=α
1:M

)
= log

 1

M − 1

∑
β ̸=α

zβ

 , (57)

Geometric: F (M)
(
xα,X

̸=α
1:M

)
=

1

M − 1

∑
β ̸=α

log(zβ). (58)

Following the definition of the aggregation function, and denoting cα =
pxαp

X̸
=α
1:M

pX1:M
, we can rewrite

the aggregation functions as following:

Arithmetic: g(M)
α = cα exp

log

 1

M − 1

∑
β ̸=α

zβ

 =
1

M − 1

∑
β ̸=α

cαzβ , (59)

Geometric: g(M)
α = cα exp

 1

M − 1

∑
β ̸=α

log(zβ)

 =

∏
β ̸=α

cαzβ

 1
M−1

. (60)
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Now, to prove the Validity for these two aggregation functions, it is enough to show the following:

Arithmetic: GMI

 1

M − 1

∑
β ̸=α

cαzβ

 ≤ 1

M − 1

∑
β ̸=α

GMI (cαzβ) , (61)

Geometric: GMI


∏

β ̸=α

cαzβ

 1
M−1

 ≤ 1

M − 1

∑
β ̸=α

GMI (cαzβ) . (62)

We start by proving Equation 61. Following the definition of MI Gap in Equation 7, we note that the
MI Gap is a convex function since gα − log(gα)− 1 is convex. Now, using the Jensen’s inequality,
we have:

GMI (Ez [cαz]) ≤ Ez [GMI (cαz)] , (63)

which is another expression of Equation 61 and completes the proof for Arithmetic mean. For
the Geometric mean, by expanding on the definition of MI Gap in Equation 62, and removing the
constant 1 from both sides, we get the following inequality:

E


∏

β ̸=α

cαzβ

 1
M−1

− log

∏
β ̸=α

cαzβ

 1
M−1

 ≤ 1

M − 1

∑
β ̸=α

E [cαzβ − log (cαzβ)] (64)

= E

 1

M − 1

∑
β ̸=α

(cαzβ − log (cαzβ))

 . (65)

So, proving Equation 62 is equivalent to prove the following:

E


∏

β ̸=α

cαzβ

 1
M−1

− log

∏
β ̸=α

cαzβ

 1
M−1

− 1

M − 1

∑
β ̸=α

(cαzβ − log (cαzβ))

 ≤ 0. (66)

We show for any realization of zβ , the inequality is true, then the same applies to the expectation

and the proof is complete. Note that log
(∏

β ̸=α cαzβ

) 1
M−1

= 1
M−1

∑
β ̸=α log (cαzβ), moreover,

using arithmetic-geometric inequality for any non-negative values of zβ and cα, we have:∏
β ̸=α

cαzβ

 1
M−1

≤ 1

M − 1

∑
β ̸=α

cαzβ , (67)

which proves Equation 66, and completes the proof.

C.5 ARITHMETIC AND GEOMETRIC PVC

Theorem 2.2. For any K, M ≥ 2, B = KM , α ∈ [M ], any scalar function f : C × C 7→ R, and
map h : X 7→ C, we have

Arithmetic PVC: I
(
xα;X

̸=α
1:M

)
≥ c(B,M) + E

 1

K

K∑
i=1

log
1

M − 1

∑
β ̸=α

ℓi,α,β

 , (68)

Geometric PVC: I
(
xα;X

̸=α
1:M

)
≥ c(B,M) + E

 1

K

K∑
i=1

1

M − 1

∑
β ̸=α

log ℓi,α,β

 , (69)

where c(B,M) = log(B −M + 1), the expectation is over K independent samples X1:K,1:M , and

ℓi,α,β (X1:K,1:M ) =
ef(x̃i,α,x̃i,β)

ef(x̃i,α,x̃i,β) +
∑

j ̸=i

∑M
γ=1 e

f(x̃j,γ ,x̃i,β)
, x̃i,α = h(xi,α). (70)

We have written ℓi,α,β instead of ℓi,α,β (X1:K,1:M ) where the meaning is clear.
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Proof. Let us sample K independent sets of Xi,1:M , where i denotes the sample number for i ∈ [K].
By independent here, we mean ∀i ̸= j,∀β, γ; Xi,β ⊥⊥ Xj,γ . Now, let us define X̃i,α as following:

X̃i,α = {Xj,β}j ̸=i,β

⋃
{xi,α} . (71)

Since the samples are i.i.d and the views of different samples are also independent, then X̃i,α has no
more information than Xi,α about X ̸=α

i,1:M . Thus,

I(xi,α;X
̸=α
i,1:M ) = I(Xi,α;X

̸=α
i,1:M ) = I(X̃i,α;X

̸=α
i,1:M ). (72)

Moreover, since the samples are identically distributed, we have:

I(xα;X
̸=α
1:M ) =

1

K

K∑
i=1

I(xi,α;X
̸=α
i,1:M ) =

1

K

K∑
i=1

I(X̃i,α;X
̸=α
i,1:M ) (73)

Now, following the proof of Theorem 2.1, we need to define F (M)
(
X̃i,α,X

̸=α
i,1:M

)
. Following the

Arithmetic and Geometric mean in Equations 9 and 10, we only need to define F (2)
(
X̃i,α,xi,β

)
for β ̸= α as the basis. Defining ℓi,α,β (X1:K,1:M ) as follows:

ℓi,α,β (X1:K,1:M ) =
ef(x̃i,α,x̃i,β)

ef(x̃i,α,x̃i,β) +
∑

j ̸=i

∑M
γ=1 e

f(x̃j,γ ,x̃i,β)
, x̃i,α = h(xi,α), (74)

we can now define F (2) for both Arithmetic and Geometric as:

F (2)
(
X̃i,α,xi,β

)
= log ((B −M + 1) ℓi,α,β (X1:K,1:M )) = c(B,M) + log ℓi,α,β (75)

Now, substituting F (M)
(
X̃i,α,X

̸=α
i,1:M

)
(denoted by F (M) for simplicity) in Theorem 2.1, we have

the following:

Arithmetic mean:

I(xα;X
̸=α
1:M ) =

1

K

K∑
i=1

I(X̃i,α;X
̸=α
i,1:M ) (76)

≥ EpX1:K,1:M

[
1

K

K∑
i=1

F (M)

]
− EΠj ̸=ipX̃j

pxi,α
p
X̸

=α
i,1:M

[
1

K

K∑
i=1

eF
(M)

]
+ 1 (77)

= EpX1:K,1:M

 1

K

K∑
i=1

log
B −M + 1

M − 1

∑
β ̸=α

ℓi,α,β


− EΠj ̸=ipX̃j

pxi,α
p
X

̸=α
i,1:M

 1

K

K∑
i=1

B −M + 1

M − 1

∑
β ̸=α

ℓi,α,β

+ 1. (78)

Noting that the expectation in Equation 78 is taking over variables independently, and noting that the
samples are identically distributed, and different views are generated independently, we can replace
xi,β by a fixed i, e.g. without loss of generality, i = 1. Now, we can easily see that this term becomes
equal to one. Thus,

I(xα;X
̸=α
1:M ) ≥ EpX1:K,1:M

 1

K

K∑
i=1

log
B −M + 1

M − 1

∑
β ̸=α

ℓi,α,β

 (79)

= c(B,M) + E

 1

K

K∑
i=1

log
1

M − 1

∑
β ̸=α

ℓi,α,β

 , (80)

which is the claim of the theorem, and the proof is complete for Arithmetic mean.
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Geometric mean:

I(xα;X
̸=α
1:M )=

1

K

K∑
i=1

I(X̃i,α;X
̸=α
i,1:M ) (81)

≥EpX1:K,1:M

[
1

K

K∑
i=1

F (M)

]
−EΠj ̸=ipX̃j

pxi,α
p
X̸

=α
i,1:M

[
1

K

K∑
i=1

eF
(M)

]
+1 (82)

=EpX1:K,1:M

c(B,M)+
1

K

K∑
i=1

1

M − 1

∑
β ̸=α

log ℓi,α,β

+1

−EΠj ̸=ipX̃j
pxi,α

p
X̸

=α
i,1:M

 1

K

K∑
i=1

exp(c(B,M)+
1

M − 1

∑
β ̸=α

log ℓi,α,β)

 . (83)

Since exp(z) is a convex function, we can use the Jensen’s inequality for Equation 83:

EΠj ̸=ipX̃j
pxi,α

p
X̸

=α
i,1:M

 1

K

K∑
i=1

exp(c(B,M) +
1

M − 1

∑
β ̸=α

log ℓi,α,β)

 (84)

≤ EΠj ̸=ipX̃j
pxi,α

p
X

̸=α
i,1:M

 1

K

K∑
i=1

1

M − 1

∑
β ̸=α

(B −M + 1)ℓi,α,β

 (85)

= 1.

Where the last equality is resulted with the same reasoning behind Equation 78. Thus, we have:

I(xα;X
̸=α
1:M ) ≥ EpX1:K,1:M

c(B,M) +
1

K

K∑
i=1

1

M − 1

∑
β ̸=α

log ℓi,α,β

+ 1− 1 (86)

= c(B,M) + E

 1

K

K∑
i=1

1

M − 1

∑
β ̸=α

log ℓi,α,β

 , (87)

and the proof is complete.

C.6 BEHAVIOR OF MI GAP

To investigate the behavior of MI Gap and to provide the proof of Theorem 2.3, we first provide the
following lemma, which is resulted only by the definition of expectation in probability theory:

Lemma C.2. Let I ⊂ {1, . . . , k} with |I| = m, m ≤ k, be a uniformly distributed subset of distinct
indices from {1, . . . , k}. Then, the following holds for any sequence of numbers a1, . . . , ak.

EI={i1,...,im}

[
ai1 + . . .+ aim

m

]
=

a1 + . . .+ ak
k

(88)

Now, for Theorem 2.3, we have the following:

Theorem 2.3. For fixed α, the MI Gap of Arithmetic and Geometric PVC are monotonically non-
increasing with M :

GMI(X1:M2
; g(M2)

α ) ≤ GMI(X1:M1
; g(M1)

α ) ∀ M1 ≤ M2. (89)
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Proof. Let us use the new form of aggregation functions’ definition with zβ in Equations 59 and 60.
For M1 ≤ M2, and for Arithmetic mean, i.e. g(M)

α = 1
M−1

∑
β ̸=α cαzβ , we have:

GMI(X1:M2
; g(M2)

α ) = EpX1:M

 1

M2 − 1

∑
β ̸=α

cαzβ


− EpX1:M2

log
 1

M2 − 1

∑
β ̸=α

cαzβ

− 1 (90)

= EpX1:M2

EI={γ1,...,γM1−1}

 1

M1 − 1

M1−1∑
j=1

cαzγj


− EpX1:M2

log
EI={γ1,...,γM1−1}

 1

M1 − 1

M1−1∑
j=1

cαzγj

− 1 (91)

≤ EpX1:M1

 1

M1 − 1

∑
β ̸=α

cαzβ


− EpX1:M1

EI={γ1,...,γM1−1}

log
 1

M1 − 1

M1−1∑
j=1

cαzγj

− 1 (92)

= EpX1:M1

 1

M1 − 1

∑
β ̸=α

cαzβ


− EpX1:M1

log
 1

M1 − 1

∑
β ̸=α

cαzβ

− 1 (93)

= GMI(X1:M1 ; g
(M1)
α ), (94)

where the first equality is due to the Lemma C.2, and the inequality is resulted from Jensen’s in-
equality. Therefore, for Arithmetic mean, the MI Gap is decreasing with respect to M .

For the Geometric mean, and following the definition of MI Gap, we have:

GMI(X1:M2 ; g
(M2)
α ) = EpX1:M2


∏

β ̸=α

cαzβ

 1
M2−1


− EpX1:M2

 1

M2 − 1

∑
β ̸=α

log (cαzβ)

− 1 (95)

= EpX1:M2


∏

β ̸=α

cαzβ

 1
M2−1


− EpX1:M1

 1

M1 − 1

∑
β ̸=α

log (cαzβ)

− 1, (96)
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where the equality is followed by Lemma C.2, similarly to the corresponding proof for the Arith-
metic mean. Now, mainly focusing on the first term of the MI Gap, we have:

GMI(X1:M2
; g(M2)

α ) = EpX1:M2

exp log

M2−1∏
β ̸=α

cαzβ

 1
M2−1


− EpX1:M1

 1

M1 − 1

∑
β ̸=α

log (cαzβ)

− 1 (97)

= EpX1:M2

exp 1

M2 − 1

M2−1∑
β ̸=α

log cαzβ


− EpX1:M1

 1

M1 − 1

∑
β ̸=α

log (cαzβ)

− 1 (98)

= EpX1:M2

exp
EI={γ1,...,γM1−1}

 1

M1 − 1

M1−1∑
j=1

log cαzγj


− EpX1:M1

 1

M1 − 1

∑
β ̸=α

log (cαzβ)

− 1 (99)

≤ EpX1:M2

EI={γ1,...,γM1−1}

exp
 1

M1 − 1

M1−1∑
j=1

log cαzγj


− EpX1:M1

 1

M1 − 1

∑
β ̸=α

log (cαzβ)

− 1 (100)

= EpX1:M1


∏

β ̸=α

cαzβ

 1
M1−1


− EpX1:M1

 1

M1 − 1

∑
β ̸=α

log (cαzβ)

− 1 (101)

= GMI(X1:M1
; g(M1)

α ). (102)

Here, Equation 100 is resulted using Lemma C.2 by replacing aβ = log cαzβ , and the inequality is
due to the Jensen’s inequality. Thus, the proof is complete.

C.7 CONNECTION BETWEEN SUFFICIENT STATISTICS AND MI BOUNDS

Theorem 2.4. For any K, M ≥ 2, B = KM , α ∈ [M ], and the choice of Q in Equation 24, we
have (see Appendix C.7 for the proof)

I
(
xα;X

̸=α
1:M

)
≥ c(B,M) + E

[
1

K

K∑
i=1

log ℓ̃i,α

]
, (103)

where c(B,M) = log(B −M + 1), the expectation is over K independent samples X1:K,1:M .

Proof. The proof consists of two parts:

1. Show that there is F (M) corresponding to the choice of Q in Equation 24.
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2. Achieving the lower-bound using the given F (M) for I
(
xα,X

̸=α
1:M

)
.

We prove both points together by studying the lower-bound for one-vs-rest MI given the aforemen-
tioned F (M). The proof is very similar to the proof of Theorem 2.2. We use the definition of X̃i

as Equation 71. We also note that since the samples are i.i.d, and the view generation is indepen-
dent, we can also use Equations 72 and 73. Consequently, we only need to define the sample-based
F (M)

(
X̃i,X

̸=α
i,1:M

)
. Note that here, in contrast with Arithmetic and Geometric, we do not have

F (2) as our basis for F (M). We define the F (M)
(
X̃i,X

̸=α
i,1:M

)
as follows:

F (M) (X1:K,1:M ;α) = c(B,M) +
1

K

K∑
i=1

log ℓ̃i,α,β , (104)

which is the sample-based generalization of F (M)
(
xα,X

̸=α
1:M

)
= T (xα) ·

∑M
β ̸=α T (xβ)

M−1 . We also

note that the introduced F (M) and its corresponding aggregation function, follows all the main
properties, i.e. interchangeable arguments, poly-view order invariance, and expandability. Thus,
the first point is correct. Now, we continue with the lower-bound. Substituting Equation 104 in
Theorem 2.1, we get the following:

I(xα;X
̸=α
1:M ) =

1

K

K∑
i=1

I(X̃i;X
̸=α
i,1:M ) (105)

≥ EpX1:K,1:M

[
1

K

K∑
i=1

F (M)

]
− EΠj ̸=ipX̃j

pxi,α
p
X

̸=α
i,1:M

[
1

K

K∑
i=1

eF
(M)

]
+ 1 (106)

= EpX1:K,1:M

c(B,M) +
1

K

K∑
i=1

1

M − 1

∑
β ̸=α

log ℓ̃i,α,β


− EΠj ̸=ipX̃j

pxi,α
p
X̸

=α
i,1:M

[
1

K

K∑
i=1

(B −M + 1)ℓ̃i,α,β

]
+ 1 (107)

= c(B,M) + EpX1:K,1:M

 1

K

K∑
i=1

1

M − 1

∑
β ̸=α

log ℓ̃i,α,β

 , (108)

where the last inequality is resulted with the same reasoning as having identically distributed pairs
of (X̃i,X

̸=α
i,1:M ) due to the sample generation process, and the fact that expectation is taken over

random variables independently. Note that here, maximizing the lower-bound corresponds to maxi-
mizing ℓ̃i,α,β , which provides the same optimization problem as Equation 21 with Q in Equation 24.
Thus, the proof is complete and sufficient statistics is also an MI lower-bound.

D NOTES ON MULTI-CROP

D.1 DISTRIBUTION FACTORIZATION CHOICE OF MULTI-CROP

As explained in more detail in the main text, Tian et al. (2020b) and Caron et al. (2020) studied
the idea of view multiplicity. While their technical approach is different, they both took a similar
approach of multiplicity; getting average of pairwise (two-view) objectives as in Equation 1. Here,
we show that this choice of combining objectives inherently applies a specific choice of factorization
to the estimation of true conditional distribution of p(x|c) in Figure 1b using multiple views, i.e.
applies an inductive bias in the choice of distribution factorization.

Following the InfoMax objective, we try to estimate I(x; c) using the pairwise proxy I(xα;xβ).
Thus, the idea of Multi-Crop can be written as following inequalities:

I(x; c) ≥ 1

M

M∑
α=1

I(x;xα) ≥
1

M(M − 1)

M∑
α=1

M∑
β ̸=α

I(xα;xβ). (109)
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Assuming that these two lower-bound terms are estimations for the left hand side applies distribu-
tional assumption. To see this, we start with expanding on the MI definition in each term:

I(x; c) = E
[
log

p(x|c)
p(x)

]
(110)

1

M

M∑
α=1

I(x;xα) =
1

M

M∑
α=1

E
[
log

p(x|xα)

p(x)

]
(111)

1

M(M − 1)

M∑
α=1

M∑
β ̸=α

I(xα;xβ) =
1

M(M − 1)

M∑
α=1

M∑
β ̸=α

E
[
log

p(xα|xβ)

p(xα)

]
. (112)

Now, assuming that the view-generative processes do not change the marginal distributions, i.e. for
any α, p(x) = p(xα), and considering Equation 109, we have:

E
[
log

p(x|c)
p(x)

]
≥E

log( M∏
α=1

p(x|xα)

p(x)

) 1
M

≥E

log
 M∏

α=1

M∏
β ̸=α

p(xα|xβ)

p(x)

 1
M(M−1)

 . (113)

Therefore, the distributional assumption or the choice of factorization is estimating p(x|c) by the
following distributions:

p(x|c) =̂
(

M∏
α=1

p(x|xα)

) 1
M

, (114)

p(x|c) =̂

 M∏
α=1

M∏
β ̸=α

p(xα|xβ)

 1
M(M−1)

, (115)

which translates to estimating the distribution using its geometric mean. Note that the symbol =̂
reads as “estimates”, and it is not equality.

D.2 AGGREGATION FUNCTION FOR MULTI-CROP

Following the result of Proposition 2.1, Multi-Crop is an average of pairwise objectives, which
means that if we know the aggregation function and F (2) for the pairwise objective, then we can
write the aggregation function for multi-crop as following:

I(xα;X
̸=α
1:M ) ≥ 1

M − 1

∑
β ̸=α

I(xα;xβ), (116)

I(xα;xβ) ≥ E [F (xα,xβ)]− E
[
p(xα)p(xβ)e

F (xα,xβ)

p(xα,xβ)

]
+ 1, (117)

where the second line is from Theorem 2.1 by setting M = 2. Now, by getting average over β from
both sides, we can see:∑

β ̸=α I(xα;xβ)

M − 1
≥ Eβ [E [F (xα,xβ)]]− E

 1

M − 1

∑
β ̸=α

p(xα)p(xβ)e
F (xα,xβ)

p(xα,xβ)

+ 1. (118)

Following the proof of Theorem 2.1 and the definition of aggregation function in Equation 6, we
achieve the following aggregation function for Multi-Crop:

g(M)
α

(
X ̸=α

1:M

)
=

1

M − 1

M∑
β ̸=α

g(2)α

(
X{α,β}

)
(119)
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E ADDITIONAL THEORETICAL RESULTS AND DISCUSSIONS

E.1 GENERALIZING ONE-VS-REST MI TO SETS

A generalization of the one-vs-rest MI is to consider the MI between two sets. Let us assume that
the set of [M ] is partitioned into two sets A and B, i.e. XA ∪ XB = X1:M , and A ∩ B = ∅,
where ∅ denotes the empty set. Defining the density of XA and XB as the joint distribution of their
corresponding random variables, we can define the generalized version of one-vs-rest MI:
Definition E.1 (Two-Set MI). For any two partition set of A and B over [M ], define the two-set MI
as following:

I(XA,XB) = DKL (pX1:M
∥ pXApXB) . (120)

We can now also generalize the INWJ to the two-set case. The main change here is the definition of
F (M) as it needs to be defined over two sets as inputs. We have the following:
Theorem E.1. For any M ≥ 2, and partition sets A and B over [M ], such that A ̸= ∅ and B ̸= ∅,
and for any positive function F (M) : X |A| ×X |B| 7→ R+, we have:

I (XA;XB) ≥ EpX1:M

[
F (M) (XA,XB)

]
− EpXApXB

[
eF

(M)(XA,XB)
]
+ 1. (121)

Proof. The proof follows the exact proof of Theorem 2.1 by replacing xα and X ̸=α
1:M by XA and

XB, respectively.

Thus, as long as one can define such a function F (M), the other results of this paper follows.

E.2 RECOVERING SIMCLR

Geometric and Arithmetic PVC Here, we show that in case of M = 2 and for specific choices of
function F (2), we can recover the existing loss objective for SimCLR, i.e. InfoNCE. Setting M = 2,
we make the following observations:

• In the case of M = 2, the arithmetic and geometric aggregation functions result in the same
lower-bound.

• Recovering SimCLR Chen et al. (2020a): Substituting M = 2 in Equations 12 and 13,
we recover the following contrastive loss, which is equivalent to InfoNCE, i.e. SimCLR
objective:

LM=2
PVC = −E

[
1

K

K∑
i=1

log
ef(xi,1,xi,2)

ef(xi,1,xi,2) +
∑

j ̸=i

∑2
γ=1 e

f(xj,γ ,xi,2)

]
= LInfoNCE. (122)

Letting f(x,y) = x·y
∥x∥∥y∥ lead us to the exact SimCLR loss.

Sufficient Statistics We can also show that in the sufficient statistics loss (Equation 22), the case
of M = 2 and the choice of Q = T α̃ (Equation 24) recovers the SimCLR loss. To prove this, note
the following observations:

• When M = 2, X ̸=α
1:M = x3−α, i.e. if α = 1, X ̸=α

1:M = x2 and if α = 2, X ̸=α
1:M = x1.

• By Equation 24, Q(X ̸=α
1:M ) = 1

M−1

∑M
β ̸=α T (xβ) = T (x3−α) when M = 2. Therefore, in

Equation 22, we have the following:

LSuffStats = −E

[
1

K

K∑
i=1

1

2

2∑
α=1

log
eT

T
i,αTi,3−α

eT
T
i,αTi,3−α +

∑K
j=1

∑2
γ=1 e

TT
i,αTj,γ

]

= −E

[
1

K

K∑
i=1

1

2

(
log

eT
T
i,1Ti,2

eT
T
i,1Ti,2 +

∑K
j=1

∑2
γ=1 e

TT
i,1Tj,γ

+ log
eT

T
i,2Ti,1

eT
T
i,2Ti,1 +

∑K
j=1

∑2
γ=1 e

TT
i,2Tj,γ

)]
,

(123)
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which is the symmetric InfoNCE. Choosing T (x) = x
∥x∥ recovers the SimCLR objective.

E.3 SIGLIP CONNECTION TO MI BOUND

We show that the objective introduced in Zhai et al. (2023b) is an MI bound. As of our best under-
standing, this is not present in the existing literature.

SigLIP is an MI bound: As shown in the proof of Theorem 2.2, to achieve the lower-bounds we
define F (M) to have a Softmax-based form (see Appendix C.5 for more details). However, we could
choose other forms of functions. If we replace Softmax with a Sigmoid-based form, we can recover
the SigLIP loss, i.e. :

F (2)(xi,1,xj,2) = log
1

1 + ezi,j(−txi,1·xj,2+b)
zi,j = 1 if (i = j) else − 1. (124)

Following the same procedure as the proof of Theorem 2.2, and defining the F (2) over positives and
negatives as F (2)(X1:K,1:2) = 1

K

∑K
i=1

∑K
j=1 log

1

1+ezi,j(−txi,1·xj,2+b) . This shows that SigLIP is
also a MI bound. Zhai et al. (2023b) has a discussion on the importance of having the bias term
(b) in the practical setting to alleviate the imbalance effect of negatives in the initial optimization
steps. However, it would be of a future interest to see whether the generalization of SigLIP by either
arithmetic or geometric aggregation function to poly-view setting would help to remove the bias
term.

E.4 SUFFICIENT STATISTICS EXTENSION

So far, we have assumed that there is generative factor c affecting the samples. However, in a more
general case, we have multiple factors affecting the sample generation. Let us consider the causal
graph presented in Figure 4. Here, we assume that the main factors important for the down-stream
task are denoted by c, called content, while the non-related factors are shown by sα, called styles.
The styles can be different among views while the task-related factor c is common among them all.

c

s1 s2 sM

Styles

x1 x2 xM

Views

. . .

. . .

Figure 4: Content-Style causal graph A
more general poly-view sample generation
with task-related generative factor c, called
content. For each α ∈ [M ], sα shows the
view-dependent and task non-related fac-
tors, called styles. The views are shown as
before by xα. In the most general case, con-
tent and styles are not independent, while in
some settings they might be independent. In
the independent scenario, the arrows from c
to sα can be ignored.

The goal of this section is to generalize the approach of sufficient statistics introduced in Section 2.4
to the case of content-style causal graph. We start with assuming that content and style are indepen-
dent and then move to the general case of dependent factors.

Independent content and style In this scenario, the arrows in Figure 4 from c to sα will be
ignored as there is no dependency between these two factors. We show that for any α ∈ [M ], the
sufficient statistics of xα with respect to {c, sα} has tight relations with sufficient statistics of xα to
c and sα separately.
Theorem E.2. In the causal generative graph of Figure 4, if c ⊥⊥ sα, then we have:

T{c,sα}(x) = (Tc(x), Tsα(x)) (125)

Proof. Having independent factors means p(xα|c, sα) = p(xα|c)p(xα|sα). Now, using the
Neyman-Fisher factorization (Halmos & Savage, 1949) for sufficient statistics, alongside assum-
ing that we have exponential distribution families, similar to Section 2.4, we have the following
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factorization:

p(xα|c, sα) = R(x)C(c, sα) exp
(
T{c,sα}(x) ·Q{c,sα}(c, sα)

)
(126)

p(xα|c) = r1(x)c1(c) exp (Tc(x) ·Qc(c)) (127)
p(xα|sα) = r2(x)c2(sα) exp (Tsα(x) ·Qsα(sα)) . (128)

Substituting these factorizations in the definition of independent generative factors results in:

p(xα|c, sα) = p(xα|c)p(xα|sα) (129)
= (r1(x)c1(c) exp (Tc(x) ·Qc(c))) (r2(x)c2(sα) exp (Tsα(x) ·Qsα(sα))) (130)
= R(x)C(c, sα) exp ((Tc(x), Tsα(x)) · (Qc(c), Qsα(sα))) , (131)

which completes the proof by showing:

T{c,sα}(x) = (Tc(x), Tsα(x)) (132)

Q{c,sα}(c, sα) = (Qc(c), Qsα(sα)) (133)

Note that Theorem E.2 also shows that if the space of generative factor c in Figure 1b is a disentan-
gled space of two or more spaces, i.e. C = C1 ⊗ C2, then the sufficient statistics of x with respect
to c is equal to a concatenation of sufficient statistics of x with respect to c1 and c2, i.e. sufficient
statistics keeps the disentanglement.

Dependent content and style When the factors are dependent, the sufficient statistics becomes
an entangled measure of c and sα. However, if we assume xα = f(c, sα) for any α ∈ [M ] and a
specific function f : C × S 7→ X , we have the following theorem:

Theorem E.3. In the causal generative graph of Figure 4, assume for any α ∈ [M ], xα = f(c, sα)
for an unknown invertible function f , such that

c = f−1(xα)nc sα = f−1(xα)ns , (134)

where nc and ns show the elements of f−1(xα) that is corresponded to c and sα respectively. Then,

Tc(xα) = Tc(xβ) ∀ α, β ∈ [M ]. (135)

Proof. Assume that sα and sβ are sampled i.i.d from ps|c. Then, we have:

p(x = xα|c) = p(f(c, s) = xα|c) (136)

= δc p(s = sα = f−1(xα)ns |c) (137)
= δc p(s = sβ |c) (138)

= δc p(s = sβ = f−1(xβ)ns |c) (139)
= p(f(c, s) = xβ |c) (140)
= p(x = xβ |c) (141)

Thus, p(xα|c) = p(xβ |c), which using the Neyman-Fisher factorization and exponential family
distribution, results in Tc(xα) = Tc(xβ). This completes the proof.

Note that the result of Theorem E.3 recovers the result of von Kügelgen et al. (2021) using the idea
of sufficient statistics.

E.5 OPTIMAL MULTIPLICITY IN THE FIXED BATCH SETTING

In the previous results of Arithmetic and Geometric PVC (Theorem 2.2), we assumed that M can be
any number, and accordingly the total number of views B = K ×M for a fixed K increases if M
increases. However, it is interesting to investigate the Fixed Batch scenario outlined in Section 3.2
which corresponds to holding B fixed by reducing K when M is increased. What is the optimal
multiplicity M∗ for the bottom row results of Figure 3? We first note that due to the complexity of
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MI lower-bounds in Equations 12 and 13, it is not trivial to answer this question as it will depend on
the behavior of function f and the map h.

Here, we attempt to provide a simplified version of Geometric PVC by adding some assumptions
on the behavior of f and h. Although this result is for a simplified setting, we believe it provides
an interesting insight that for a fixed batch size B, depending on the functions f and h, there is an
optimal number of multiplicity M⋆ which maximizes the lower-bound. While even in this simplified
version, it is computationally challenging to compute M⋆ exactly, it is possible to prove its existence.

In the case that B is fixed, we can rewrite the Geometric PVC in Equation 13 as following by
replacing K = B

M :

I
(
xα;X

̸=α
1:M

)
≥ c(B,M) + E

 1

K

K∑
i=1

1

M − 1

∑
β ̸=α

log ℓi,α,β

 (142)

= c(B,M) + E

M
B

B
M∑
i=1

1

M − 1

∑
β ̸=α

log ℓi,α,β

 (143)

= IGeometric (144)

To prove that there is an optimal M , we need to show that there is M⋆ such that ∂IGeometric
∂M = 0 at

point M = M⋆. Since ℓi,α,β depends on functions f and h (see Equation 14), and these functions
are in practice trained, we assume that for a long enough training of their corresponding neural net-
works, ℓi,α,β converges to its optimum value denoted by ℓ⋆i,α,β . Moreover, we assume that negative
samples are uniformly distributed on the hypersphere (following the Wang & Isola (2020) benefits
of uniformity criteria). Also, we assume that the convergence of ℓ⋆i,α,β to its desired value of 15,
happens when M → ∞ in a linear way. Note that the first part of this assumption is not limiting
since we know as M grows, the lower bound becomes tighter. Due to the fact that one point is
M → ∞, there will be many mappings that follow the desired behavior of converging to one as M
grows. Here, we introduce two choices for the mapping ℓ⋆i,α,β with the correct limiting behavior in
M to investigate the importance of mapping choice on the optimum value of M :

1. ℓ⋆i,α,β(M) = p⋆ +
M − 2

M
(1− p⋆) = ℓ⋆(M), (145)

2. ℓ⋆i,α,β(M) = 1− 1− p⋆

M − 1
= ℓ⋆(M), (146)

where in both equations, p⋆ = ℓ⋆i,α,β(M = 2) and limM→∞ ℓ⋆i,α,β(M) = 1. Note that the uni-
formity assumption helps to have the same value of p⋆ for any α and β. Now, we can rewrite the
IGeometric as following:

IGeometric = c(B,M) + E

M
B

B
M∑
i=1

1

M − 1

∑
β ̸=α

log ℓ⋆(M)

 (147)

= c(B,M) + log ℓ⋆(M). (148)

Now, we can compute ∂IGeometric
∂M = 0. We have,

∂IGeometric

∂M
=

∂c(B,M)

∂M
+

1

ℓ⋆(M)

∂ℓ⋆(M)

∂M
(149)

= − 1

B −M + 1
+

1

ℓ⋆(M)

∂ℓ⋆(M)

∂M
(150)

= 0. (151)

5The desired value of ℓi,α,β is one as it is a likelihood.
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Therefore, finding the solution of ∂ℓ⋆(M)
∂M = ℓ⋆(M)

B−M+1 would provide us with M⋆. For each of
choices of ℓ⋆(M) in Equations 145 and 146, we have:

1.
2

M⋆
(1− p⋆)− M⋆ − 2(1− p⋆)

B −M⋆ + 1
= 0 (152)

2.
1− p⋆

M⋆ − 1
− (M⋆ − 1)− (1− p⋆)

B −M⋆ + 1
= 0. (153)

Solving these equations results in the following optimum value for each:

1. M⋆ =
√
2(B + 1)(1− p⋆) (154)

2. M⋆ = 1 +
√

B(1− p⋆). (155)

It is interesting to see that p⋆ plays a role in the optimum value of M , which shows the importance
of the design of scalar function f and the map h. The differences between the values of M⋆ in the
two scenarios also emphasize the importance of the behavior of the contrastive loss as M increases.

E.6 SYNTHETIC 1D GAUSSIAN

Following the synthetic setting in Section 3.1, here, we show the following results:

• Provide the proof for the closed form of one-vs-rest MI.
• Evaluate the convergence of the conditional distribution for large M to the true distribution.

Closed form of one-vs-rest MI We start with finding the closed form for joint distributions,
p(X1:M ) and p(xα)p(X

̸=α
1:M ). Since all the samples and their views are Gaussian, the joint dis-

tribution will also be Gaussian. Thus, it is enough to find the covariance matrix of each density
function; note that the mean is set to zero for simplicity.

E [xα] =

∫
p(c = c)E [xα|c = c] dc =

∫
cp(c = c) dc = E[c] = 0, (156)

Var [xα] = E
[
x2
α

]
=

∫
p(c = c)E

[
x2
α|c = c

]
dc = σ2 +

∫
c2p(c = c) dc = σ2 + σ2

0 , (157)

Cov (xα,xβ) = E [xαxβ ] =

∫
p(c = c)E [xαxβ |c = c] dc (158)

=

∫
p(c = c)E [xα|c = c]E [xβ |c = c] dc =

∫
c2p(c = c) dc = σ2

0 . (159)

Thus, if we present the covariance matrices of p(X1:M ) and p(xα)p(X
̸=α
1:M ) by ΣM and Σ̃M respec-

tively, we have the following:

ΣM =


σ2 + σ2

0 σ2
0 . . . σ2

0

σ2
0 σ2 + σ2

0 . . . σ2
0

...
...

. . .
...

σ2
0 σ2

0 . . . σ2 + σ2
0

 , Σ̃M =

[
σ2 + σ2

0 0
0 ΣM−1

]
. (160)

Consequently, we can write the density functions as follows:

p(X1:M ) = (2π)−
M
2 det (ΣM )

− 1
2 exp

(
1

2
xT Σ−1

M x

)
, (161)

p(xα)p(X
̸=α
1:M ) = (2π)−

M
2 det

(
Σ̃M

)− 1
2

exp

(
1

2
xT Σ̃−1

M x

)
, (162)

where x = (x1, . . . , xM ). Now, we can compute the closed form for one-vs-rest MI using the
following lemma:
Lemma E.4. Assume x and y are two multivariate Gaussian random variables of size n with laws
Nx and Ny , covariance matrices Σx and Σy , and mean vectors µx, µy , respectively. Then,

DKL (Nx ∥Ny)=
1

2

(
tr
(
Σ−1

y Σx

)
+(µy −µx)

T Σ−1
Y (µy −µx)−n+ log

(
det (Σy)

det (Σx)

))
. (163)
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Therefore, the one-vs-rest MI will be as follows:

I(xα;X
̸=α
1:M ) = DKL

(
p(X1:M ) ∥ p(xα)p(X

̸=α
1:M )

)
(164)

=
1

2

tr
(
Σ̃−1

M ΣM

)
−M + log

det
(
Σ̃M

)
det (ΣM )

 . (165)

Define A = σ2I , B = σ2
01 and C = A+ B. One can easily see that A and B commute; therefore,

they are simultaneously diagonizable. Thus, there exists matrix P such that the following holds:
A = PDAP

−1, B = PDBP
−1, C = P (DA +DB)P

−1, (166)

where DA and DB show the diagonalized matrices. We also know that det(C) =
∏M

i=1 λi(DA +
DB), where λi denotes the i-th eigen value of matrix DA+DB . Due to the structure of the matrices
A and B, we can show DA = σ2I , and DB is as follows:

DB = σ2
0


M 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 . (167)

As a result we have the following:

det (ΣM ) =
(
σ2
)M−1 (

σ2 +Mσ2
0

)
(168)

det
(
Σ̃M

)
=
(
σ2 + σ2

0

)
det (ΣM−1) =

(
σ2 + σ2

0

) (
σ2
)M−2 (

σ2 + (M − 1)σ2
0

)
(169)

Also, Σ̃−1
M ΣM has a block matrix multiplication form:

Σ̃−1
M ΣM =

([
σ2 + σ2

0 0
0 ΣM−1

])−1 [
σ2 + σ2

0 v
vT ΣM−1

]
(170)

=

[
(σ2 + σ2

0)
−1 0

0 Σ−1
M−1

] [
σ2 + σ2

0 v
vT ΣM−1

]
(171)

=

[
1 (σ2 + σ2

0)
−1v

Σ−1
M−1v

T I

]
(172)

Where v = (σ2
0 , . . . , σ

2
0) is a 1 × (M − 1) matrix. Therefore, tr

(
Σ̃−1

M ΣM

)
= M . Thus, for the

one-vs-rest MI, we have:

I(xα;X
̸=α
1:M ) =

1

2
log

((
1 +

σ2
0

σ2

)(
1− σ2

0

σ2 +Mσ2
0

))
(173)

Convergence of conditional distribution Using the covariance matrices in Equation 160, and
expanding the distributions p(Xi,1:M ) and p(X ̸=α

i,1:M ), we can write the conditional distribution
pxi,α|X̸=α

i,1:M
as follows, which helps us to evaluate Equation 19:

pxi,α|X ̸=α
i,1:M

=
1√
2πσ2

(
1− σ2

0

σ2 +Mσ2
0

)
exp

[
−
∑M

α=1(xi,α − x̄i)
2

2σ2
− M x̄2

i

2(σ2 +Mσ2
0)

+

∑M
β ̸=α(xi,β − x̸̄=α

i )2

2σ2
+

(M − 1)(x̸̄=α
i )2

2(σ2 + (M − 1)σ2
0)

]
,

(174)

where x̄i and x̄ ̸=α
i are the average of Xi,1:M and X ̸=α

i,1:M , respectively. As M increases, Mx̄2
i

2(σ2+Mσ2
0)

and (M−1)(x̸̄=α
i )2

2(σ2+(M−1)σ2
0)

converge to c2
i

2σ2
0

, which results in these terms cancelling each other. Therefore,
we have:

lim
M→∞

pxi,α|X̸=α
i,1:M

= lim
M→∞

1√
2πσ2

exp

[
− (xi,α − x̄i)

2

2σ2

+

∑
β ̸=α(xi,β − x̸̄=α

i )2 − (xi,β − x̄i)
2

2σ2

]. (175)
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Table 1: Hyperparameters for all ImageNet1k experiments in Section 3.2

ResNet 50

Weight initialization kaiming_uniform (He et al., 2015)
Backbone normalization BatchNorm
Head normalization BatchNorm
Synchronized BatchNorm over replicas Yes
Learning rate schedule Single Cycle Cosine
Learning rate warmup (epochs) 10
Learning rate base value 0.2× 4096

256
= 3.2

Learning rate minimum value 0
Optimizer LARS (You et al., 2017)
Optimizer scaling rule None
Optimizer momentum 0.9
Gradient clipping None
Weight decay 1× 10−4

Weight decay scaling rule None
Weight decay skip bias Yes
Numerical precision bf16
Augmentation stack SimCLR (Chen et al., 2020a)

Using the central limit theorem, x̄i converges to ci, and the second term converges to zero, yielding

lim
M→∞

pxi,α|X ̸=α
i,1:M

= pxi,α|ci
. (176)

F REAL-WORLD IMAGE REPRESENTATION LEARNING

F.1 EXPERIMENTAL DETAILS

Hyperparameters We present the base for training SimCLR (Chen et al., 2020a) and other multi-
view methods with a ResNet 50 (He et al., 2016) in Table 1.

Augmentations We use SimCLR augmentations throughout (Chen et al., 2020a), with
color_jitter_strength = 1.0 and an image size override of 224 × 224. For complete-
ness, we provide our training augmentation here, our testing augmentation is the standard resize,
center crop and normalize, and general multiplicity M corresponds to sampling M independent
transformations.

[
transforms.RandomResizedCrop(

image_size_override, scale=crop_scale, interpolation=Image.BICUBIC
),
transforms.RandomHorizontalFlip(p=0.5),
transforms.RandomApply(

[
transforms.ColorJitter(

brightness=0.8 * color_jitter_strength,
contrast=0.8 * color_jitter_strength,
saturation=0.8 * color_jitter_strength,
hue=0.2 * color_jitter_strength,

)
],
p=0.8,

),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([M.GaussianBlur([0.1, 2.0])], p=0.5),
transforms.ToTensor(),
IMAGENET_NORMALIZE,

]

Data All experiments in Section 3.2 are performed on ImageNet1k (Russakovsky et al., 2014).
This dataset is commonly used in computer vision and contains 1.28M training, 50K validation and
100K test images of varying resolutions, each with a label from one of 1000 object classes.
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Table 2: Hyperparameters for fine tuning experiments

ResNet 50

Head weight initialization 0 (Beyer et al., 2022)
Head bias initialization lnn−1

classes (Beyer et al., 2022)
Synchronized BatchNorm over replicas No
Learning rate schedule Single Cycle Cosine
Learning rate warmup (epochs) 5
Learning rate base value {0.0001, 0.001, 0.001}
Learning rate minimum value 0
Batch size {384, 1024}
Training epochs {300, 1000, 2000, 4000}
Optimizer SGD
Optimizer scaling rule SGD
Optimizer base batch size 256
Optimizer momentum 0.9
Gradient clipping None
Weight decay 0.0
Numerical precision fp32
Augmentation stack RandAug (Cubuk et al., 2020)
Repeated Aug. 2
RandAug 9/0.5
Mixup prob. 0.8
Cutmix prob. 1.0
Random Erasing prob. 0.25

F.2 FINE-TUNING RESULTS ON TRANSFER TASKS

To investigate whether poly-view methods improve transfer learning performance, we evaluated the
ImageNet1k pre-trained models of Section 3.2 by fine-tuning all model weights for a new task.

Datasets Following SimCLR (Chen et al., 2020a) we investigated transfer learning performance
on the Food-101 dataset (Bossard et al., 2014), CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2014),
SUN397 (Xiao et al., 2010), Stanford Cars (Krause et al., 2013), Aircraft (Maji et al., 2013), the De-
scribable Textures Dataset (DTD) (Cimpoi et al., 2014), Oxford-IIIT Pets (Parkhi et al., 2012), and
Caltech-101 (Fei-Fei et al., 2007). We report top-1 accuracy for all datasets, and use the predefined
train, validation and test splits introduced by the dataset creators.

Hyperparameters Fine-tuning hyperparameters are summarized in Table 2. Hyperparameters
are optimized for the SimCLR model only and are then re-used for the poly-view methods, following
the experimental protocol outlined in Section 3.2. All fine-tuning is performed using SGD using
momentum. Fine-tuning on smaller datasets is done for a larger number of (e.g. 4k epochs for
Aircraft) and with a lower learning rate (e.g. 10−4 for Caltech-101). Fine-tuning head weights are
initialized to zero, with head bias initialized to lnn−1

classes, where nclasses is the number of classes in
the corresponding downstream dataset (Beyer et al., 2022).

Results In Table 3 we report the test top-1 accuracy after fine-tuning. We do this for the Geo-
metric PVC models with both batch strategies introduced in Section 3.2: Growing Batch and Fixed
Batch, as well as the SimCLR model, for small (256 epochs) and large (1024 epochs) amounts of
pretraining. In all cases, Poly-view methods match or outperform the SimCLR baseline for the same
set of hyperparameters. We also observe that the Geometric PVC method trained for 256 epochs
outperforms the SimCLR method trained for 1024 epochs on transfer to Food, SUN297, Cars, Pets,
and Caltech-101, reinforcing the computational efficiency findings of Section 3.2.
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Model Food CIFAR10 CIFAR100 SUN397 Cars Aircraft DTD Pets Caltech-101

Pre-training Epochs: 256
Geometric PVC (growing) 89.56 98.33 87.38 65.91 93.47 81.13 72.41 91.31 88.27
Geometric PVC (shrinking) 90.08 98.28 87.63 66.12 93.61 81.61 73.59 91.05 88.77
SimCLR 88.58 97.76 86.55 65.10 92.96 78.54 71.44 90.51 86.49

Pre-training Epochs: 1024
Geometric PVC (growing) 90.00 98.31 87.66 66.59 93.58 80.58 73.24 90.78 89.80
Geometric PVC (shrinking) 90.27 98.41 87.73 65.68 93.78 82.42 73.30 90.88 88.57
SimCLR 89.42 98.17 86.70 65.24 93.48 80.72 72.60 90.36 89.66

Table 3: Comparison of transfer learning performance of poly-view Geometric PVC against a baseline SimCLR
for the same hyperparameter set across nine natural image datasets. Geometric (growing) and Geometric
(shrinking) correspond to Geometric PVC (M = 8) using Growing Batch and Shrinking Batch strategies
respectively (see Section 3.2). Top: ImageNet1k models pre-trained for 256 epochs; bottom: ImageNet1k
models pre-trained for 1024 epochs. Results not significantly worse than the best (bootstrap confidence interval
of 90%) are shown in bold.

F.3 THE ROLE OF AUGMENTATION STRENGTH AT HIGH MULTIPLICITY

We present the role of augmentation strength at high multiplicity in Figure 5, investigating the effect
of different color jittering (Figure 5a) and cropping (Figure 5b). We do not observe significantly
different qualitative behavior between the SimCLR baseline and the poly-view methods.
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Figure 5: ResNet 50 trained for 128 epochs with different objectives for different strengths of color augmenta-
tion (a) and cropping strategy (b). Geometric and Arithmetic methods presented use multiplicity M = 4.
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F.3.1 COMPARISON OF TOTAL FLOATING OPERATIONS

In Section 3.2 and Figure 3a, Relative Compute (Equation 29), which measures the total number
of encoded views during training, was used to quantify the practical benefits of using Poly-View
methods.

To quantify the overall training budget, in Figure 6 we report the total number of FLOPs (FLoat-
ing OPerations) performed during training. This is the total number of FLOPs in the forward and
backward passes for every training step of the model as measured by the PyTorch profiler6.

The conclusion of Section 3.2 are unchanged when considering total FLOPs instead of Relative
Compute. This happens because for sufficiently large models like the ResNet50 we use here, the
FLOPs computation is dominated by the model encoder and not the loss computation. This results
in Relative Compute being a proxy for total FLOPs.
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Figure 6: Training at multiplicity M = 8 varying training epochs.

Figure 7: Contrastive ResNet 50 trained on ImageNet1k for different epochs or with different view multiplicities.
Blue, red, orange and black dashed lines represent Geometric, Multi-Crop, Sufficient Statistics, and SimCLR
respectively. Bands indicate the mean and standard deviation across three runs. Points indicate final model
performance of corresponding hyperparameters. We use K = 4096 for Growing Batch and K = (2/M) ×
4096 for Fixed Batch. Each method is trained with a multiplicity M = 8 except the M = 2 SimCLR baseline.
We compare models in terms of performance against training epochs (left), total updates (middle) which is
affected by batch size K, and total FLOPs.

6https://pytorch.org/docs/stable/profiler.html
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F.3.2 IMPLEMENTATION OF LOSS FUNCTIONS

The pseudocodes for poly-view contrastive loss and sufficient statistics contrastive loss are presented
in Algorithms 1 and 2 respectively. Both algorithms have the same structure, with the definition
of score matrix as the primary difference. The rearrange and repeat functions are those of
einops (Rogozhnikov, 2022).

Algorithm 1 Poly-View Contrastive Loss pseudocode.

# net - encoder + projector network
# aug - augmentation policy
# X[k, h, w, c] - minibatch of images
# tau - temperature

def get_mask(beta: int) -> Tensor:
"""The self-supervised target is j=i, beta=alpha. Produce a mask that
removes the contribution of j=i, beta!=alpha, i.e. return a [k,m,k]
tensor of zeros with ones on:
- The self-sample index
- The betas not equal to alpha
"""
# mask the sample
mask_sample = rearrange(diagonal(k), "ka kb -> ka 1 kb")
# mask the the beta-th view
mask_beta = rearrange(ones(m), "m -> 1 m 1")
mask_beta[:, beta] = 0
return mask_beta * mask_sample # [k, m, k]

# generate m views for each sample
X_a = cat([X_1, X_2, ..., X_m], dim=1) = aug(X) # [k, m, h, w, c]

# extract normalized features for each view
Z = l2_normalize(net(X_a), dim=-1) # [k, m, d]

# build score matrix
scores = einsum("jmd,knd->jmnk", Z, Z) / tau # [k, m, m, k]

# track the losses for each alpha
losses_alpha = list()

# iterate over alpha and beta
for alpha in range(m):

losses_alpha_beta = list()
for beta in range(m):

# skip on-diagonal terms
if alpha != beta:

logits = scores[:, alpha] # [k, m, k]
labels = arange(k) + beta * k # [k]
mask = get_mask(beta) # [k, m, k]
logits = flatten(logits - mask * LARGE_NUM) # [k, m * k]
loss_alpha_beta = cross_entropy(logits, labels) # [k]
losses_alpha_beta.append(loss_alpha_beta)

losses_alpha = stack(loss_alpha, dim=-1) # [k, m-1]

# aggregate over the betas for each alpha
if method == "arithmetic":

loss_alpha = logsumexp(losses_alpha, dim=-1) - log(k) # [k]
elif method == "geometric"

loss_alpha = mean(losses_alpha, dim=-1) # [k]

losses_alpha.append(loss_alpha)

# build final loss matrix
losses = stack(losses_alpha, dim=-1) # [k,m]

# take expectations
sample_losses = mean(losses, dim=-1) # [k]
loss = mean(sample_losses) # scalar
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Algorithm 2 Sufficient Statistics Contrastive Loss pseudocode.

# net - encoder + projector network
# aug - augmentation policy
# X[k, h, w, c] - minibatch of images
# tau - temperature

def get_mask(beta: int) -> Tensor:
"""The self-supervised target is j=i, beta=alpha. Produce a mask that
removes the contribution of j=i, beta!=alpha, i.e. return a [k,m,k]
tensor of zeros with ones on:
- The self-sample index
- The betas not equal to alpha
"""
# mask the sample
mask_sample = rearrange(diagonal(k), "ka kb -> ka 1 kb")
# mask the the beta-th view
mask_beta = rearrange(ones(m), "m -> 1 m 1")
mask_beta[:, beta] = 0
return mask_beta * mask_sample # [k, m, k]

# generate m views for each sample
X_a = cat([X_1, X_2, ..., X_m], dim=1) = aug(X) # [k, m, h, w, c]

# extract normalized features for each view
Z = l2_normalize(net(X_a), dim=-1) # [k, m, d]

# build the average of the rest-set
# step 1: repeat the features M times
Z_tilde = repeat(Z, "k m1 d -> k m1 m2 d", m2=m) # [k, m, m, d]

# step 2: replace the effect of alpha-th view by zero
# and correct the bias coefficient of mean
diagonal_one = rearrange(eye(m), "m1 m2 -> 1 m1 m2 1")
diagonal_zero = ones([k, m, m, d]) - diagonal_one # [k, m, m, d]
Z_tilde = m / (m - 1) * Z_tilde * diagonal_zero # [k, m, m, d]

# step 3: getting the average of rest-set and nomalize
Z_tilde = mean(Z_tilde, dim=1) # [k, m, d]
Z_tilde = l2_normalize(Z_tilde, dim=-1) # [k, m, d]

# build score matrix
scores = einsum("jmd,knd->jmnk", Z, Z_tilde) / tau # [k, m, m, k]

# track the losses for each alpha
losses_alpha = list()

# iterate over alpha and beta
for alpha in range(m):

losses_alpha_beta = list()
for beta in range(m):

# skip non-diagonal terms
if alpha == beta:

logits = scores[:, alpha] # [k, m, k]
labels = arange(k) + beta * k # [k]
mask = get_mask(beta) # [k, m, k]
logits = flatten(logits - mask * LARGE_NUM) # [k, m * k]
loss_alpha_beta = cross_entropy(logits, labels) # [k]
losses_alpha_beta.append(loss_alpha_beta)

losses_alpha = stack(loss_alpha, dim=-1) # [k, m-1]

# aggregate over the betas for each alpha
loss_alpha = mean(losses_alpha, dim=-1) # [k]

losses_alpha.append(loss_alpha)

# build final loss matrix
losses = stack(losses_alpha, dim=-1) # [k,m]

# take expectations
sample_losses = mean(losses, dim=-1) # [k]
loss = mean(sample_losses) # scalar
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G EXPANDED RELATED WORK

SSL methods and contrastive learning Contrastive learning appears in many SSL methods. Sim-
CLR (Chen & He, 2021) leverages the InfoNCE objective to train the encoders to find good repre-
sentations. MoCo (He et al., 2019; Chen et al., 2020b; 2021) uses a momentum encoder to create
a moving average of the model’s parameters, enabling it to learn powerful image representations
without the need for labeled data. CLIP (Radford et al., 2021) is a novel multi-modal approach that
leverages contrastive learning to bridge the gap between text and images. VICReg (Bardes et al.,
2021) is another SSL method that uses contrastive learning but also address the collapse problem
in which the encoders produce non-informative vectors using regularization terms. There are some
works (Shwartz-Ziv et al., 2023; Balestriero & LeCun, 2022) providing theoretical understanding of
VICReg’s performance and comparing it to the other methods like SimCLR. Tian et al. (2020a) is
the closest work we know of that has investigated a simple form of multiplicity view in contrastive
learning. Their approach is to get the average of pairwise contrastive learning, which translates to
the lower-bound of Validity property that we have, for which we have shown theoretically in Equa-
tion 8 that our aggregation function outperforms this lower-bound. We also note that the authors did
not provide any theoretical explanation regarding multiplicity.

Information-theoretic perspective in SSL One of the main approaches to understand SSL and
contrastive learning is to study the dependencies between pairs of variables or views. MI provides an
insightful metric for quantifying dependencies resulting to the point that estimating and optimizing
the MI becomes important. van den Oord et al. (2018) introduces InfoNCE loss for the first time. It
combines predicting future observations with a probabilistic contrastive loss, hence the name Con-
trastive Predictive Coding. The intuition behind this work is that different parts of the signal share
same information. Poole et al. (2019) provides a framework to estimate MI by showing connections
between different MI lower-bounds, and investigating the bias and variance of their sample-based
estimators. Tschannen et al. (2020) leverages this framework and builds connection between MI
maximization in representation learning and metric learning by also pinpointing that under which
dependency conditions MI approaches perform well. Lee et al. (2023) provides more insights on
MI maximization in contrastive learning like the effect of same-class-sampling for augmentations
by upper-bounding the MI. Gálvez et al. (2023) shows that not only contrastive SSL methods, but
also clustering methods (Caron et al., 2020; 2018), and (partially) distillation methods (Grill et al.,
2020; Caron et al., 2021) implicitly maximize MI.

The role of augmentation in SSL Augmentation is a critical part of SSL methods in computer
vision to keep the task-relevant information (Tian et al., 2020b). Trivial augmentations result in
non-informative representations, preventing the model to find the main features to distinguish be-
tween positives and negatives, while hard augmentations make it difficult for the model to classify
the positives from negatives. Balestriero et al. (2022b) tackles this problem by quantifying how
many augmentations are required for a good sample-based estimation of MI to have low variance
and better convergence. Kim et al. (2023) addresses this challenge in contrastive learning with a
different approach and by adding weights that implies the goodness of the augmentation. On the
importance of augmentation, von Kügelgen et al. (2021) shows that augmentation helps to disen-
tangle the content from the style in the images. From another perspective, some works explore the
effect of different augmentation strategy like multi-crop in contrastive learning and SSL methods
(Caron et al., 2020; 2021). Fort et al. (2021) has a similar setting to ours and shows that increasing
the number of augmentations, i.e. increasing the signal to noise ratio, helps the supervised learning
classifier in both growing batch and fixed batch scenarios. Wang & Qi (2022) studied the effect
of strong augmentations in contrastive learning, proposing a new framework to transfer knowledge
from weak augmentations to stronger ones in order to address the loss of information due to harsh
transformations; improving the performance.

Sufficient Statistics Sufficient statistics provide a summary of the data, from which one can make
inferences on the parameters of the model without referencing samples. Sufficient statistics can be
readily connected to the Infomax principle and have been used to re-formulate contrastive learn-
ing Chen et al. (2020c). One key observation is that two-view contrastive learning may not yield
representations that are sufficient w.r.t. the information they contain to solve downstream tasks (Tian
et al., 2020a; Wang et al., 2022). Poly-view contrastive learning tasks have an increased amount of
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available information shared between views, which we believe improves the resulting represen-
tations’ sufficiency w.r.t. any possible downstream task that would have been possible from the
unknown generative factors.

H EXTENSIONS TO DISTILLATION

Our primary contributions use the frameworks of information theory and sufficient statistics to in-
vestigate what is possible in the presence of a view multiplicity M > 2 and derive the different
Poly-View objectives from first principles.

It is possible to incorporate multiplicity M > 2 into a distillation setup like BYOL (Grill et al.,
2020). For example, DINOv1 (Caron et al., 2021), which shares many algorithmic parts of BYOL,
benefits a lot from using the pair-wise Multi-Crop task that we described in Section 2 and Ap-
pendix D (although in DINOv1, there is more than one augmentation policy).

One option for extending distillation methods like BYOL and DINOv1 from Multi-Crop to poly-
view tasks in a One-vs-Rest sense is to have the EMA teacher produce M − 1 logits, which are
aggregated into a single logit (similar to the sufficient statistics choice for Q in Equation 24) for
producing the target pseudo-label distribution. The gradient-based student could then be updated
based on its predictions from the held-out view, and this procedure aggregated over all the view
hold-outs.

The core difference between the distillation procedure above and the poly-view contrastive meth-
ods is that the large-view limit of poly-view contrastive methods is provably a proxy for InfoMax
(Section 2 and Equation 26). There may be a way to obtain theoretical guarantees for the large-
view distillation methods (using for example tools from Gálvez et al. (2023)), and could prove an
interesting future direction for investigation.
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