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Appendix A - Design of DIP/INR Image Generators

DIP architecture. Following Ulyanov et al., we designed the Deep Image Prior (DIP) using the
standard U-Net architecture. In particular, the U-Net consists of 4 downstream and upstream blocks
with skip connections between each downstream and upstream block. Each downstream block i
contains two Conv2D layers with filters {16.2i−1, 16.2i−1}. Correspondingly, the upstream block
j, comprises of a bi-linear up-sampling step followed by two Conv2D layers with filters sizes
{16.2j−1, 16.2j−1}. We employ a kernel size of 3 for all the Conv2D and incorporate BatchNorm2D
for all layers. In all our experiments, input noise images were drawn from the uniform distribution
U [−1, 1] ∈ R3×96×96.

INR architecture. The coordinate-based INR model was constructed using 5 fully connected layers
with 512 hidden units and a final layer with 3 outputs corresponding to the RGB channels. In our
implementation, we choose 256 random sinusoids (basis) with frequencies bi drawn from a Gaussian
distribution with mean 0 and variance 100 to compute the Fourier mapping for the input coordinates.

Appendix B - DUQ Implementation

We adopted the existing code from Amersfoort et al. to train the DUQ models. In particular, we
utilized a ResNet-18 as the feature extractor to generate d = 512 dimensional feature vectors for
every image. Correspondingly, the class-specific centroids were also of dimension D = 512. To
improve stability in model training, we used a gradient penalty and length scale parameter of 0.5 and
smoothing factor γ = 0.999 for the moving average process while updating the centroids.

Appendix C - Progressive Optimization

CF generation is a highly under-constrained problem, and even with a strong image prior such as
DIP/INR and the proposed manifold consistency, it can still be challenging to avoid trivial solutions.
One can expect to introduce large discernible changes by reducing the penalty λ1 for semantics
preservation. However, given the large solution space, this often leads to unrealistic images. To
overcome this, we propose to adopt a progressive optimization strategy that gradually increases the
number of layers in the DIP/INR generator to be optimized and steadily relax the penalty λ1 (by
factor κ) to allow for larger, yet interpretable changes. Algorithms 1 and 2 provide the details of the
proposed progressive optimization.
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Algorithm 1 Progressive Optimization with DIP

1: Input: Query Image x, Target label ȳ, number of rounds R, number of epochs N ;
UNet-based DIP f with L downstream (d) and upstream (u) blocks with parameters
θ = {θd}

⋃
{θu};

Penalties λ1, λ2, λ3, factor κ, learning rate η, Pre-trained classifier F ;
2: Output: Counterfactual explanation.
3: Initialize: Input noise image z ∈ U [−1, 1], number of layers to optimize l;
4: for r in 1 to R do
5: θr = {θ1:ld }

⋃
{θ1:lu };

6: for n in 1 to N do
7: Generate x̄ = fθ(z);
8: Compute loss L(x, x̄,F) using Eqn (5);
9: θr ← θr − η∇θrL;

10: end for
11: l← min(l + 1, L);
12: λ1 ← κ ∗ λ1;
13: end for
14: return: Counterfactual Image x̄ = fθ(z).

Algorithm 2 Progressive Optimization with INR

1: Input: Query Image x, Target label ȳ, number of rounds R, number of epochs N ;
INR-based generator f with L layers and parameters θ;
Penalties λ1, λ2, λ3, factor κ, learning rate η, Pre-trained classifier F ;

2: Output: Counterfactual explanation x̄.
3: Initialize: Input coordinates v, number of layers to optimize l;
4: for r in 1 to R do
5: θr = {θ1:l};
6: for n in 1 to N do
7: Computer Fourier mapping z = B(v);
8: Generate x̄ = fθ(z);
9: Compute loss L(x, x̄,F) using Eqn (5);

10: θr ← θr − η∇θrL;
11: end for
12: l← min(l + 1, L);
13: λ1 ← κ ∗ λ1;
14: end for
15: return: Counterfactual Image x̄.

Appendix D - Results for CelebA - Baldness Attribute

For this experiment, we used the CelebA faces dataset and considered the baldness attribute. Fol-
lowing the experiment setup that we used for the smiling attribute, we generate counterfactuals that
change the prediction from not bald to the bald class. As showed in Figure 1a, the results from DISC
(with INR generator and DEP-based manifold consistency) leads to highly meaningful explanations,
wherein the hairline is appropriately modified to increase the likelihood of the bald class.

Appendix E - Results for CelebA - Age Attribute

In this experiment, we use the age attribute for the CelebA faces and employ DISC to systematically
manipulate the input image (young) and ensure that it is classified as old. Results from Figure 1b
show that DISC prefers to manipulate the region around the eyes in order to increase the likelihood
for the old class.
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(a) baldness attribute (b) age attribute

Figure 1: Examples of counterfactuals generated for the baldness and age attributes using DISC.
Here the inputs (left) were from the not bald or young class. Using the implementation of DISC with
INR image generator and DEP-based manifold consistency, we obtain the CFs (middle) for the bald
and the old classes respectively. As illustrated in the difference image (right), we clearly notice that
DISC introduces meaningful perturbations to the image.

Appendix F - Additional Results for ISIC2018

In the experiments reported in the main paper, we used the ISIC2018 skin lesion classification dataset
and demonstrated how DISC can be used to traverse complex decision boundaries. In this section,
we show additional examples from that experiment to further emphasize the effectiveness of DISC
(INR generator + DEP-based manifold consistency). Figure 2 illustrates transition between Vascular
(VASC) and Benign keratosis lesions (BKL), as well as, between Basal cell carcinoma (BCC) and
Dermatofibroma (DF). In the first case, Benign keratosis lesions are known to be characterized by
significant differences in both color and intensity when compared to vascular lesions. Consequently,
DISC produces highly concentrated pixel manipulations on the actual lesion regions of each image.
On the other hand, changing the prediction from Dermatofibroma to Basal cell carcinoma requires
more global changes pertinent to both border and asymmetry properties of the lesions.

Appendix G - Comparison with Generative Model based Counterfactual (CF)
Generation Methods

Though our focus was on test-time CF generation without assuming access to generative models
or training data, we generated results for a GAN-based baseline. As expected, the image quality is
better with pre-trained generative models (as indicated by lower FID, and higher precision/recall
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Figure 2: Additional examples from the ISIC2018 skin lesion classification dataset.

scores). However, in terms of evaluation metrics such as the proposed classifier discrepancy (CD),
it is not significantly different than our proposed approach (DISC). This clearly demonstrates the
ability of DISC to effectively manipulate the most relevant image features and produce representative
counterfactuals for the target class. The results for this comparison are for the case of CelebA dataset
(smiling attribute) is provided in Table 1.

Table 1: Comparing GAN-based CF generation against DISC. The results for this comparison are for
the case of the CelebA dataset (non smiling –> smiling). We provide the metrics averaged over 5000
realizations.

Method FID Precision Recall Classifier Discrepancy
GAN Based (Sauer & Geiger, 2021) 69.4 0.71 0.27 0.07±0.04

DISC 81.7 0.66 0.19 0.08±0.03

Appendix H - Identifying Changes Relevant for Classification

Table 2: Comparing saliency maps of 50 randomly chosen smiling images from DISC and GradCAM
by zero-masking top 15% of influential features by computing ∆ log-odds.

Grad-CAM DISC
∆ log-odds 10.4 ± 3.3 11.1 ± 3.7

Though DISC is designed for generating counterfactuals for different user-specified hypotheses on
the predictions, it can also be re-purposed for obtaining saliency maps. We compute the saliency map
for a target class as follows: |C(x, y = 1) − C(x, y = 0)|, where x is the query image, C(x) is the
counterfactual and y is the target class. We find that saliency maps from DISC are very comparable
to standard approaches such as GradCAM in terms of the ∆ log-odds metric. Formally, ∆ log-odds =
log-odds(F(x)) - log-odds(F(xmasked)), where log-odds(p) = log(p/1-p) and F is the pre-trained
classifier. For example, DISC saliency maps for the CelebA smiling–>not smiling classifier picks the
regions near the mouth and cheeks as the influential features. In order to understand the quality of the
DISC based saliency maps with GradCAM, we use 50 randomly chosen smiling images from the
CelebA dataset and zero mask the top 15% of the influential features relevant for classification to
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compute the ∆ log-odds metric. It can be observed that (Table 2), DISC infact produces meaningful
changes to the salient regions of images that are highly reflective of the underlying target class.
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