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In the supplementary material, we describe the domain specific languages used in our experiments
(Section 1), demonstrate how the proposed CKY-E2 method works by a concrete example (Sec-
tion 2.1), show formal properties of CKY-E2 (Section 2.2), present dataset setups and analyze model
behaviors (Section 3), and list environmental details for experiments (Section ??).

1 Domain Specific Languages and Neuro-Symbolic Reasoning

In this section, we will present and discuss the domain-specific languages (DSLs) we use for two
domains: visual reasoning and language-guided navigation. We will further introduce the neuro-
symbolic module we have designed for executing programs in these two domains. Overall, each
DSL contains a set of types and a set of deterministic modules that have been manually designed
for realizing necessary operations in these domains. However, in contrast to realizing them as we
do in standard programming languages (with for-loops and if-conditions), we will be using tensor
operations (e.g., tensor additions and multiplications) to realize them so that the output of each
program is differentiable with respect to all of its inputs.

1.1 Visual Reasoning DSL

Our domain-specific language (DSL) for the visual reasoning domain is based on the CLEVR DSL
introduced in [6], and the neuro-symbolic realization of each functional module is slightly modified
from the Neuro-Symbolic Concept Learner [NS-CL; 8]. We refer readers to the original papers for a
detailed introduction to the DSL and neuro-symbolic program execution. Here we only highlight the
key aspects of our language and its neuro-symbolic realization, and discuss the difference between
our implementation and the ones in original papers.

Our visual reasoning DSL is a subset of CLEVR, containing 6 types and 8 primitive operations.
Table 1 illustrates all 6 types and how they are internally represented in neuro-symbolic execution.

Table 2 further shows all operations in the DSL. There are two main differences between the DSL
used by G2L2 and the original CLEVR DSL. First, we have removed the unique operation, whose
semantic meaning was to return the single object in a set of objects. For example, it can be used
to represent the meaning of word “the” in “the red object”, in which the semantic program of “red
object” yields a set of red objects and the semantic program of “the” selects the unique object in that
set. However, the meaning of “the” may have slightly different semantic type in different contexts,
for example, “what is the color of ...”. Since this has violated our assumption about each word
having only one lexicon entry, we choose to remove this operation to simplify the learning problem.
Meanwhile, to handle the “uniqueness” of the object being referred to, in our realization of related
operations, such as relate and query, we will implicitly choose the unique object being referred to,
which we will detail in the following paragraphs.

Object-centric scene representation. In our visual reasoning domain, we have assumed access
to a pre-trained object-detector that generates a list of bounding boxes of objects in the scene. In
our implementation, following Mao et al. [8], we use a pre-trained Mask R-CNN [4] to generate
bounding boxes for each object proposal. These bounding boxes, paired with the original image, are
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Type Note Representation

ObjConcept Object-level concepts. An embedding vector.

Attribute Object-level attributes. A vector of length Kobj, where Kobj is the number
of

RelConcept Relational concepts. An embedding vector.

ObjectSet A set of objects in the
scene.

A vector m of lengthN , whereN is the number of
objects in the scene. Each entry mi is a real value
in [0, 1], which can be interpreted as the probability
that object i is in this set.

Integer An integer. A single non-negative real value, which can be
interpreted as the “expected” value of this integer.

Bool A Boolean value. A single real value in [0, 1], which can be inter-
preted as the probability that this Boolean value is
true.

Table 1: The type system of the domain-specific language for visual reasoning.

Signature Note

scene() −→ ObjectSet Return all objects in the scene.

filter(a: ObjectSet, c: ObjConcept) −→ ObjectSet Filter out a set of objects having the
object-level concept (e.g., red) from the
input object set.

relate(a: ObjectSet, b: ObjectSet, c: RelConcept) −→
ObjectSet

Filter out a set of objects in set a that
have the relational concept (e.g., left)
with the input object b.

intersection(a: ObjectSet, b: ObjectSet) −→ ObjectSet Return the intersection of set a and set
b.

union(a: ObjectSet, b: ObjectSet) −→ ObjectSet Return the union of set a and set b.

query(a: ObjectSet, c: Attribute) −→ ObjConcept Query the attribute (e.g., color) of the
input object a.

exist(a: ObjectSet) −→ Bool Check if the set is empty.

count(a: ObjectSet) −→ Integer Count the number of objects in the input
set.

Table 2: All operations in the domain-specific language for visual reasoning.

then sent to a ResNet-34 [3] to extract a region-based representation (by RoI Align) and image-based
representation, respectively. We concatenate them to form a vector embedding for each object in the
image.

Neuro-symbolic realization. The high-level idea for the program execution is to build a collection
of functions that realize the semantics of each operation based on the vector embeddings of objects
and concepts. Taking the filter operation as an example, denote a as a vector representation of
the input set, oi the object embeddings, and ec the concept embedding. We compute the vector
representation b of the output set as:

bi = ai · σ (〈oi, ec〉) ,
where σ is the sigmoid function, and 〈·, ·, 〉 is the inner product of two vectors. Intuitively, we first
compute the inner product between the concept embedding ec and each object embedding, which
gives as a vector of scores of whether object i has concept c. Next, we compute the element-wise
multiplication between two vectors.
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Program Type Value

scene() ObjectSet [1, 1, 1]

filter(scene(),CUBE) ObjectSet [0.8, 0.1, 0.9]

filter(filter(scene(),CUBE),SHINY) ObjectSet [0.08, 0.08, 0.81]
=[0.8, 0.1, 0.9]� [0.1, 0.8, 0.9]

count(filter(filter(scene(),CUBE),SHINY)) Integer 0.97 = sum([0.08, 0.08, 0.81])

Table 3: An illustrative execution trace of the program count(filter(filter(scene(),CUBE),SHINY)).
sum denotes the “reduced sum” operation of a vector, which returns the summation of all entries in
that vector. � denotes element-wise multiplication for two vectors.

A key difference between our realization of these operations and the one in Mao et al. [8] is that we
use element-wise multiplication to simulate the intersection between two sets, and 1− (1−a)(1−b)
for union. In contrast, Mao et al. [8] use element-wise min operation for intersection and max for
union. Both realizations can be motivated by real-valued logic: product logic vs. Gödel logic. The
main purpose of using products instead of min-max’s is to make our realization compatible with our
expected execution mechanism, which we will detail in Appendix 2.

Example. Here we run a concrete example to illustrate the execution process of a program in
the visual reasoning domain. Suppose we have an image containing three objects o1, o2 and
o3. We have two additional vector embeddings for concepts SHINY and CUBE. Furthermore,
σ (〈oi, eSHINY〉) = [0.1, 0.8, 0.9], and σ (〈oi, eCUBE〉) = [0.8, 0.1, 0.9].

Consider the input sentence “How many shiny cubes are there”. Table 3 illustrates a step-by-step
execution of the underlying program: count(filter(filter(scene(),CUBE),SHINY)).

Expected execution. In the visual reasoning domain, we have only implemented the expected
execution mechanism for subordinate program trees whose type is objset, although many other types
such as integer and bool also naturally supports expected execution. This is because, types such as
integer and bool only appear at the sentence-level, and thus computing the “expectation” of such
programs does not reduce the overall complexity.

Formally, the expected execution process compresses a list of semantic programs v1, v2, · · · , vK and
their corresponding weights τ(vi) into a single semantic program v∗ with weight τ(v∗). Suppose all
vi’s have type objset. We use v̄i to denote the execution result of these programs. Each of them is a
vector of length N , where N is the number of objects in the scene. We compute v̄∗ and τ(v∗) as the
following:

v̄∗ =
1∑

i exp(τ(vi))

∑
i

(exp(τ(vi)) · v̄i) ,

τ(v∗) = log
∑
i

exp(τ(vi)).

Intuitively, we normalize the weights using a softmax function to translate them into a distribution.
Then we compute the expectation of the vectors. For more details about the definition and properties
of expected execution, please refer to our main text and Appendix 2.

Candidate lexicons. Recall that the process of lexicon learning has three stages. First, we generate
an extensive collection of candidate semantic programs. Second, we generate candidate lexicon
entries for each word by enumerating all possible candidate semantic programs generated in the first
step and all possible ordering (linearization in a sentence) of its arguments. Third, we apply our
CKY-E2 and gradient-based optimization to update the weights associated with each lexicon entry.

In our visual reasoning domain, we only consider the following candidate semantic programs and
linearizations:

1. Syntactic type: objset, semantic program: scene() (English noun).
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2. Syntactic type: objset, semantic program: filter(scene(), ?) (English noun).
3. Syntactic type: objset/objset, semantic program: λx.filter(x, ?) (English adjective).
4. Syntactic type: objset\objset/objset, semantic program: λx.λy.relate(x, y, ?) (English

preposition I).
5. Syntactic type: objset\objset/objset, semantic program: λx.λy.relate(y, x, ?) (English

preposition II)
6. Syntactic type: bool/objset, semantic program: λx.exist(x).
7. Syntactic type: integer/objset, λx.count(x).
8. Syntactic type: word/objset, λx.query(x, ?).
9. Syntactic type: CONJAND, λf.λg.(λx.intersect(f(x), g(x))) (generalized conjunction).

10. Syntactic type: CONJOR, λx.λy.(λz.intersect(z, union(x, y))) (generalized disjunction).

As we will see later, when we compare the candidate lexicon entries for the visual reasoning domain
and the language-driven navigation domain, the visual reasoning domain contains significantly fewer
entries than the navigation domain. This is because much of the learning process in this domain is
associated with learning the concept embeddings. In the following few paragraphs, we will explain
how we instantiate concepts based on these lexicon entry templates and implement generalized
conjunction and disjunction in our domain.

First, for each word (more precisely, word type), e.g., shiny, we will instantiate 10 lexicon entries.
For semantic programs that contain unbounded concept arguments (? marks), we will introduce a
series word-type-specific concepts. Specifically in this domain, each word type will be associated
with 3 concept representations: SHINYObjConcept, SHINYRelConcept, and SHINYAttribute. Based on
Table 2, the first two concepts will be represented as two embedding vectors, and the the third
concept will be represented as a vector, indicating which concepts belong to this attribute category.
Next, we will instantiate these lexicon entries by filling in these concept representations. For
example, one of the candidate lexicon entry for shiny is syntactic type: objset, semantic program:
filter(scene(),SHINYObjConcept). During training, all these vector embeddings as well as the weights
associated with each lexicon entry, will be optimized jointly.

Next, we discuss the implementation for two conjunctive lexicon entries. The grammar rule for
CONJAND is:

T CONJAND T → T,

where T is an arbitrary syntactic type (thus called generalized conjunction). There are two typi-
cal use cases: what is the shape of the red and shiny object, and what is the shape of the object
that is left of the cube and right of the sphere. In the first case, both arguments have syntactic type
objset/objset. In the second case, both arguments have syntactic type objset\objset. Note that
CLEVR contains only the second case.

The grammar rule for CONJOR is:

objset CONJOR objset→ objset\objset.

It covers the case: how many objects are blue cubes or red spheres. Our implementation is slightly
different with human-defined lexicon entries for the word or, in particular, because the DSL we use
is a small set of set-theoretic operations, which does not fully match the expressiveness of truth-
conditional semantics. Thus, the current DSL does not support the representation of all words in the
dataset (in particular, or and are). Thus, we have implemented this ad-hoc fix to handle disjunction.

Finally, we want to emphasize again that, since our DSL does not support representing all semantic
programs of words, we allow certain words to be associated with an “empty” lexicon entry. This entry
can be combined with any words or constituents next to it and does not participate in the composition
of syntactic types and semantic programs. In Table 4 we show the lexicon entry associated with each
word in the sentence “are there any shiny cubes?”, learned by our model, G2L2.

1.2 Language-Driven Navigation DSL

Our DSL for the language-driven navigation domain is a simple string manipulation language that
supports creating new strings, concatenating two strings, and repeating a string multiple times. Our
DSL contains only two primitive types: action sequence, abbreviated as ActSeq, and integer.
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Word Type Syntactic Type Semantic Program

are <EMPTY> <EMPTY>
there <EMPTY> <EMPTY>
any bool/objset λx.exist(x)
shiny objset/objset λx.filter(x,SHINYObjConcept)
cubes objset filter(scene(),CUBEObjConcept)

Table 4: The learned lexicon entries associated with each word for a simple sentence:
are there any shiny cubes?. The derived semantic program for the full sentence is
exist(filter(filter(scene(),CUBEObjConcept),SHINYObjConcept))

Signature Note

empty() −→ ActSeq Create an empty string (of length 0).

newprim() −→ ActSeq Create a string containing only one primitive action.
In SCAN, there are in total 6 primitives.

newint() −→ Integer Create a single integer. In SCAN, we only support
integers {2, 3, 4}.

concat(a: ActSeq, c: ActSeq) −→ ActSeq Concatenate two input strings.

repeat(a: ActSeq, b: Integer) −→ ActSeq Repeat the input string for multiple times.

Table 5: All operations in the domain-specific language for language-driven navigation.

Formally, we summarize the list of operations in our language-driven navigation domain in Table 5.

Probabilistic string representation. We represent each string in a “probabilistic” manner. In
particular, each string s is represented as a tuple 〈Ls, Cs〉. Ls is a categorical distribution of the length.
Cs is a three-dimensional tensor, indexed by `, k, c, where Cs`,k,c = p(s[k] = c|length(s) = `). Thus,
C has the shape [L+ 1, L, |V |], where L is the max length of a string and V is the action vocabulary.
For simplicity, we constrain that Cs`,k,c ≡ 0 for all k > `.

It is straightforward to represent empty strings: L0 = 1, or strings with a single action primitive a:
L1 = 1 and C1,0,a = 1. Now we explain our implementation of the concat and the repeat operation.

For z = concat(x, y):

Lz` =
∑

0≤i≤`

(
Lxi · L

y
(`−i)

)
;

Cz`,k,c =
1

Lz`

∑
0≤i≤`

(
Lxi · L

y
(`−i) · (C

x
i,k,c + Cy`−i,k−i,c)

)
.

The high-level idea is to enumerate the possible length of both strings.

Similarly, for z = repeat(x,m),

Lz` =

{
Lx`/m if ` mod m = 0

0 otherwise

Cz`,k,c =

{
Lx`/m,k mod (`/m),c if ` mod m = 0 and k < `

0 otherwise
.

Expected execution. In the language-driven navigation domain, we only perform expected exe-
cution for semantic programs of type ActSeq, whose execution results can be represented using the
probabilistic string representation. Denote s̄i as the execution results for K programs, and τ(si)

the corresponding weights. We define p(si) = softmax ({τ(si)})i = exp τ(si)∑
j exp τ(s)j) . We compute the
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Type Program (Note)

ActSeq walk()
The simplest program that constructs a string with a single action
primitive: WALK.

(ActSeq) −→ ActSeq λx.concat(look(), x)
Prepend a LOOK action to an input string.

(ActSeq, ActSeq) −→ ActSeq λx.λy.concat(x, y)
Concatenate two strings.

(ActSeq, ActSeq) −→ ActSeq λx.λy.concat(repeat(x, 2), y)
Repeat the first string twice and concatenate with the second string.

((ActSeq) -> ActSeq, ActSeq) −→ ActSeq λx.λy.concat(y, x(walk()))
The first argument (x) is a function which maps a ActSeq to
another ActSeq. The second argument y is an ActSeq.
The function invokes x with a simple string WALK, and
concatenate the result with y.

Table 6: Sample semantic programs generated by the enumeration process based on our language-
driven navigation DSL.

expected string s̄ and its weight τ(s) as:

Ls` =
∑
i

p(si)L
si
` ; Cs`,k,c =

∑
i

(
p(si)L

si
` · C

si
`,k,c

)
Ls`

.

Candidate lexicons. We use a simple enumerate algorithm to generate candidate lexicon entries for
our language-driven navigation DSL. Specifically, we first enumerate candidate semantic programs
for each lexicon entry that satisfy the following constraints:

1. There are at most three operations.
2. There are at most two arguments.
3. There is at most one argument whose type is a functor.
4. There is no argument of type Integer.

Table 6 lists a couple of programs generated by the algorithm and their corresponding types.

Based on the candidate semantic types, we first instantiate candidate lexicon entries by enumerate pos-
sible ordering (linearization) of the arguments. For example, the simple program λx.concat(look(), x)
has two possible linearizations: ActSeq/ActSeq and ActSeq\ActSeq. As discussed in the main paper,
in order to handle parsing ambiguities, we further introduce two finer-grained syntactic types for the
ActSeq type: S and V. In practice, we only allow the following set of syntactic types: V, V/V, V\V,
V\V/V, V\V/(V\V), and S\V/V. In total, we have 178 candidate lexicon entries for each word.
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Word Type Syntactic Type Semantic Program exp(Weight)

ONE N 1 1.0

PLUS_ONE N\N λx.x+ 1 0.5
PLUS_ONE N\N λx.x× 3 0.5

MUL_THREE N\N λx.x+ 1 0.5
MUL_THREE N\N λx.x× 3 0.5

Table 7: A set of candidate lexicon entries and their weights in a simple arithmetic domain.

Index Syn. Type Semantic Program
(derivationk)

Execution Result
(execk)

exp(Weight)

1 N (1 + 1) + 1 3 0.25 = 1× 0.5× 0.5
2 N (1× 3) + 1 4 0.25 = 1× 0.5× 0.5
3 N (1 + 1)× 3 6 0.25 = 1× 0.5× 0.5
4 N (1× 3)× 3 9 0.25 = 1× 0.5× 0.5

Table 8: Four candidate derivations of the simple sentence “ONE PLUS_ONE MUL_THREE” in a
simple arithmetic domain.

2 Delve Into Expected Execution

In this section, we will run a concrete example in a small arithmetic domain to demonstrate the idea
of expected execution. Following that, we will prove an important invariance property that has guided
our realization of different functional modules in both domains.

2.1 CKY-E2 In An Arithmetic Domain

In this section, we will consider parsing a very simple sentence in an arithmetic domain. We will
be using numbers and two arithmetic operations: + and ×. Each number in the domain will be
represented as a real value.

Suppose we have the following lexicon entries associated with three words, illustrated in Table 7.
There are 4 candidate derivations of the sentence “ONE PLUS_ONE MUL_THREE”, as illustrated
in Table 8. For simplicity, we will show the exp of weights. Thus, the probability of a derivation is
proportional to the product of all lexicon entry weights.

Suppose that we will be using the groundtruth execution result of this program as the supervision,
applied by an L2 loss. Then we will be interested in the expected execution result of all possible
derivations. In this case, it is

E[exec] = 0.25× 3 + 0.25× 4 + 0.25× 6 + 0.25× 9 = 5.5.

Next, we will try to accelerate the computation of E[exec] by doing local marginalization. Consider
the constituent “ONE PLUS_ONE”. In CKY-E2, this will be the first constituent that the algorithm
constructs. It has two possible derivations, whose corresponding semantic programs are (1 + 1) and
(1 × 3). Both derivations have the same syntactic type N, and thus, they will be combined with
N\N on its right, in the next step. In this case, in CKY-E2, we will merge these two derivations
into one (again, since we only care about the expected execution result, not the set of all possible
derivations!). The combined derivation has value 0.5 × (1 + 1) + 0.5 × (1 × 3) = 2.5, and total
weight 0.5 + 0.5 = 1.

Then, when we are trying to compose the derivation for the whole sentence, i.e., combine the
constituent “ONE PLUS_ONE” and “MUL_THREE”, we no longer need to compute all 2× 2 = 4
possible derivations, but only 1× 2 = 2 derivations. They are: 2.5 + 1 = 3.5, with probability 0.5,
and 2.5× 3 = 7.5, with probability 0.5. In this case, we see that taking local marginalization reduces
the computation complexity of parsing and retains the expected execution result!
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2.2 Formal Properties of CKY-E2

Motivated by the intuitive example shown above, now let us formally specify the properties of
CKY-E2.

Expectation invariance. Consider the composition of two consecutive constituents a and b. We
use a1, · · · aN and b1, · · · bN to denote possible derivations of both constituents. We assume all ai’s
are of the same syntactic type without loss of generality, so do all bi’s, since we will handle different
syntactic types separately.

Denote f as the semantic composition function for a and b. Without local marginalization, we will
have in total N ×M derivations for the result constituent: ci,j = f(ai, bj). We further use āi, b̄j , and
c̄i,j to denote the execution results of these derivations. Without derivations, the expected execution
results is:

E[c̄] =
1∑

i,j exp τ(ci,j)

∑
i,j

(exp τ(ci,j) · c̄i,j)

=
1∑

i,j exp τ(ai) · exp τ(bj)

∑
i,j

(
exp τ(ai) · exp τ(bj) · f(āi, b̄j)

)
.

Again, without loss of generality, we will assume
∑
i τ(ai) = 1 and

∑
j τ(bj) = 1, because any

constant scaling of these weights will not change the expectation E(c̄). Thus, we simplify this
definition as,

E[c̄] =
∑
i,j

(
exp τ(ai) · exp τ(bj) · f(āi, b̄j)

)
.

Let us assume function f has the following property: E[f(a, b)] = f(E(a),E(b)), which expands as,

∑
i,j

(
exp τ(ai) · exp τ(bj)f(āi, b̄j)

)
= f

∑
i

(exp τ(ai)āi) ,
∑
j

(
exp τ(bj)b̄j

) .

Thus, locally marginalizing the expected value for E[ā] and E[b̄] will not change the expected
execution result of c.

In this simple proof we have made a strong assumption on the composition function f : E[f(a, b)] =
f(E(a),E(b)). In practice, this is true when f are addition or multiplication functions between scalars,
vectors, matrices, and in general, tensors. It will not apply to element-wise min/max operations and
other non-linear transformations. Fortunately, this already covers most of the operations we use in
the visual reasoning and language-driven navigation DSLs. In practice, even if some operations do
not have this property, we can still use this mechanism to approximate the expected execution result.

Although we have only proved this property for binary functions, the idea itself easily generalizes to
unary functions, such as the negation operation, and higher-arity functions. Furthermore, by induction
over derivation trees, we can easily prove that, as long as all composition functions satisfy the
expectation invariance property, applying CKY-E2 yields the same result as doing the marginalization
at a sentence level.

Complexity. In general, it is hard to quantify the reduction in computational complexity by doing
local marginalization. However, we can still estimate the number of possible derivations constructed
in the entire CKY-E2 procedure. For simplicity, consider the case where there is only one primitive
syntactic type: X. Moreover, there are N0 candidate lexicon entries of type X; N1 entries of type
X/X, and N2 entries of type X\X/X. For each span, considered in the CKY-E2 algorithm, all possible
derivations associated with this span can be grouped into 4 categories:

1. Derivations of type X. In this case, only 1 derivation will be retained (merged by the expected
execution result).

2. Derivations of type X/X. In this case, they must be a primitive lexicon entry. Thus, there are
at most N1 of them.
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3. Derivations of type X\X/X. Similarly, at most N2 of them.
4. Derivations of type X\X. This intermediate syntactic type is a result of a partial composition

between X\X/X and X (on its right). Thus, there are at most N2 of them.

Overall, there are at most 1 + N1 + 2 × N2 derivations stored for this span. Since the total span
is O(L2), where L is the total length of the input sentence, the overall complexity of CKY-E2 is
a polynomial of L, N0, N1, and N2, which is significantly lower than an exponential number of
derivations.

2.3 Connection with Other Parsing Models

Connection with synchronous grammars. Our approach can be viewed as defining a synchronous
grammar over joint (parse tree, meaning program) pairings. We didn’t use this framing in the main
paper because typical applications of synchronous grammar involve parallel datasets (e.g., sentence
pairs in two languages for machine translation, or sentence–image pairs for generating image
descriptions) in which the information in both modalities is directly parsed. In our setting, in contrast,
the meaning-program component of the synchronous grammar is acquired through more distant
supervision. We will make all this clear in the final version, including stating how the chart parsing
process can be seen as synchronously constructing parsing trees and meaning programs. The expected
execution can be viewed as a “compression” step over all meaning programs that can be potentially
parsed from each span.

Connection with sum-product CKY. There are also connections between CKY-E2 and sum-
product CKY, such as the shared Markovian assumption, but would like to add that the main
difference between CKY-E2 and sum-product CKY is that CKY-E2 computes only the “expectation”
of the execution results of the underlying program. Instead, sum-product CKY computes a full
distribution of the parsing results (e.g., in syntax parsing, it can compute the categorical distribution
of the root symbol). Sum-Product CKY can not be applied to our setting, because we are dealing
with programs and the space of possible programs is infinite. Modeling a distribution of all possible
programs might be intractable; instead, computing the expectation is much easier, and this enables us
to do local marginalization.
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3 Experimental Setup And Analysis

In this section, we will present in detail the experimental setups for both datasets: CLEVR and SCAN.
Both datasets are released under a BSD license. Specifically, we will include details about the setups
for different compositional generalization tests. Although some of them (the ones in the SCAN
dataset) have already been illustrated in their original paper, we echo them here for completeness.
Next, we will also analyze the performance of each model on both datasets, focusing on the inductive
biases they have in their model and how these inductive biases contribute to their compositional
generalization in different splits.

3.1 Visual Reasoning: CLEVR

We start with the dataset generation process for the CLEVR dataset. Next, we formally present the
dataset generation protocol for all splits. Furthermore, we analyze the performance of various models.

Baselines. As a quick recap of our baselines, MAC [5] uses an end-to-end vision-language attention
mechanism to process the question and image jointly; TbD-Nets [9] and NS-VQA [11] uses a neural
sequence-to-sequence model (with attention, see [2] for semantic parsing. The parser is trained with
sentence-program pairs; NS-CL [8] uses a customized sequence-to-tree model, and jointly learns
the visual recognition models and the semantic parser. One crucial implementation detail with the
semantic parser module in NS-CL is that, it uses additional token embeddings to annotate the concepts
appearing in the question. When generating a concept token in the semantic program, it uses an
attention mechanism to select the concept from the input question.

Dataset generation. Since we only consider the cases where each word is associated with a unique
lexicon entry, we have manually excluded sentences that will break this assumption. Among all of the
425 templates in the original CLEVR dataset [6], we have retained 208 templates. Specifically, we
have removed all templates that involve: 1) coreference resolution, 2) “same”-related questions, and
3) number comparison-related questions. To keep the number of questions the same as the original
dataset, we choose to re-generate the questions using the selected subset of templates, following the
original data generation protocol. All our splits are generated based on this basic version, which we
name as the standard training set and the standard test set.

Split: data efficiency. We test the data efficiency of models by only using 10% of training data in
the standard training set, and test the models on the standard test set.

In this split, the semantic parsers used by all program-based methods: TbD-Nets, NS-VQA, and
NS-CL, have nearly perfect accuracy. Thus, the performance drops are primarily due to the limited
data for training individual modules. Overall, TbD-Nets have the worst data efficiency. There is no
performance drop for the NS-VQA model, because the visual recognition modules are pretrained
with direct object-level supervision.

Split: compositional generalization (purple). The training set is generated by selecting all ques-
tions that either do not contain the word “purple” or have a length smaller than or equal to 7 (including
punctuation). The test set is generated by selecting all sentences containing the word “purple” and
has a length greater than 7.

In this split, the semantic parsers used by all program-based methods: TbD-Nets, NS-VQA, and
NS-CL have nearly perfect accuracy. Thus, the performance drops are primarily due to 1) the limited
data for training individual modules (in this case, filter(purple) and 2) novel composition of learned
modules. Overall, NS-VQA and NS-CL answer more questions correctly than TbD-Nets.

Split: compositional generalization (right). The training set is generated by selecting all ques-
tions that either do not contain the word “right” or have a length smaller than or equal to 12. The test
set is generated by selecting all sentences that contain the word “right” and have a length greater than
12.

In this split, the semantic parser of NS-CL still yields almost perfect accuracy. In contrast, the
accuracy of the neural sequence-to-sequence parser used by TbD-Nets and NS-VQA is around
91%. Thus, the performance drop of TbD-Nets is mainly due to the inferior performance of the
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corresponding neural module: relate(right). Compared with the realization of a filter module (used
in our purple generalization test), the relate module in TbD-Nets has a significantly deeper neural
architecture (6 layers vs. 3 layer). Thus, we hypothesize that this module requires more data to train.

Split: compositional generalization (count). The training set is generated by selecting all ques-
tions that either do not contain operation “count” or have a length smaller than or equal to 9. The test
set is generated by selecting all sentences that contain operation “count” and have a length greater
than 9.

Among all compositional generalization tests, this is the most challenging one. The semantic parser,
in this case, need to generalize from: “how many cubes are there” and “what’s the shape of the object
that is both left of the cube and right of the sphere?”, to “how many cubes are both left of the cube
and right of the sphere?” We have constructed the training data in a way such that all constituents
have been seen in the training data. In this test, the program-level accuracy of the semantic parser
used by TbD-Nets and NS-VQA is 70.8%. NS-VQA outputs slightly higher QA accuracy.

We find that, for the parsing module in NS-CL, it fails to output the correct filter operation. Given
the input question “what is the number of spheres that are right of the cube”, it sometimes outputs
filter_cube relate_right filter_cube count (the correct program has the third operation filter_sphere
instead). This is because the system has never seen sentences composed of “counting” operations
and such complex structures; during training, it has only seen short sentences such as “what is the
number of spheres?” Only our G2L2 model, with its explicit constituent-level compositionality, is
able to make these generalizations.

Split: depth generalization. We define the “hop number” of a question as the number of interme-
diate objects being referred to in order to locate the target object. For example, the “hop number” of
the question “how many red objects are right of the cube?” is 1. We train different models on 0-hop
and 1-hop questions and test them on 2-hop questions.

This generalization test evaluates the generalization to deeper syntactic structures. All methods
except for our model G2L2 fail on this test. By evaluating the accuracy of the program generated by
different semantic parsers, we find that, the neural sequence-to-sequence model used by TbD-Nets
and NS-VQA completely fails on this task, sometimes generating invalid programs (the program-level
accuracy is 1.7%). Thus, we see a significant performance drop for both methods. Meanwhile,
NS-CL also generates wrong programs, but the programs are always valid due to its sequence-to-tree
design. Furthermore, even if the program is not correct, for example, they miss certain operations,
the execution result may still lead to a correct answer. For example, as long as the semantic parser
gets the outer-most filter operation (i.e., the last hop) correct, it is still possible to generate the correct
answer.

3.2 Language-Driven Navigation: SCAN

The SCAN dataset [7] consists of several official splits for generalizability evaluation. Following
existing work, we evaluate on the splits corresponding to the generalization test of “jump” and
“around right”. In addition, we test the generalizability across different output lengths and the data
efficiency of models. The performance is measured by exact match–based output accuracy.

Split: data efficiency. The official “simple” split randomly samples 80% among all possible
example pairs as the training set, and leaves the others as the test set. We use the training set of the
official simple split (available at [this url]) as the entire training set, and test the data efficiency by
using only 10% of them. We sample the 10% data uniformly for each input length. Both settings are
tested in the official simple test split, which is available at [this url].

Split: compositional generalization (jump). The training split consists of jump in isolation, i.e.,
the input is jump while the ground-truth output is I_JUMP, along with all other examples that do not
contain jump. The model is expected to recognize that jump has the same syntactic category as other
verbs such as run, and does well on complicated instructions including jump, e.g., mapping jump
twice to I_JUMP I_JUMP. The training data is available at [this url] and the test data is available at
[this url].
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Split: compositional generalization (around right). Similar to the “jump” test, the training set
for the “around-right” test consists of all possible examples that do not contain around right in their
inputs, while the test set consists of all examples that have around right. It is worth noting that
different from jump, around right in isolation is not a valid input as it lacks a primitive. The model
is expected to perform compositional generalization, understanding around right based on existing
training phrases such as around left and opposite right. The training data is available at [this url] and
the test data is available at [this url].

Split: length generalization. The model is expected to perform well on examples with long
ground-truth output while training those with short ground-truth output. In this test, all training
examples consist of less than or equal to 22 tokens in their outputs, while the output of a test example
may consist of up to 48 tokens. The training data is available at [this url] and the test data is available
at [this url].

Baseline models. All baseline models are built on top of a seq2seq model [10]: the original seq2seq
model [10] trains an LSTM-based encoder-decoder model using the training set; the other methods
augment the training set by either heuristics or learned models, and train an LSTM-based encoder-
decoder model using the augmented data. It is worth noting that among all considered baseline
methods, GECA [1] may generate examples in the test set, especially for compositional generalization
tests since the heuristics it introduces is by nature compositional.
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