Under review as a conference paper at ICLR 2025

APPENDIX

This appendix is organized as follows:

In Section [A] we list an overview of the notation used in the paper.

In Section [B] we provide extended related work.

In Section [C] we provide experimental details.

In Section [D] we provide the derivation of the likelihood used in this paper.

In Section[E} we provide the details of scaling FLOPs counting based on our models.
In Section[F] we demonstrate ablative studies during the experiments.

In Section (G} we add some more results to respond the reviewers’ questions.
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A NOTATION

Tab. 2] provides an overview of the notation used in this paper.

Symbol Meaning
RF Rectified Flow (Lipman et al., 2022; |Liu et al., 2022} |Albergo et al., 2023)
LN Logit-Normal timestep sampler 7, (¢; m, s) (Esser et al.,[2024)
SNR Signal-Noise-Ratio, \; = %%
DDPM Denoising Diffusion Probabilistic Models (tHo et al.,[2020)
LDM Latent Diffusion Models (Rombach et al., [2022)
VP Variance Preserving formulation (Song et al.,|2021b)
VLB Variational Lower Bound
VAE Variational Autoencoder
KL KL Divergence K L(p(z)|q(7)) = Ep(a) [ln%]
Pp Dataset distribution
datin Dimension of the attention output
dss Dimension of the Feedforward layer
dmodel Dimension of the residual stream
Niayer Depth of the Transformer
leta Context length of input tokens
limg Context length of image tokens
ltext Context length of text tokens
ltime Context length of time tokens
Nyoc Size of Vocabulary list
Nhead Number of heads in Multi-Head Attention
N Number of parameters
D Size of training data (token number)
C Compute budget, C' = 6N D
Nopt Optimal number of parameters for the given budget
D, pi Optimal training tokens for the given budget.
€ Gaussian Noise N (0, 1)
X4 A sample created at timestep ¢
t Timestep ranging from [0, 1]
v Velocity v = x1 — X
o o represents the scaling factor during noise sample creation.
Bt B represents the diffusion factor during noise sample creation.
ot Noise Level defined for each timestep
fo(x) The network we use to learn the transition kernel. fo : RV*M — RNXM
n Learning rate
Tin(t;m, s) Logit-Normal Timestep sampling schedule,
m is the location parameter, s is the scale parameter
L£(0,x,1) Loss given model parameters, data points, and timesteps.
A Fixed step size for ODE/SDE samplers
0 Parameters for diffusion models
0} Parameters for VAE encoder
P Parameters for VAE decoder
QEMA EMA coefficient

Table 2: Summary of the notation and abbreviations used in this paper.

15



Under review as a conference paper at ICLR 2025

B EXTENDED RELATED WORK

Diffusion Models Diffusion models have gained significant attention due to their effectiveness
in generative modeling, starting from discrete-time models (Sohl-Dickstein et al., 2015 |Ho et al.,
2020; Song & Ermon, 2020) to more recent continuous-time extensions (Song et al., 2021b)). The
core idea of diffusion models is to learn a sequence of noise-adding and denoising steps. In the
forward process, noise is gradually added to the data, pushing it toward a Gaussian distribution, and
in the reverse process, the model learns to iteratively denoise, recovering samples from the noise.
Continuous-time variants (Song et al.,[2021b)) further generalize this framework using stochastic dif-
ferential equations (SDEs), allowing for smoother control over the diffusion process. These meth-
ods leverage neural network architectures to model the score function and offer flexibility and better
convergence properties compared to discrete versions. Diffusion models have shown remarkable
success in various applications. For instance, ADM (Dhariwal & Nichol, [2021) outperforms GAN
on ImageNet. Following this success, diffusion models have been extended to more complex tasks
such as text-to-image generation. Notably, models like Stable Diffusion (Rombach et al.,[2022)) and
DALLE (Ramesh et al.,2021) have demonstrated the ability to generate highly realistic and creative
images from textual descriptions, representing a significant leap in the capabilities of generative
models across various domains.

Normalizing Flows Normalizing flows has been a popular generative modeling approach due to
their ability to compute exact likelihoods while providing flexible and invertible transformations.
Early works like GLOW (Kingma & Dhariwal, 2018) and RealNVP (Dinh et al.| [2017) introduced
powerful architectures that allowed for efficient sampling and likelihood estimation. However, these
models were limited by the necessity of designing specific bijective transformations, which con-
strained their expressiveness. To address these limitations, Neural ODE (Chen et al.l 2019) and
FFJORD (Grathwohl et al., [2018) extended normalizing flows to the continuous domain using dif-
ferential equations. These continuous normalizing flows (CNFs) allowed for more flexible trans-
formations by parameterizing them through neural networks and solving ODEs. By modeling the
evolution of the probability density continuously, these methods achieved a higher level of expres-
siveness and adaptability compared to their discrete counterparts. Recent work has begun to bridge
the gap between continuous normalizing flows and diffusion models. For instance, ScoreSDE (Song
et al.l [2021b)) demonstrated how the connection between diffusion models and neural ODEs can be
leveraged, allowing both exact likelihood computation and flexible generative processes. More re-
cent models like Flow Matching (Lipman et al.,|2022) and Rectified Flow (Liu et al., [2022) further
combined the strengths of diffusion and flow-based models, enabling efficient training via diffusion
processes while maintaining the ability to compute exact likelihoods for generated samples. In this
paper, we build upon the formulation introduced by rectified flow and Flow Matching. By leverag-
ing the training approach of diffusion models, we benefit from their generative performance, while
retaining the capability to compute likelihoods.

Likelihood Estimation Likelihood estimation in diffusion models can be approached from two
primary perspectives: treating diffusion models as variational autoencoders (VAEs) or as normal-
izing flows. From the VAE perspective, diffusion models can be interpreted as models where we
aim to optimize a variational lower bound (VLB) on the data likelihood (Kingma & Welling| [2022).
The variational lower bound decomposes the data likelihood into a reconstruction term and a reg-
ularization term, where the latter measures the divergence between the approximate posterior and
the prior. In diffusion models, this framework allows us to approximate the true posterior using a
series of gradually noised latent variables. Recent works (Ho et al.,2020; | Kingma et al.,[2021};|Song
et al., 2021a) have derived tighter bounds for diffusion models, enabling more accurate likelihood
estimation by optimizing this variational objective. Alternatively, diffusion models can be viewed as
a form of normalizing flows, particularly in the context of continuous-time formulations. Using neu-
ral ODEs (Chen et al.,2019), diffusion models can be trained to learn exact likelihoods by modeling
the continuous reverse process as an ODE. By solving this reverse-time differential equation, one
can directly compute the change in log-likelihood through the flow of probability densities (Grath-
wohl et al.,|2018). This approach provides a method for exact likelihood computation, bridging the
gap between diffusion models and normalizing flows, and offering a more precise estimate of the
likelihood for generative modeling.
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Figure 6: The effect of AR.

C EXPERIMENTAL DETAILS

C.1 DATA

We primarily utilized three datasets in our work. Several ablation studies on formulation and model
design were conducted using JourneyDB (Sun et al.,2023)). Additionally, we curated a subset of 108
million image-text pairs from the Laion-Aesthetic dataset, applying a threshold of 5 for the aesthetic
score. After collecting the data, we re-captioned all images using LLAVA 1.5 (Liu et al., |2024),
specifically employing the LLaVA-Lightning-MPT-7B-preview model for this task. We then split
the data into training and validation sets with a ratio of 100:1. Our third dataset is COCO (Lin et al.,
20135)), where we used the 2014 validation set to test scaling laws on an out-of-domain dataset.

C.2 MODEL DESIGN

In this paper, we evaluate two distinct model architectures. For the PixArt model, we follow the
original design presented in [Chen et al|(2023). The In-Context Transformers are based on the
In-Context block described in |Peebles & Xie| (2023)). To facilitate large-scale model training, we
employ QK-Norm (Dehghani et al.|2023)) and RMSNorm (Zhang & Sennrich,2019). The patch size
is set to 2. Although previous work (Kaplan et al., 2020) suggests that the aspect ratio (width/depth)
of Transformers does not significantly impact scaling laws, it is crucial to maintain a consistent ratio
when fitting models to scaling laws. To demonstrate this, we train a series of models under a fixed
computational budget, selecting models of various sizes and aspect ratios (32 and 64). We then plot
the relationship between the number of parameters and loss. As illustrated in Fig. [} mixing models
with aspect ratios of 64 and 32 obscures the overall trend. To address this issue, we maintain the
aspect ratio at 64 throughout.

D DERIVATION OF THE LIKELIHOOD

In this section, we provide a derivation of the likelihood estimation in our paper. In this paper, we
use two ways to compute the likelihood. The first method is estimating the VLB (variational lower
bound). Following Kingma et al.| (2021); Vahdat et al.| (2021), we derive a VLB in latent space.
However, we cannot compute the entropy terms in the VAE. So our surrogate metric differs from the
true VLB up to a constant factor.

VAE The latent diffusion model (Vahdat et al., 2021; Rombach et al.l [2022)) consists of two com-
ponents: a variational autoencoder (VAE) that encodes images into a latent space and decodes latents
back into images, and a continuous diffusion model that operates in the latent space. To train the
latent diffusion model, we optimize the variational encoder ¢4, the decoder py,, and the diffusion
model pg. Following Ho et al. (2020), the models are trained by minimizing the variational upper
bound on the negative log-likelihood log P(x):
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Ly o) = Eq, (29]2) [~ log py(x|20)] + K L(gs(20]7)|[pe(20))
= E%(Zo\z) [_ log py (33|ZO)] + E%(Zo\x) [1og q¢(z0|x)} + E%(Zo\z) [_ log pe (20)]~

In our implementation, we directly adopt the VAE from Stable Diffusion 1.5 and keep it fixed during
training. As a result, the reconstruction term (first term) and the negative encoder entropy term
(second term) remain constant across different models. In fact, the VAE in Stable Diffusion is
trained following the VQGAN approach, which uses both L1 loss and an additional discriminator
for training. Therefore, we cannot effectively estimate the reconstruction term since the decoder
distribution is not tractable. To simplify further, we omit the VAE encoding process altogether.
Specifically, we skip both encoding and decoding through the VAE and treat the latents produced by
the VAE as the dataset samples. Under this assumption, we estimate the offset VLB directly in the
latent space.

In the latent space, we model the distribution of latent variables that can be decoded into images
using the VAE decoder. We denote the samples in latent space as x, and the noisy latent at timestep
t as z;. The variational lower bound (VLB) in the latent space is given by Kingma et al.|(2021):

—logp(z) < =VLB(z) = Drr(q(z1]2)|[p(21)) + Eq(zo)a) [~ log p(2]20)] + Lo (2),

where the first two terms depend only on the noise schedule, and we treat these terms as irreducible
losses since the noise schedule is fixed across all models. The third term is the KL divergence
between each pair of the reverse process p(z;|z¢+1) and the forward process q(z¢|x, z141):

T
ET(I) = Z Eq(zt(i)\w) [DKL(Q| ‘p)]

=1

Since we assume that the forward and reverse processes share the same variance and both p and ¢
are Gaussian distributions, the KL terms reduce to weighted L2 distances:

1 T

Lr(z) = FEcuno) [Z(SNR(S) = SNR(t) |z — zo(z:1)[13 | .

where s =t — 1. In the limit as T — oo, the loss becomes:

1

1
Lr(e) = ~5Eon | SNR(Olle = o) .

In our case, we utilize the velocity v to predict the clean sample x and compute the VLB.

Normalizing Flows Another method to compute the likelihood in our diffusion model is by view-
ing the diffusion process as a type of normalizing flow. Specifically, we leverage the theoretical
results from Neural ODEs, which allow us to connect continuous normalizing flows with the evolu-
tion of probability density over time. In Neural ODEs, the transformation of data through the flow
can be described by the following differential equation for the state variable x; as a function of time:

dx
cTtt = folay, t),

where fy(xy,t) represents the network that predicts the time-dependent vector field v. To compute
the change in log-probability of the transformed data, the log-likelihood of the input data under the
flow is given by:
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dt

dlogp(xt) - _Tr (3f(xt,t)>
8:@ ’

where Tr represents the trace of the Jacobian matrix of fy(x¢,t). This equation describes how the
log-density evolves as the data is pushed forward through the flow. To compute the likelihood, we
integrate the following expression over the trajectory from the initial state ¢y to the terminal state ¢;:

log p(z1,) = logp(ws,) — /tl Tr (W) dt.

to Oy

Here, log p(x+,) represents the log-likelihood of the initial state (often modeled as a Gaussian), and
the integral accounts for the change in probability density over time as the data evolves through the
ODE. In our formulation, the network predicts the velocity vg(z¢,t) = x; = a;zg + ﬂ;e, which
corresponds to the derivative of x; with respect to time. Thus, we start with clean samples, estimate
the velocity, perform an iterative reverse-time sampling, and convert the samples into Gaussian
noise. We can then compute the prior likelihood of the noise easily and add it to the probability shift
accumulated during reverse sampling. In our experiments, we set the steps of reverse sampling to
500 to obtain a rather accurate estimation.

E ScALING FLOPsS COUNTING

In this section, we provide a detailed explanation of our FLOPs scaling calculations. Several prior
works have employed different methods for counting FLOPs. In|Kaplan et al.| (2020), the authors
exclude embedding matrices, bias terms, and sub-leading terms. Moreover, under their framework,
the model dimension d,;,4q¢; 1S much larger than the context length [ ;,, allowing them to disregard
context-dependent terms. Consequently, the FLOPs count N for their model is given by:

M =12 X dpoder X Niayer X (2dattn + dff)7 &)

where dy,oder represents the model dimension, 14y e denotes the depth of the model, dg sy, refers
to the attention dimension, and d ¢ represents the feed-forward layer dimension.

In contrast, Hoffmann et al.[(2022) includes all training FLOPs, accounting for embedding matrices,
attention mechanisms, dense blocks, logits, and context-dependent terms. Specifically, their FLOP
computation includes:

e Embedding: 2 X l.tz X Nyoe X dmodel

e Attention:
— QKV Mapping: 2 X 3 X letz X dpmodel X Amodel
- QK 2 x lctm X lthE X dmodel

Softmax: 3 X npeqd X letz X letw

Mask: 2 X lo1p X lete X dpmodel

Projection: 2 X l 1 X dimodel X dmodel

* Dense: 2 X [z X (dimodet X dff X 2)
e Logits: 2 X lcz X dmodel X Nyoc

Further details can be found in the Appendix F of Hoffmann et al.|(2022).

In Bi et al.| (2024), the authors omit the embedding computation but retain the context-dependent
terms, which aligns with our approach. The parameter scaling calculation for vanilla Transformers
in this paper follows the same format as theirs. We now present detailed scaling FLOPs calculations
for the In-Context Transformers and Cross-Attn Transformers used in our experiments.

Attention blocks are the primary components responsible for scaling in Transformer architectures.
In line with previous studies, we only consider the attention blocks, excluding embedding matrices
and sub-leading terms. Unlike large language models (LLMs), our model dimension is comparable
to the context length, and therefore, we include context-dependent terms. In this section, we present
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FLOPs per sample rather than parameters, as different tokens participate in different parts of the
cross-attention computation. Additionally, since our input length is fixed, the FLOPs per sample are
straightforward to compute.

In-Context Transformers In-Context Transformers process a joint embedding consisting of text,
image, and time tokens, all of which undergo attention computation. Tab. |3| details the FLOPs
calculations for a single attention layer.

Table 3: Scaling FLOPs Calculation in In-Context Transformers

Operation FLOPs per Sample

Self-Attn: QKV Projection 3 X 2 X Nygyer X lete X Amodel X 3 X datin
Self-Attn: QK 3 X 2 X Mayer X lete X lete X dattn
Self-Attn: Mask 3 X 2 X Njayer X letz X letz X datin
Self-Attn: Projection 3 X 2 X Nyayer X letz X dmodel X datin
Self-Attn: FFN 3X 2% 2 X Myayer X leta X 4 X d2,00

In our experiments, we set dmodel = datin, and loey = 377, where lery = limg(256) + liert (120) +
ltime(1). Thus, the simplified FLOPs-per-sample scaling equation M is:

M =72 x lctw X Nigyer X dgnodel + 12 x Niayer X l?;t;v X dmodel (10)

Cross-Attn Transformers In Cross-Attn Transformers, each attention block consists of self-
attention and cross-attention mechanisms to integrate text information. The cross-attention uses
image embeddings as the query and text embeddings as the key and value. The attention mask re-
flects the cross-modal similarity between image patches and text segments. As a result, the FLOPs
calculation differs from that of models using joint text-image embeddings. Tab. ] lists the FLOPs
costs for each operation.

Table 4: Scaling FLOPs Calculation in Cross-Attn Transformers

Operation FLOPs per Sample
Self-Attn: QKV Projection 3 X 2 X Nyayer X limg X dmodel X 3 X dattn
Self-Attn: QK 3 X 2 X Nygyer X limg X limg X dattn
Self-Attn: Mask 3 X 2 X Nygyer X limg X limg X dattn
Self-Attn: Projection 3 X 2 X Nygyer X limg X dmodel X dattn
Cross-Attn QKV 3 X2 X nygyer X (Limg +2 X liext) X dmodel X
dattn
Cross-Attn QK 3 X 2 X Nygyer X ltext X limg X dattn
Cross-Attn Mask 3 X 2 X Nygyer X ltext X limg X dattn
Cross-Attn Projection 3 X 2 X Nygyer X limg X dmodel X dattn
FFN 3 X 2 X 2 X Nygyer X limg X 4 X 2,401

Based on the experimental settings, we can simplify the FLOPs calculation as follows:
M =84 X Nyayer X limg X dpger + 12 X Niayer X Ly X datin

2
+12 x Niayer X ltea:t X dmodel +12 % Niayer X ltext X limg X dmodel (11)

Context-Dependent Terms From the equations above, it is evident that some context-dependent
terms, such as 12 X njqyer X lfm X dmodel, cannot be omitted. In our experiments, the aspect ratio of
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Transformers (width/depth=64) is maintained across all model sizes. The context length [, is 377
(image: 256, text: 120, time: 1), and dpodel = Mayer X 64. Since lc; and dyyo4e; are comparable,
the context-dependent terms must be retained.

F ABLATIONS

F.1 DIFFUSION FORMULATION

In diffusion models, various formulations for noise schedules, timestep schedules, and prediction
objectives have been proposed. These three components are interdependent and require specific
tuning to achieve optimal performance. In this paper, we explore several common formulations and
conduct ablation studies to identify the best combination in our setting.

Below, we list the candidate formulations used in our ablation study.
Noise Schedule
Discrete Diffusion Models

DDPM Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) is a discrete-time
diffusion model that generates noisy samples via the following formula:
Ty = o + PBre

where € is Gaussian noise, and oy and 3; satisfy o + 37 = 1. Given a sequence of oy, the scaling
factor can be defined as:

t

[Ta-0) (12)

s=0

Qp =

In DDPM, o, follows:

t
o = o0+ f(oT —09) (13)

LDM Latent Diffusion Models (LDM) (Rombach et al., 2022)), as used in Stable Diffusion, is

a variant of the DDPM schedule. It is also a variance-preserving formulation, sharing the same
structure as DDPM but employing a different noise schedule:

at<ﬁ+;<m¢@)2

Continuous Diffusion Models

VP Variance Preserving (VP) diffusion (Song et al., [2021b) is the continuous counterpart of
DDPM, where the noise is added while preserving variance across timesteps. The sampling pro-

cess is given by:
_1 ot _rt
zy=e2)o 7sdspo /1 —e Jo oedse

Rectified Flow Rectified Flow (RF) (Liu et al., 2022} [Lipman et al.| [2022; |Albergo et al., [2023)
is another continuous-time formulation, where a straight-line interpolation is defined between the
initial sample zo and the Gaussian noise e. The process is described by:

where t € [0, 1].

2 = (1 —t)xg + te

Prediction Type
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Noise Prediction () The network predicts the Gaussian noise € ~ A (0, I) added to the samples
during the diffusion process.

Velocity Prediction (v) In this formulation, the network predicts the velocity v(xy,t), which is
defined as the derivative of the noisy sample x; with respect to time. If the noisy sample z; is defined
by:
Ty = ayxo + Bre
the velocity is given by:
v(zy, t) = 7 = ohxo + Bie

where o and 3] are the derivatives of oy and /3; with respect to timestep .

Score Prediction (s) The network predicts the score function s(x,t) = Vlog P(z,t), which is
the gradient of the log-probability density function. The score can be derived as:

€

s(z,t) = G

Timestep Sampling Schedule

Uniform Timestep Schedule In this schedule, the timestep ¢ is uniformly sampled. For discrete-
time diffusion models:
t~U(0,1,2,...,999)

For continuous-time diffusion models:
t~U(0,1)

Logit-Normal (LN) Timestep Schedule The Logit-Normal (LN) timestep schedule 7, (¢; m, ),
proposed in [Esser et al.[(2024), generates timesteps according to the following distribution:

1 1 (logit(t) —m)?
s\ 21 . t(l — t) b ( 252 > ’

i (t;m, s) =

where logit(t) = log (ﬁ) The LN schedule has two parameters: m and s. It defines an unimodal

distribution, where m controls the center of the distribution in logit space, shifting the emphasis
of training samples towards noisier or cleaner regions. The parameter s adjusts the spread of the
distribution, determining its width. As suggested inEsser et al.| (2024)), to obtain a timestep, we first
sample u ~ N (m, s), and then transform it using the logistic function. For discrete-time diffusion,
after obtaining t ~ 7, (t;m,s), we scale ¢t by t = round(¢ x 999) to obtain a discrete timestep.
Following Esser et al.|(2024), we utilized the parameters m = 0.0, s = 1.00 and didn’t sweep over
m and s. More details and visualizations can be found in Esser et al.[(2024) Appendix B.4.

We conducted a series of experiments using different combinations of formulations. Selective com-
binations are listed in Tab. [5] A ’—’ indicates that the combination is either not comparable with
other formulations or that training diverges. We assume that the choice of formulation will not be
significantly affected by specific model designs or datasets. All experiments were conducted using
Pixart (Chen et al.l [2023), a popular text-to-image diffusion transformer architecture. Specifically,
we used a small model with 12 layers and a hidden size of 384, setting the patch size to 2. The
models were trained on JourneyDB (Sun et al} |[2023), a medium-sized text-to-image dataset con-
sisting of synthetic images collected from Midjourney. All models were trained for 400k steps using
AdamW as the optimizer. As shown in Tab. E], the optimal combination is [RF, LN, v], achieving
an FID of 36.336 and a Clip Score of 0.26684. This combination achieved the best performance on
both metrics and therefore, we used this setting in the remaining experiments.

F.2 EMA

The Exponential Moving Average (EMA) coefficient is crucial to the loss curve and determining the
final results. In EMA, the loss [ is updated as I = (1 — agma )l + agmav, where v represents the latest
loss value. EMA smooths the cumulative loss and reduces fluctuations. However, applying EMA
can lead to an overestimation of the loss during the early stages of training. As illustrated in Fig.
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Noise Schedule Timestep Schedule Prediction Type @ FID  CLIP Score

DDPM Uniform € 40.469 0.26123
DDPM Uniform v 74.049 0.23136
DDPM LN € 40.100 0.26283
LDM Uniform € 39.001 0.26423
LDM Uniform v — —
LDM LN € 38.196 0.26624
VP Uniform € 44.343 0.26148
VP Uniform v 41.808 0.26320
VP Uniform S 45.808 0.25970
VP LN € 42.872 0.26354
VP LN v 44.107 0.26380
RF Uniform v 44.840 0.25682
RF Uniform S — —
RF Uniform € — —
RF LN v 36.336 0.26684

Table 5: Ablation on diffusion formulations.

a larger EMA coefficient results in a higher loss compared to the actual value, which may introduce
significant bias in scaling curve fitting and, consequently, lead to inefficient use of computational
resources. From Fig.[/| we observe that agya = 0.9 is the optimal choice, as it effectively smooths
the loss curve while only slightly inflating the values during the initial phase of training.

F.3 CLASSIFIER-FREE GUIDANCE & SAMPLING STEPS

We perform ablation studies on CFG scales and the number of steps using the compute-optimal
models trained with a budget of 6el8. In Fig. E we evaluate several CFG scales (2.5, 5.0, 7.5,
10.0) and compute FID across different step counts. We found that 25 steps are sufficient to achieve
good results. Next, we fix the number of steps at 25 and evaluate performance across different CFG
scales. As shown in Fig.[9] a CFG of 10.0 yields the best results, and we select this configuration as
the default.

G REBUTTAL

In this section, we add extra experiment results and discussions in response to the reviewers.

G.1 FLux

Reviewer 2p8z and CvMz raised their concern about whether scaling laws can be observed in mod-
ern DiT architectures. To address the reviewers’ concerns, we test on FLUX. As shown in Fig. m
the loss curve clearly shows a linear relation, which shows that the scaling laws exist.

G.2 PIXART

To further address Reviewer 2p8z and CvMz’s concern about whether scaling laws can be observed
in modern DiT architectures. We conduct experiments on Pixart. As shown in Fig.[TT] the loss curve
also shows a linear relation, which further supports that the existence of scaling laws doesn’t rely on
model architectures.

G.3 RESOLUTION 512

Reviewer CVDQ, CvMz, and 2p8z are concerned with whether the existence of scaling laws depends
on a specific dataset and whether different resolution matters. We perform several experiments on a

23



Under review as a conference paper at ICLR 2025

Loss

Loss

Loss

Loss

Loss

Loss

Loss

In-Context Depth6 Budget=10e+17

In-Context Depth & Budget=3.0e+17

n-Context Depth-6-Budget=5.06+17

In-Context Depth-6-Budget=1.0e+18

n-Context.Depth6-Budget=3,0e+18

In-Context Depih-6 Budget=6 0e+18

—— Original Loss 1 — Original Loss B —— Original Losse dectr —— Original Loss 1 — Original Loss 1 —— Original Loss
EMA=0.9 s EMA=0.9 . . EMA=0.9
" — —— EMA=0.99 — EM,
e — ™ it — EMA=0.999 | e — M
3 S S 3. S.
af | " s
| L
Iterations ) Iterations Iterations Iterations Iterations Iterations
e oes1r . oes1s
- —— Original Loss e —— Original Loss “ —— Original Loss e —— Original Loss ” —— Original Loss
EMA=0.9 . . EMA=0.9 . , EMA=0.9
gl e —— EMA=0.99 —— EMA=0.99
A 9 e e it — EMA=0999 | e
k: g 8, 4. .
" |
Iterations " terations Iterations lterations Iterations
e ; oes1s
B 1 —— Original Loss 1 —— Original Loss 1 —— original Loss e —— Original Loss
EMA=0.9 . . EMA=0.9
e Steinal Loss ‘“ . * —— EMA=0.99 —— EMA=0.99
9 » —— EMA=0.999 » —— EMA=0.999 - 1 —— EMA=0.999
B @ Q2 @ Q2
3 g 2 3 g
S S 3., S. S.
Iterations Iterations Iterations Iterations " Iterations ’ fons
In ContentDepth 8 Budgete1 00+17 InContertDept 8 Budget3 00117 In Conort Depth & Busget=5 00+17 In ContertDept 8 Budgt1 00418 i Contrt Dt & Budget=3 00418 In ContentDepth 8 BudgteG 0e+18
—— Original Loss B —— original Loss B —— Original Loss w —— Original Loss B —— oOriginal Loss s —— Original Loss
9 EMA=0.9 EMA=0.9 EMA=0.9 i EMA=0.9 . EMA=0.9
“ ” X — EMA=0.99
. — EMA=0.999 - —— EMA=0.999 " 1
o o w o w
2 8 9 H 8
4 g 4 4 4
S 3., S, S 3.
Iterations Iterations Iterations Iterations Iterations Iterations
oes17 ) nc oers
| —— oOriginal Loss —— Original Loss —— Original Loss —— oOriginal Loss ) —— Original Loss
1 8 e EMA=0.9 1 s EMA=0.9
. — EMA=0.99 . L — EM
e —— EMA=0.999
o o » o w
5. g g g g
— Original Loss - - . . 5
EMA=0.9 12 "
— EMA=0.99 B B ” 1 2
—— EMA=0.999 * Rt os o
Iteration ’ Iterations Iterations Iterations Iterations Iterations
In ConentDesth 9 usgt=1 00417 InContextDeptn 9 Budget=3 00417 In ContextDepth 9 usge=5 00417 InContext Dt 9 Budget=1.0e+18 in ContotDeptn 3 Budget=3 00418 In ConentDepth 9 usge=5 0e+18
—— Original Loss 1 —— oOriginal Loss B w —— Original Loss B — Original Loss 1 —— Original Loss
EMA=0.9 s EMA=0.9 . » EMA=0.
‘“ —— EMA=0.99
™ e it — EMA=0999 | . "
g g N 8. 3.
Iterations Iterations Iterations Iterations Iterations Iterations
e oes1r . oes1s
e —— original Loss 1 —— Original Loss 1 —— Original Loss 18 —— oOriginal Loss 1 —— Original Loss
0.9 EMA=0.9 . .9
Svgial Loss e e 0.99 * —— EMA=0.99 .99
g - i — EMA=0999 | ., — EMA=0.999 | . — EMA=0.999 | —— EMA=0.999
! g g, g, 8.
Iterations Iterations terations Iterations Iterations i Iterations

Figure 7: The effect of EMA.
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Figure 9: Ablation on cfg scale
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Figure 12: Scaling laws for 512 Resolution.

dataset with images at 512 resolutions. The curve under each budget can be well fitted by a parabola
and the relation between loss and budgets shows clear linear trends. The results in Fig. [[2]indicate
that resolution and data will not affect the existence.

G.4 MASKED DIFFUSION TRANSFORMERS

We add the discussion for missing references pointed out by reviewer ssc5.

Masked Diffusion Transformers (v1, v2) (2023)) are the first works to explore mask latent
modeling into diffusion training. It introduces masks into the training to enhance the ability to
understand contextual relations.

G.5 LEARNING RATE SCAN

Reviewer 2p8z expressed concerns about the impact of learning rate. To address this, we tested the
sensitivity of learning rate using the largest models from our experiments. The results, presented in
Fig.[13] show that increasing the learning rate does not lead to improved loss. Our findings indicate
that le-4 is generally a robust and effective choice.

G.6 DATA ASSESSMENT

To demonstrate how scaling laws can be used to assess data quality, we applied them to an additional
dataset. This dataset contains the same images as the one used in our main paper but features sparse
tag captions instead of dense descriptions. The scaling curve for FID is shown in Fig. [[4} with an
exponent of -0.216. In contrast, the scaling exponent in the main text is -0.234, indicating that the
FID for the dataset in the main text decreases more rapidly, leading to better performance. This
comparison suggests that long and dense captions provide a significant advantage over sparse tag
captions in terms of data quality.
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Figure 13: Learning rate scan for the largest models.
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Figure 14: Scaling curves for FID on Sparse-captioned dataset.
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