
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

This appendix is organized as follows:

• In Section A, we list an overview of the notation used in the paper.

• In Section B, we provide extended related work.

• In Section C, we provide experimental details.

• In Section D, we provide the derivation of the likelihood used in this paper.

• In Section E, we provide the details of scaling FLOPs counting based on our models.

• In Section F, we demonstrate ablative studies during the experiments.

• In Section G, we add some more results to respond the reviewers’ questions.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A NOTATION

Tab. 2 provides an overview of the notation used in this paper.

Symbol Meaning
RF Rectified Flow (Lipman et al., 2022; Liu et al., 2022; Albergo et al., 2023)
LN Logit-Normal timestep sampler πln(t;m, s) (Esser et al., 2024)

SNR Signal-Noise-Ratio, λt =
α2

t

β2
t

DDPM Denoising Diffusion Probabilistic Models (Ho et al., 2020)
LDM Latent Diffusion Models (Rombach et al., 2022)
VP Variance Preserving formulation (Song et al., 2021b)

VLB Variational Lower Bound
VAE Variational Autoencoder
KL KL Divergence KL(p(x)|q(x)) = Ep(x)[lnp(x)q(x)]

PD Dataset distribution
dattn Dimension of the attention output
dff Dimension of the Feedforward layer

dmodel Dimension of the residual stream
nlayer Depth of the Transformer
lctx Context length of input tokens
limg Context length of image tokens
ltext Context length of text tokens
ltime Context length of time tokens
Nvoc Size of Vocabulary list
nhead Number of heads in Multi-Head Attention
N Number of parameters
D Size of training data (token number)
C Compute budget, C = 6ND

Nopt Optimal number of parameters for the given budget
Dopt Optimal training tokens for the given budget.
ϵ Gaussian Noise N (0, I)
xt A sample created at timestep t
t Timestep ranging from [0, 1]
v Velocity v = x1 − x0

αt αt represents the scaling factor during noise sample creation.
βt βt represents the diffusion factor during noise sample creation.
σt Noise Level defined for each timestep

fθ(x) The network we use to learn the transition kernel. fθ : RN×M −→ RN×M

η Learning rate
πln(t;m, s) Logit-Normal Timestep sampling schedule,

m is the location parameter, s is the scale parameter
L(θ,x, t) Loss given model parameters, data points, and timesteps.

λ Fixed step size for ODE/SDE samplers
θ Parameters for diffusion models
ϕ Parameters for VAE encoder
ψ Parameters for VAE decoder

αEMA EMA coefficient

Table 2: Summary of the notation and abbreviations used in this paper.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B EXTENDED RELATED WORK

Diffusion Models Diffusion models have gained significant attention due to their effectiveness
in generative modeling, starting from discrete-time models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2020) to more recent continuous-time extensions (Song et al., 2021b). The
core idea of diffusion models is to learn a sequence of noise-adding and denoising steps. In the
forward process, noise is gradually added to the data, pushing it toward a Gaussian distribution, and
in the reverse process, the model learns to iteratively denoise, recovering samples from the noise.
Continuous-time variants (Song et al., 2021b) further generalize this framework using stochastic dif-
ferential equations (SDEs), allowing for smoother control over the diffusion process. These meth-
ods leverage neural network architectures to model the score function and offer flexibility and better
convergence properties compared to discrete versions. Diffusion models have shown remarkable
success in various applications. For instance, ADM (Dhariwal & Nichol, 2021) outperforms GAN
on ImageNet. Following this success, diffusion models have been extended to more complex tasks
such as text-to-image generation. Notably, models like Stable Diffusion (Rombach et al., 2022) and
DALLE (Ramesh et al., 2021) have demonstrated the ability to generate highly realistic and creative
images from textual descriptions, representing a significant leap in the capabilities of generative
models across various domains.

Normalizing Flows Normalizing flows has been a popular generative modeling approach due to
their ability to compute exact likelihoods while providing flexible and invertible transformations.
Early works like GLOW (Kingma & Dhariwal, 2018) and RealNVP (Dinh et al., 2017) introduced
powerful architectures that allowed for efficient sampling and likelihood estimation. However, these
models were limited by the necessity of designing specific bijective transformations, which con-
strained their expressiveness. To address these limitations, Neural ODE (Chen et al., 2019) and
FFJORD (Grathwohl et al., 2018) extended normalizing flows to the continuous domain using dif-
ferential equations. These continuous normalizing flows (CNFs) allowed for more flexible trans-
formations by parameterizing them through neural networks and solving ODEs. By modeling the
evolution of the probability density continuously, these methods achieved a higher level of expres-
siveness and adaptability compared to their discrete counterparts. Recent work has begun to bridge
the gap between continuous normalizing flows and diffusion models. For instance, ScoreSDE (Song
et al., 2021b) demonstrated how the connection between diffusion models and neural ODEs can be
leveraged, allowing both exact likelihood computation and flexible generative processes. More re-
cent models like Flow Matching (Lipman et al., 2022) and Rectified Flow (Liu et al., 2022) further
combined the strengths of diffusion and flow-based models, enabling efficient training via diffusion
processes while maintaining the ability to compute exact likelihoods for generated samples. In this
paper, we build upon the formulation introduced by rectified flow and Flow Matching. By leverag-
ing the training approach of diffusion models, we benefit from their generative performance, while
retaining the capability to compute likelihoods.

Likelihood Estimation Likelihood estimation in diffusion models can be approached from two
primary perspectives: treating diffusion models as variational autoencoders (VAEs) or as normal-
izing flows. From the VAE perspective, diffusion models can be interpreted as models where we
aim to optimize a variational lower bound (VLB) on the data likelihood (Kingma & Welling, 2022).
The variational lower bound decomposes the data likelihood into a reconstruction term and a reg-
ularization term, where the latter measures the divergence between the approximate posterior and
the prior. In diffusion models, this framework allows us to approximate the true posterior using a
series of gradually noised latent variables. Recent works (Ho et al., 2020; Kingma et al., 2021; Song
et al., 2021a) have derived tighter bounds for diffusion models, enabling more accurate likelihood
estimation by optimizing this variational objective. Alternatively, diffusion models can be viewed as
a form of normalizing flows, particularly in the context of continuous-time formulations. Using neu-
ral ODEs (Chen et al., 2019), diffusion models can be trained to learn exact likelihoods by modeling
the continuous reverse process as an ODE. By solving this reverse-time differential equation, one
can directly compute the change in log-likelihood through the flow of probability densities (Grath-
wohl et al., 2018). This approach provides a method for exact likelihood computation, bridging the
gap between diffusion models and normalizing flows, and offering a more precise estimate of the
likelihood for generative modeling.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

101 102

Parameters (log scale)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94
Lo

ss

Loss vs Parameters for All Models

101 102

Parameters (log scale)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Lo
ss

Loss vs Parameters for AR=64 Models

Figure 6: The effect of AR.

C EXPERIMENTAL DETAILS

C.1 DATA

We primarily utilized three datasets in our work. Several ablation studies on formulation and model
design were conducted using JourneyDB (Sun et al., 2023). Additionally, we curated a subset of 108
million image-text pairs from the Laion-Aesthetic dataset, applying a threshold of 5 for the aesthetic
score. After collecting the data, we re-captioned all images using LLAVA 1.5 (Liu et al., 2024),
specifically employing the LLaVA-Lightning-MPT-7B-preview model for this task. We then split
the data into training and validation sets with a ratio of 100:1. Our third dataset is COCO (Lin et al.,
2015), where we used the 2014 validation set to test scaling laws on an out-of-domain dataset.

C.2 MODEL DESIGN

In this paper, we evaluate two distinct model architectures. For the PixArt model, we follow the
original design presented in Chen et al. (2023). The In-Context Transformers are based on the
In-Context block described in Peebles & Xie (2023). To facilitate large-scale model training, we
employ QK-Norm (Dehghani et al., 2023) and RMSNorm (Zhang & Sennrich, 2019). The patch size
is set to 2. Although previous work (Kaplan et al., 2020) suggests that the aspect ratio (width/depth)
of Transformers does not significantly impact scaling laws, it is crucial to maintain a consistent ratio
when fitting models to scaling laws. To demonstrate this, we train a series of models under a fixed
computational budget, selecting models of various sizes and aspect ratios (32 and 64). We then plot
the relationship between the number of parameters and loss. As illustrated in Fig. 6, mixing models
with aspect ratios of 64 and 32 obscures the overall trend. To address this issue, we maintain the
aspect ratio at 64 throughout.

D DERIVATION OF THE LIKELIHOOD

In this section, we provide a derivation of the likelihood estimation in our paper. In this paper, we
use two ways to compute the likelihood. The first method is estimating the VLB (variational lower
bound). Following Kingma et al. (2021); Vahdat et al. (2021), we derive a VLB in latent space.
However, we cannot compute the entropy terms in the VAE. So our surrogate metric differs from the
true VLB up to a constant factor.

VAE The latent diffusion model (Vahdat et al., 2021; Rombach et al., 2022) consists of two com-
ponents: a variational autoencoder (VAE) that encodes images into a latent space and decodes latents
back into images, and a continuous diffusion model that operates in the latent space. To train the
latent diffusion model, we optimize the variational encoder qϕ, the decoder pψ , and the diffusion
model pθ. Following Ho et al. (2020), the models are trained by minimizing the variational upper
bound on the negative log-likelihood logP (x):

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lθ,ϕ,ψ(x) = Eqϕ(z0|x)[− log pψ(x|z0)] +KL(qϕ(z0|x)||pθ(z0))
= Eqϕ(z0|x)[− log pψ(x|z0)] + Eqϕ(z0|x)[log qϕ(z0|x)] + Eqϕ(z0|x)[− log pθ(z0)].

In our implementation, we directly adopt the VAE from Stable Diffusion 1.5 and keep it fixed during
training. As a result, the reconstruction term (first term) and the negative encoder entropy term
(second term) remain constant across different models. In fact, the VAE in Stable Diffusion is
trained following the VQGAN approach, which uses both L1 loss and an additional discriminator
for training. Therefore, we cannot effectively estimate the reconstruction term since the decoder
distribution is not tractable. To simplify further, we omit the VAE encoding process altogether.
Specifically, we skip both encoding and decoding through the VAE and treat the latents produced by
the VAE as the dataset samples. Under this assumption, we estimate the offset VLB directly in the
latent space.

In the latent space, we model the distribution of latent variables that can be decoded into images
using the VAE decoder. We denote the samples in latent space as x, and the noisy latent at timestep
t as zt. The variational lower bound (VLB) in the latent space is given by Kingma et al. (2021):

− log p(x) ≤ −VLB(x) = DKL(q(z1|x)||p(z1)) + Eq(z0|x)[− log p(x|z0)] + LT (x),

where the first two terms depend only on the noise schedule, and we treat these terms as irreducible
losses since the noise schedule is fixed across all models. The third term is the KL divergence
between each pair of the reverse process p(zt|zt+1) and the forward process q(zt|x, zt+1):

LT (x) =
T∑
i=1

Eq(zt(i)|x)[DKL(q||p)].

Since we assume that the forward and reverse processes share the same variance and both p and q
are Gaussian distributions, the KL terms reduce to weighted L2 distances:

LT (x) =
1

2
Eϵ∼N (0,I)

[
T∑
i=1

(SNR(s)− SNR(t))∥x− xθ(zt; t)∥22

]
,

where s = t− 1. In the limit as T → ∞, the loss becomes:

LT (x) = −1

2
Eϵ∼N (0,I)

∫ 1

0

SNR′(t)∥x− xθ(zt; t)∥22 dt.

In our case, we utilize the velocity v to predict the clean sample x and compute the VLB.

Normalizing Flows Another method to compute the likelihood in our diffusion model is by view-
ing the diffusion process as a type of normalizing flow. Specifically, we leverage the theoretical
results from Neural ODEs, which allow us to connect continuous normalizing flows with the evolu-
tion of probability density over time. In Neural ODEs, the transformation of data through the flow
can be described by the following differential equation for the state variable xt as a function of time:

dxt
dt

= fθ(xt, t),

where fθ(xt, t) represents the network that predicts the time-dependent vector field v. To compute
the change in log-probability of the transformed data, the log-likelihood of the input data under the
flow is given by:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

d log p(xt)

dt
= −Tr

(
∂f(xt, t)

∂xt

)
,

where Tr represents the trace of the Jacobian matrix of fθ(xt, t). This equation describes how the
log-density evolves as the data is pushed forward through the flow. To compute the likelihood, we
integrate the following expression over the trajectory from the initial state t0 to the terminal state t1:

log p(xt1) = log p(xt0)−
∫ t1

t0

Tr
(
∂fθ(xt, t)

∂xt

)
dt.

Here, log p(xt0) represents the log-likelihood of the initial state (often modeled as a Gaussian), and
the integral accounts for the change in probability density over time as the data evolves through the
ODE. In our formulation, the network predicts the velocity vθ(xt, t) = x

′

t = α
′

tx0 + β
′

tϵ, which
corresponds to the derivative of xt with respect to time. Thus, we start with clean samples, estimate
the velocity, perform an iterative reverse-time sampling, and convert the samples into Gaussian
noise. We can then compute the prior likelihood of the noise easily and add it to the probability shift
accumulated during reverse sampling. In our experiments, we set the steps of reverse sampling to
500 to obtain a rather accurate estimation.

E SCALING FLOPS COUNTING

In this section, we provide a detailed explanation of our FLOPs scaling calculations. Several prior
works have employed different methods for counting FLOPs. In Kaplan et al. (2020), the authors
exclude embedding matrices, bias terms, and sub-leading terms. Moreover, under their framework,
the model dimension dmodel is much larger than the context length lctx, allowing them to disregard
context-dependent terms. Consequently, the FLOPs count N for their model is given by:

M = 12× dmodel × nlayer × (2dattn + dff), (9)

where dmodel represents the model dimension, nlayer denotes the depth of the model, dattn refers
to the attention dimension, and dff represents the feed-forward layer dimension.

In contrast, Hoffmann et al. (2022) includes all training FLOPs, accounting for embedding matrices,
attention mechanisms, dense blocks, logits, and context-dependent terms. Specifically, their FLOP
computation includes:

• Embedding: 2× lctx ×Nvoc × dmodel

• Attention:
– QKV Mapping: 2× 3× lctx × dmodel × dmodel
– QK: 2× lctx × lctx × dmodel
– Softmax: 3× nhead × lctx × lctx
– Mask: 2× lctx × lctx × dmodel
– Projection: 2× lctx × dmodel × dmodel

• Dense: 2× lctx × (dmodel × dff × 2)

• Logits: 2× lctx × dmodel ×Nvoc

Further details can be found in the Appendix F of Hoffmann et al. (2022).

In Bi et al. (2024), the authors omit the embedding computation but retain the context-dependent
terms, which aligns with our approach. The parameter scaling calculation for vanilla Transformers
in this paper follows the same format as theirs. We now present detailed scaling FLOPs calculations
for the In-Context Transformers and Cross-Attn Transformers used in our experiments.

Attention blocks are the primary components responsible for scaling in Transformer architectures.
In line with previous studies, we only consider the attention blocks, excluding embedding matrices
and sub-leading terms. Unlike large language models (LLMs), our model dimension is comparable
to the context length, and therefore, we include context-dependent terms. In this section, we present

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

FLOPs per sample rather than parameters, as different tokens participate in different parts of the
cross-attention computation. Additionally, since our input length is fixed, the FLOPs per sample are
straightforward to compute.

In-Context Transformers In-Context Transformers process a joint embedding consisting of text,
image, and time tokens, all of which undergo attention computation. Tab. 3 details the FLOPs
calculations for a single attention layer.

Table 3: Scaling FLOPs Calculation in In-Context Transformers

Operation FLOPs per Sample

Self-Attn: QKV Projection 3× 2× nlayer × lctx × dmodel × 3× dattn

Self-Attn: QK 3× 2× nlayer × lctx × lctx × dattn

Self-Attn: Mask 3× 2× nlayer × lctx × lctx × dattn

Self-Attn: Projection 3× 2× nlayer × lctx × dmodel × dattn

Self-Attn: FFN 3× 2× 2× nlayer × lctx × 4× d2model

In our experiments, we set dmodel = dattn, and lctx = 377, where lctx = limg(256) + ltext(120) +
ltime(1). Thus, the simplified FLOPs-per-sample scaling equation M is:

M = 72× lctx × nlayer × d2model + 12× nlayer × l2ctx × dmodel (10)

Cross-Attn Transformers In Cross-Attn Transformers, each attention block consists of self-
attention and cross-attention mechanisms to integrate text information. The cross-attention uses
image embeddings as the query and text embeddings as the key and value. The attention mask re-
flects the cross-modal similarity between image patches and text segments. As a result, the FLOPs
calculation differs from that of models using joint text-image embeddings. Tab. 4 lists the FLOPs
costs for each operation.

Table 4: Scaling FLOPs Calculation in Cross-Attn Transformers

Operation FLOPs per Sample

Self-Attn: QKV Projection 3× 2× nlayer × limg × dmodel × 3× dattn

Self-Attn: QK 3× 2× nlayer × limg × limg × dattn

Self-Attn: Mask 3× 2× nlayer × limg × limg × dattn

Self-Attn: Projection 3× 2× nlayer × limg × dmodel × dattn

Cross-Attn QKV 3× 2×nlayer× (limg +2× ltext)× dmodel×
dattn

Cross-Attn QK 3× 2× nlayer × ltext × limg × dattn

Cross-Attn Mask 3× 2× nlayer × ltext × limg × dattn

Cross-Attn Projection 3× 2× nlayer × limg × dmodel × dattn

FFN 3× 2× 2× nlayer × limg × 4× d2model

Based on the experimental settings, we can simplify the FLOPs calculation as follows:

M = 84× nlayer × limg × d2model + 12× nlayer × l2img × dattn

+12× nlayer × ltext × d2model + 12× nlayer × ltext × limg × dmodel (11)

Context-Dependent Terms From the equations above, it is evident that some context-dependent
terms, such as 12×nlayer× l2ctx×dmodel, cannot be omitted. In our experiments, the aspect ratio of

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Transformers (width/depth=64) is maintained across all model sizes. The context length lctx is 377
(image: 256, text: 120, time: 1), and dmodel = nlayer × 64. Since lctx and dmodel are comparable,
the context-dependent terms must be retained.

F ABLATIONS

F.1 DIFFUSION FORMULATION

In diffusion models, various formulations for noise schedules, timestep schedules, and prediction
objectives have been proposed. These three components are interdependent and require specific
tuning to achieve optimal performance. In this paper, we explore several common formulations and
conduct ablation studies to identify the best combination in our setting.

Below, we list the candidate formulations used in our ablation study.

Noise Schedule

Discrete Diffusion Models

DDPM Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) is a discrete-time
diffusion model that generates noisy samples via the following formula:

xt = αtx0 + βtϵ

where ϵ is Gaussian noise, and αt and βt satisfy α2
t + β2

t = 1. Given a sequence of σt, the scaling
factor can be defined as:

αt =

√√√√ t∏
s=0

(1− σt) (12)

In DDPM, σt follows:

σt = σ0 +
t

T
(σT − σ0) (13)

LDM Latent Diffusion Models (LDM) (Rombach et al., 2022), as used in Stable Diffusion, is
a variant of the DDPM schedule. It is also a variance-preserving formulation, sharing the same
structure as DDPM but employing a different noise schedule:

σt =

(
√
σ0 +

t

T
(
√
σT −

√
σ0)

)2

Continuous Diffusion Models

VP Variance Preserving (VP) diffusion (Song et al., 2021b) is the continuous counterpart of
DDPM, where the noise is added while preserving variance across timesteps. The sampling pro-
cess is given by:

xt = e−
1
2

∫ t
0
σsdsx0 +

√
1− e−

∫ t
0
σsdsϵ

where t ∈ [0, 1].

Rectified Flow Rectified Flow (RF) (Liu et al., 2022; Lipman et al., 2022; Albergo et al., 2023)
is another continuous-time formulation, where a straight-line interpolation is defined between the
initial sample x0 and the Gaussian noise ϵ. The process is described by:

xt = (1− t)x0 + tϵ

Prediction Type

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Noise Prediction (ϵ) The network predicts the Gaussian noise ϵ ∼ N (0, I) added to the samples
during the diffusion process.

Velocity Prediction (v) In this formulation, the network predicts the velocity v(xt, t), which is
defined as the derivative of the noisy sample xt with respect to time. If the noisy sample xt is defined
by:

xt = αtx0 + βtϵ

the velocity is given by:
v(xt, t) = x′

t = α′
tx0 + β′

tϵ

where α′
t and β′

t are the derivatives of αt and βt with respect to timestep t.

Score Prediction (s) The network predicts the score function s(x, t) = ∇ logP (x, t), which is
the gradient of the log-probability density function. The score can be derived as:

s(x, t) = − ϵ

βt

Timestep Sampling Schedule

Uniform Timestep Schedule In this schedule, the timestep t is uniformly sampled. For discrete-
time diffusion models:

t ∼ U(0, 1, 2, . . . , 999)
For continuous-time diffusion models:

t ∼ U(0, 1)

Logit-Normal (LN) Timestep Schedule The Logit-Normal (LN) timestep schedule πln(t;m, s),
proposed in Esser et al. (2024), generates timesteps according to the following distribution:

πln(t;m, s) =
1

s
√
2π

· 1

t(1− t)
exp

(
− (logit(t)−m)2

2s2

)
,

where logit(t) = log
(

t
1−t

)
. The LN schedule has two parameters: m and s. It defines an unimodal

distribution, where m controls the center of the distribution in logit space, shifting the emphasis
of training samples towards noisier or cleaner regions. The parameter s adjusts the spread of the
distribution, determining its width. As suggested in Esser et al. (2024), to obtain a timestep, we first
sample u ∼ N (m, s), and then transform it using the logistic function. For discrete-time diffusion,
after obtaining t ∼ πln(t;m, s), we scale t by t = round(t × 999) to obtain a discrete timestep.
Following Esser et al. (2024), we utilized the parameters m = 0.0, s = 1.00 and didn’t sweep over
m and s. More details and visualizations can be found in Esser et al. (2024) Appendix B.4.

We conducted a series of experiments using different combinations of formulations. Selective com-
binations are listed in Tab. 5. A ’−’ indicates that the combination is either not comparable with
other formulations or that training diverges. We assume that the choice of formulation will not be
significantly affected by specific model designs or datasets. All experiments were conducted using
Pixart (Chen et al., 2023), a popular text-to-image diffusion transformer architecture. Specifically,
we used a small model with 12 layers and a hidden size of 384, setting the patch size to 2. The
models were trained on JourneyDB (Sun et al., 2023), a medium-sized text-to-image dataset con-
sisting of synthetic images collected from Midjourney. All models were trained for 400k steps using
AdamW as the optimizer. As shown in Tab. 5, the optimal combination is [RF, LN, v], achieving
an FID of 36.336 and a Clip Score of 0.26684. This combination achieved the best performance on
both metrics and therefore, we used this setting in the remaining experiments.

F.2 EMA

The Exponential Moving Average (EMA) coefficient is crucial to the loss curve and determining the
final results. In EMA, the loss l is updated as l = (1−αEMA)l+αEMAv, where v represents the latest
loss value. EMA smooths the cumulative loss and reduces fluctuations. However, applying EMA
can lead to an overestimation of the loss during the early stages of training. As illustrated in Fig. 7,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Noise Schedule Timestep Schedule Prediction Type FID CLIP Score
DDPM Uniform ϵ 40.469 0.26123
DDPM Uniform v 74.049 0.23136
DDPM LN ϵ 40.100 0.26283
LDM Uniform ϵ 39.001 0.26423
LDM Uniform v − −
LDM LN ϵ 38.196 0.26624
VP Uniform ϵ 44.343 0.26148
VP Uniform v 41.808 0.26320
VP Uniform s 45.808 0.25970
VP LN ϵ 42.872 0.26354
VP LN v 44.107 0.26380
RF Uniform v 44.840 0.25682
RF Uniform s − −
RF Uniform ϵ − −
RF LN v 36.336 0.26684

Table 5: Ablation on diffusion formulations.

a larger EMA coefficient results in a higher loss compared to the actual value, which may introduce
significant bias in scaling curve fitting and, consequently, lead to inefficient use of computational
resources. From Fig. 7, we observe that αEMA = 0.9 is the optimal choice, as it effectively smooths
the loss curve while only slightly inflating the values during the initial phase of training.

F.3 CLASSIFIER-FREE GUIDANCE & SAMPLING STEPS

We perform ablation studies on CFG scales and the number of steps using the compute-optimal
models trained with a budget of 6e18. In Fig. 8, we evaluate several CFG scales (2.5, 5.0, 7.5,
10.0) and compute FID across different step counts. We found that 25 steps are sufficient to achieve
good results. Next, we fix the number of steps at 25 and evaluate performance across different CFG
scales. As shown in Fig. 9, a CFG of 10.0 yields the best results, and we select this configuration as
the default.

G REBUTTAL

In this section, we add extra experiment results and discussions in response to the reviewers.

G.1 FLUX

Reviewer 2p8z and CvMz raised their concern about whether scaling laws can be observed in mod-
ern DiT architectures. To address the reviewers’ concerns, we test on FLUX. As shown in Fig. 10,
the loss curve clearly shows a linear relation, which shows that the scaling laws exist.

G.2 PIXART

To further address Reviewer 2p8z and CvMz’s concern about whether scaling laws can be observed
in modern DiT architectures. We conduct experiments on Pixart. As shown in Fig. 11, the loss curve
also shows a linear relation, which further supports that the existence of scaling laws doesn’t rely on
model architectures.

G.3 RESOLUTION 512

Reviewer CVDQ, CvMz, and 2p8z are concerned with whether the existence of scaling laws depends
on a specific dataset and whether different resolution matters. We perform several experiments on a

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500 3000 3500

Iterations
0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-6-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000 10000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-6-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 5000 10000 15000 20000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-6-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 5000 10000 15000 20000 25000 30000 35000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-6-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 20000 40000 60000 80000 100000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-6-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 50000 100000 150000 200000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-6-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 100 200 300 400

Iterations

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-12-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 200 400 600 800 1000 1200 1400

Iterations
0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-12-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 500 1000 1500 2000 2500

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-12-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 1000 2000 3000 4000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-12-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000 10000 12000 14000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-12-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 5000 10000 15000 20000 25000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-12-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 50 100 150 200 250 300

Iterations

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-14-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 200 400 600 800

Iterations

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-14-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 250 500 750 1000 1250 1500 1750

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-14-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 500 1000 1500 2000 2500 3000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-14-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-14-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2500 5000 7500 10000 12500 15000 17500

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-14-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 200 400 600 800 1000 1200 1400 1600

Iterations

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-8-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 1000 2000 3000 4000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-8-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-8-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000 10000 12000 14000 16000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-8-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 10000 20000 30000 40000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-8-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 20000 40000 60000 80000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-8-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 50 100 150 200 250

Iterations

1.2

1.4

1.6

1.8

2.0

Lo
ss

In-Context-Depth-15-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 100 200 300 400 500 600 700

Iterations

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

In-Context-Depth-15-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 200 400 600 800 1000 1200 1400

Iterations
0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

In-Context-Depth-15-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 500 1000 1500 2000 2500

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

In-Context-Depth-15-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 1000 2000 3000 4000 5000 6000 7000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

In-Context-Depth-15-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000 10000 12000 14000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

In-Context-Depth-15-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 200 400 600 800 1000

Iterations

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-9-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 500 1000 1500 2000 2500 3000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-9-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 1000 2000 3000 4000 5000 6000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-9-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 2000 4000 6000 8000 10000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-9-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 5000 10000 15000 20000 25000 30000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-9-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 10000 20000 30000 40000 50000 60000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-9-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 100 200 300 400 500 600 700 800

Iterations

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-10-Budget=1.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 500 1000 1500 2000 2500

Iterations
0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-10-Budget=3.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 1000 2000 3000 4000 5000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-10-Budget=6.0e+17

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 1000 2000 3000 4000 5000 6000 7000 8000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-10-Budget=1.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 5000 10000 15000 20000 25000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-10-Budget=3.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

0 10000 20000 30000 40000 50000

Iterations

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

In-Context-Depth-10-Budget=6.0e+18

Original Loss
EMA=0.9
EMA=0.99
EMA=0.999

The effect of EMA

Figure 7: The effect of EMA.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

20 40 60 80 100
Steps

80

100

120

140

160

180

FI
D

FID vs Steps
cfg=2.5
cfg=5.0
cfg=7.5
cfg=10.0

20 40 60 80 100
Steps

0.17

0.18

0.19

0.20

0.21

0.22

0.23

Cl
ip

 S
co

re

Clip Score vs Steps

cfg=2.5
cfg=5.0
cfg=7.5
cfg=10.0

Figure 8: Ablation on sampling steps

1.0 2.0 2.5 5.0 7.5 10.0 15.0 20.0
CFG

100

125

150

175

200

FI
D

FID vs CFG (steps=25)

1.0 2.0 2.5 5.0 7.5 10.0 15.0 20.0
CFG

0.125

0.150

0.175

0.200

0.225

Cl
ip

 S
co

re

Clip Score vs CFG (steps=25)

1.0 2.0 2.5 5.0 7.5 10.0 15.0 20.0
CFG

100

125

150

175

200

FI
D

FID vs CFG (steps=50)

1.0 2.0 2.5 5.0 7.5 10.0 15.0 20.0
CFG

0.125

0.150

0.175

0.200

0.225

Cl
ip

 S
co

re

Clip Score vs CFG (steps=50)

Figure 9: Ablation on cfg scale

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

107 108 109

Parameter Count

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

Lo
ss

Loss vs Parameter Count
Budget=1.0e+17
Budget=3.0e+17
Budget=6.0e+17
Budget=1.0e+18
Budget=3.0e+18
Budget=6.0e+18

1017 1018

Budget

5 × 10 1

6 × 10 1

Lo
ss

Loss vs Budget
Fit: y=3.7308 * x^-0.0468

Figure 10: Scaling laws for FLUX

106 107

Parameter Count

100

8 × 10 1

9 × 10 1

Lo
ss

Loss vs Parameter Count
Budget=1.0e+16
Budget=3.0e+16
Budget=6.0e+16
Budget=1.0e+17
Budget=3.0e+17
Budget=6.0e+17
Budget=1.0e+18

1016 1017 1018

Budget

8 × 10 1

9 × 10 1

Lo
ss

Loss vs Budget
Fit: y=3.7410 * x^-0.0385

Figure 11: Scaling laws for Pixart

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

106 107 108

Parameter Count

100

7 × 10 1

8 × 10 1

9 × 10 1

Lo
ss

Loss vs Parameter Count
Budget=1.0e+17
Budget=3.0e+17
Budget=6.0e+17
Budget=1.0e+18
Budget=3.0e+18
Budget=6.0e+18

1017 1018

Budget

7 × 10 1

8 × 10 1

Lo
ss

Loss vs Budget
Fit: y=5.7882 * x^-0.0496

Figure 12: Scaling laws for 512 Resolution.

dataset with images at 512 resolutions. The curve under each budget can be well fitted by a parabola
and the relation between loss and budgets shows clear linear trends. The results in Fig. 12 indicate
that resolution and data will not affect the existence.

G.4 MASKED DIFFUSION TRANSFORMERS

We add the discussion for missing references pointed out by reviewer ssc5.

Masked Diffusion Transformers (v1, v2) Gao et al. (2023) are the first works to explore mask latent
modeling into diffusion training. It introduces masks into the training to enhance the ability to
understand contextual relations.

G.5 LEARNING RATE SCAN

Reviewer 2p8z expressed concerns about the impact of learning rate. To address this, we tested the
sensitivity of learning rate using the largest models from our experiments. The results, presented in
Fig. 13, show that increasing the learning rate does not lead to improved loss. Our findings indicate
that 1e-4 is generally a robust and effective choice.

G.6 DATA ASSESSMENT

To demonstrate how scaling laws can be used to assess data quality, we applied them to an additional
dataset. This dataset contains the same images as the one used in our main paper but features sparse
tag captions instead of dense descriptions. The scaling curve for FID is shown in Fig. 14, with an
exponent of -0.216. In contrast, the scaling exponent in the main text is -0.234, indicating that the
FID for the dataset in the main text decreases more rapidly, leading to better performance. This
comparison suggests that long and dense captions provide a significant advantage over sparse tag
captions in terms of data quality.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

1.0
e-0

5

3.0
e-0

5

5.0
e-0

5

7.0
e-0

5

8.0
e-0

5

1.0
e-0

4

3.0
e-0

4

5.0
e-0

4

7.0
e-0

4

8.0
e-0

4

1.0
e-0

3

Learning Rate

Step 2000

Step 4000

Step 6000

Step 8000

Step 10000

St
ep

s

0.96 0.89 0.86 0.85 0.84 0.80 0.81 0.80 0.80 0.83 0.83

0.91 0.84 0.82 0.81 0.81 0.77 0.78 0.77 0.77 0.80 0.78

0.89 0.83 0.81 0.80 0.80 0.76 0.77 0.76 0.76 0.79 0.77

0.87 0.81 0.80 0.79 0.78 0.75 0.76 0.75 0.75 0.78 0.76

0.87 0.81 0.79 0.78 0.78 0.75 0.75 0.75 0.75 0.78 0.76

LR Scan for Largest Model

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Lo
ss

Figure 13: Learning rate scan for the largest models.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

1017 1018

Budget (FLOPs)

102

2 × 102

FI
D

FID vs Budget
Original Data
y=1059994.438x^-0.216

Figure 14: Scaling curves for FID on Sparse-captioned dataset.

29

