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A SOCIAL IMPACTS

The tidal wave of applying and deploying deep neural networks is coming. We believe the studies
on the safety of deep neural networks are becoming more and more vital and urgent. In this paper,
we focus on an important case, RaPiD, where the previous methods are not able to provide rather
effective defense, and explore a new defense framework, CeTaD. However, for now, our method
is still not reliable enough and many limitations exist. Besides, the condition is more complex in
practical terms. To avoid heavy losses, we recommend that, in industrial systems, before being
applied, the defense methods should be carefully investigated and evaluated. We also encourage
related researchers in the community to focus on more reliable and practical defense methods in the
future.

B DETAILS OF DATA PREPARATIONS

For reproducibility, we illustrate how to prepare data in the experiments.

All datasets are available from Huggingface: MNIST (https://huggingface.co/
datasets/mnist), CIFAR-10 (https://huggingface.co/datasets/cifar10) and
CIFAR-100 (https://huggingface.co/datasets/cifar100). The library, Datasets

(https://github.com/huggingface/datasets), which includes the methods mentioned
below, is utilized for downloading and splitting data.

N-shot Training Samples. First, we split data by class using filter. Then, for each category, two
methods, shuffle with a given seed and select for getting the first n samples, are applied in turn.
Finally, we mix the selected samples of all classes by concatenate_datasets and shuffle with the seed.

512 Fixed Test Samples. We apply shuffle with the seed and select to get the first 512 samples.

C DETAILS OF MODULE SELECTIONS INSIDE CETAD

Module selections are essential for CeTaD since only limited parameters are tuned. The embedding
and the decoder are vital for feature mapping between the input space and the hidden space. The
encoder is significant for perceiving adversarial information and enhancing robustness since it is the
only trainable module and bears the most computation in CeTaD.

As shown in Figure 2 and illustrated in Section 3, CeTaD is flexible as long as the dimensions of the
modules match with each other. However, pre-trained weights may help.

For example, we take the embedding from the pre-trained VIT, get the transformer blocks from
the pre-trained BERT, VIT or GPT-2, and consider PixelShuffle as the decoder. The mod-
ules we used are briefly introduced as follows: BERT (Devlin et al. (2018)) is a transformer
encoder model pre-trained for masked language modeling (MLM) and Next sentence predic-
tion (NSP) on a large corpus of uncased English data (base: https://huggingface.co/
bert-base-uncased; large: https://huggingface.co/bert-large-uncased);
VIT (Dosovitskiy et al. (2020)) is a transformer encoder model pre-trained for image
classification on ImageNet-21k at resolution 224x224 (base: https://huggingface.
co/google/vit-base-patch16-224-in21k; large: https://huggingface.co/
google/vit-large-patch16-224-in21k); GPT-2 (Radford et al. (2019)) is a transformer
decoder model pre-trained for causal language modeling (CLM) on a large corpus of English data
(124M: https://huggingface.co/gpt2); PixelShuffle (Shi et al. (2016)) rearranges ele-
ments unfolding channels to increase spatial resolution 1.

1In the experiments, upscale_factor is always set to 16. Thus, if the scale of the transformer encoder is large,
which means the hidden feature is of 1024 dimensions and four channels are given after PixelShuffle, we just
ignore the last channel for simplicity.
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D DETAILS OF OPTIMIZATION

Optimization loops are implemented by PyTorch. To optimize limited parameters and freeze the
others, following Lu et al. (2021), we set requires_grad=True for tunable parameters while re-

quires_grad=False for the others. The optimizer is initialized by registering the parameters with
requires_grad=True. Under the default experimental setup, only layer norm parameters (48 parameter
groups, 36864 variables in total) are tuned.

By the way, the implementation of Lion (Chen et al. (2023)), the optimizer which we apply, is
available at https://github.com/lucidrains/lion-pytorch.

E ERROR BARS

Following Nie et al. (2022), we evaluate the accuracy on a fixed subset of 512 images randomly
sampled from whole test data to save computational cost. Besides, because of the number of
experiments and the page limit, following Lu et al. (2021), in the content, we only report the results
with one seed (42—the answer to the ultimate question of life, the universe and everything). In this
section, to show the validity of the results in the content, we additionally repeat two experiments
described in Section 4.2 and Section 4.4 with another two seeds (41 and 43).

In Table 2, Table 10 and Table 11, with a different seed, though the training data and the fixed subset
for evaluation vary, leading to accuracy fluctuation, the relative performances of different methods
remain the same. Specifically, as illustrated in Section 4.2, VIT defenders are better at clean accuracy
while BERT defenders are likely to outperform at adversarial accuracy. Furthermore, the trends of
the corresponding curves in Figure 3, Figure 4 and Figure 5 are similar. It demonstrates that our
experiments are both efficient and effective.
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Table 10: Accuracy performance with seed 41.
Dataset Model Defender CA(%) AA(%)

MNIST VIT
None 99.02 00.59
BERT 97.07 90.82
VIT 99.02 91.60

CIFAR-10

ResNet
None 93.95 00.00
BERT 70.12 43.55
VIT 76.95 28.91

VIT
None 97.85 00.00
BERT 35.94 31.84
VIT 76.37 41.60

CIFAR-100 VIT
None 91.80 00.39
BERT 50.78 38.28
VIT 54.30 31.45

Table 11: Accuracy performance with seed 43.
Dataset Model Defender CA(%) AA(%)

MNIST VIT
None 99.22 00.59
BERT 98.83 93.36
VIT 99.22 87.70

CIFAR-10

ResNet
None 95.51 00.00
BERT 73.05 44.73
VIT 79.30 32.81

VIT
None 98.05 00.00
BERT 69.73 53.52
VIT 80.86 53.13

CIFAR-100 VIT
None 94.14 00.20
BERT 44.14 34.18
VIT 47.07 28.32

Figure 4: Accuracy and loss vs. epoch with seed 41.

Figure 5: Accuracy and loss vs. epoch with seed 43.
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