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Abstract

We derive a novel active learning algorithm in the streaming setting for binary
classification tasks. The algorithm leverages weak labels to minimize the number
of label requests, and trains a model to optimize a surrogate loss on a resulting
set of labeled and weak-labeled points. Our algorithm jointly admits two crucial
properties: theoretical guarantees in the general agnostic setting and a strong
empirical performance. Our theoretical analysis shows that the algorithm attains
favorable generalization and label complexity bounds, while our empirical study
on 18 real-world datasets demonstrate that the algorithm outperforms standard
baselines, including the Margin Algorithm, or Uncertainty Sampling, a high-
performing active learning algorithm favored by practitioners.

1 Introduction

While unlabeled data is generated at increasing rates, supervised learning often requires large portions
of this data to be annotated by human raters, which carry significant costs. Active learning seeks
to significantly alleviate this problem through algorithms that attain comparable performance to
passive learning (i.e., to full supervision) while using considerably fewer labels. Because of the ever
increasing use of labeled data in modern machine learning approaches, this calls for the development
of more and more effective active learning techniques.

In this paper, we are specifically interested in binary classification problems in the so-called streaming
(or online) setting of active learning. In this setting, learning proceeds in a sequence of rounds, where
in each round an unlabeled sample is received, and the learner decides on-the-fly whether or not
to observe the associated binary label. Now, it is common practice, in active learning or machine
learning in general, that even for binary classification problems, the loss used both for training and
for evaluating statistical performance is not the zero-one loss, but some surrogate function thereof.
This results in more tractable (e.g. convex) optimization problems in the training phase, but also
in more calibrated metrics in the evaluation phase. For instance, we may be compelled to output
estimates of class probabilities, say, the success rate of a given set of decisions, and thus deploy a
maximum posterior probability estimator for such probabilities. Then, given a training set with labels
y ∈ {±1} and if p̂(x) is an estimate of the conditional class probability P [y = 1 |x], a standard goal
is to minimize the log-loss 1+y

2 log 1
p̂(x) + 1−y

2 log 1
1−p̂(x) . In these cases, the logistic link function

p̂(x) = 1
1+e−h(x)

is often adopted to model conditional class probabilities where h is some (unknown)
function in a given hypothesis class. In this and many other situations that arise in practice, it is thus
advisable to resort to surrogate loss functions for both training and evaluation.

The online active learning literature contains a number of proposed algorithms that admit theoretical
guarantees for both generalization error and label complexity, that is, the expected number of label
requests. The theoretical analyses found in these works are either tailored to the zero-one loss or to
general surrogate losses, with much more emphasis historically placed on the former. The papers that
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analyze zero-one loss introduce novel ideas tackling important theoretical questions in active learning,
but the theory does not easily extend to general loss functions – see discussion in Henneke and Yang
[2019]. Nevertheless, the algorithmic solutions we propose borrow several ideas from one such
work, namely [Dasgupta et al., 2008]. In the agnostic setting, Dasgupta et al. [2008] developed an
algorithm for the zero-one loss based on the disagreement between functions, that carefully constructs
pseudo-labels, that is, weak labels generated by the algorithm itself. We call this algorithm DHM,
after the name of the three authors.

For general surrogate losses, Beygelzimer et al. [2009] designed an algorithm based on constructing
importance weighted predictors with theoretical guarantees in the agnostic setting. Cortes et al.
[2019a,b, 2020] further developed these importance-weighted algorithms enhancing their guarantees
and used them as building blocks for meta-algorithms. We refer to these algorithms as IWAL
(Importance Weighted Active Learning).

On a different line of work, Henneke and Yang [2019] presents a theoretical analysis of an active
learning algorithm that uses surrogate loss functions for binary classification. Among the theoretically-
oriented contributions in active learning, this work appears to be the closest reference to our paper
when it comes to motivations. Yet, it is fair to say that the authors make the very strong assumption
that the Bayes optimal function for the surrogate loss at hand lies in the hypothesis class used for
learning, and they explicitly state that this realizability condition cannot be relaxed without resorting
to a significantly different approach. Moreover, unlike our work and that of IWAL-based algorithms,
Henneke and Yang [2019] are only focusing on deriving bounds on the zero-one risk. And finally,
their algorithm operates in a pool-based setting of active learning, where the whole set of unlabeled
points is available to the learner, which is more flexible than the streaming setting analyzed here.

In practice, the Margin Algorithm, or Uncertainty Sampling, of Lewis and Gale [1994] attains a
substantial performance improvement compared to passive learning as well as other active learning
algorithms, and is thus often favored by practitioners (e.g. Schohn and Cohn [2000], Tong and
Koller [2001], Brinker [2003], Culotta and McCallum [2005], Joshi et al. [2009], Mussmann and
Liang [2018]). Moreover, the margin algorithm is flexible in that it can be used in both the pool
and streaming setting. In the pool setting, several papers have recently tailored active learning
algorithms to neural networks, always comparing their algorithm’s empirical performance to that of
the margin algorithm [Geifman and El-Yaniv, 2017, Gal et al., 2017, Savarese et al., 2018, Ducoffe
and Precioso, 2018, Ash et al., 2020, Moon et al., 2020, Schroder and Niekler, 2020]. Overall, the
margin algorithm is often found to be a competitive contender to this new collection of practical
active learning algorithms. Additionally, two extensive empirical studies found that the margin
algorithm outperforms many recent active learning algorithms [Yang and Loog, 2016, Chuang et al.,
2019]. On the theoretical side, several authors developed active learning algorithms with theoretical
guarantees for specific classes of functions (e.g., linear separators) based on sampling along the
margin [Dasgupta et al., 2005, Balcan et al., 2007, Balcan and Long, 2013, Awasthi et al., 2014, 2015,
Zhang, 2018, Zhang et al., 2020], but the guarantees of these margin-based algorithms only hold
under strong assumptions on the realizability of the problem. Our goal is thus to derive an algorithm
that admits theoretical guarantees without relying on realizability assumptions and that, at the same
time, attains in practice a performance that is better than that of the margin algorithm in the streaming
setting.

1.1 Contributions

In this paper, we introduce a novel active learning algorithm, called ALPS (Actively Learning over
Pseudo-labels for Surrogate losses), in the streaming setting for binary classification tasks that trains
a model by optimizing a surrogate loss on the joint set of labeled and self-constructed pseudo-labeled
points (Section 3). Crucially, we prove that ALPS admits theoretical guarantees with respect to
the surrogate loss in the general agnostic setting while at the same time surpassing the training
performance of the margin algorithm as well as other baselines.

More concretely, we prove theoretical guarantees for ALPS in terms of both generalization and label
complexity, under assumptions on the interplay between the function class and the data distribution
which are not captured by traditional low noise assumptions often formulated in active learning
(Section 4). We show that ALPS is able to leverage pseudo-labels in a principled manner even
though the loss function of interest is not the zero-one loss, but a surrogate loss thereof. We then
complement our theoretical findings with a thorough experimental investigation on 18 real-world
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datasets using a class of neural networks, Multi-layer Perceptrons. We test our algorithm against the
IWAL algorithm of Beygelzimer et al. [2009] since it admits theoretical guarantees for general loss
functions, and against passive learning since we want to quantify the improvement over supervised
methods. Additionally, we generate as competitors a pool of margin-based uncertainty samplers by
varying their label request threshold, and show that on almost all datasets our algorithm outperforms
the ex-post best among such algorithms (Section 5).

This paper follows the general research agenda of reducing the gap between theory and practice,
which has been widening at a faster rate in the recent active learning literature. As outlined above, we
try to bridge this disconnect by deriving an algorithm that not only works well in practice, but also
admits solid theoretical guarantees. In doing so, we also introduce novel algorithmic ideas, which
could independently lead to new directions of research.

1.2 Main Ideas

The main mechanism behind ALPS is to query the label of the current instance based on the
disagreement between hypotheses and to construct pseudo-labels for the non-queried instances. The
algorithm then trains a model on the joint set of labeled and pseudo-labeled data. The sample used
for training will be unbiased with respect to marginal distribution on the instance space, but label
noise will be introduced whenever the pseudo-label differs from the true (unrevealed) label. This
noise affects both the generalization ability of the algorithm and its label complexity. Controlling this
noise is not only crucial, but also quite challenging, for it relies on assessing the expected reliability
of the pseudo-labels.

In order to control this noise, we introduce the novel idea of using requester functions: ALPS learns
to query labels on instances with unreliable (that is, potentially noisy) pseudo-labels by using a
requester function chosen to minimize an importance-weighted estimate of the noise. For the sake of
our results, the requester functions are assumed to lie in some generic function class. One natural
example of this class is that of margin-based functions, meaning functions that request along the
margin of a given prediction model. In this case, our algorithm is related to the margin algorithm but,
unlike the theoretical guarantees for the margin algorithm (e.g. Balcan et al. [2007]), we do not rely
on specific distributional assumptions on the instance space. The requester functions are reminiscent
of the abstention functions introduced in Cortes et al. [2016], but serve an entirely different purpose
in active learning.

ALPS can be seen as an extension of the DHM algorithm [Dasgupta et al., 2008] to surrogate loss
functions, which seeks to address the open question posed by Dasgupta et al. [2008] of whether there
are active learning algorithms that only require solving tractable optimization problems in agnostic
scenarios. At the same time, these two algorithms differ on how they treat the label noise introduced
by pseudo-labeling. In DHM, the label noise can be easily bypassed by a simple property of the
zero-one loss. In contrast, for general surrogate loss functions, this noise is unavoidable, and if not
controlled as is done in the ALPS algorithm, the learned hypothesis can be arbitrarily far from the
best-in-class.

2 Preliminaries and Notation

We consider an active learning framework in the streaming setting for binary classification. Learning
proceeds in a sequence of rounds. In each round n, the learner receives from the environment an
instance (or feature vector) xn from an instance (or feature) space X. Based on what has been
observed so far, the learner can then decide whether or not to request the true label yn associated with
xn. Label yn is assumed to lie in the output space Y = {±1}. The pairs (x1, y1), (x2, y2), . . . are
drawn i.i.d. from a joint distribution D over X× Y.

In order to evaluate the statistical performance of the learner, we consider any bounded surrogate loss
function ` : R × Y → [0, B] that upper bounds the zero-one loss, and let `B(·, ·) = `(·, ·)/B be a
[0, 1]-normalized version of this loss.

Let H denote a hypothesis class of functions h : X→ R. For simplicity of exposition, we assume
that H is a finite class, but our analysis can be extended to classes with finite VC dimension
by standard covering arguments. The true (expected) risk of hypothesis h ∈ H is defined as
err(h) = E(x,y)∼D[`(h(x), y)] and h∗ = argminh∈H err(h) denotes the best-in-class hypothesis.
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Moreover, we denote by err(h, Z) = 1
n

∑
(x,y)∈Z `(h(x), y) the empirical risk of h over a training

set Z = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
Given round n ≥ 1, we denote by Tn the set of labeled data points {(xs, ys)} from rounds s ∈
[n] := {1, . . . , n} where the label was requested by the learning algorithm, and denote by Sn its
complement, that is, the set of labeled data points {(xs, ys)} from rounds s ∈ [n] where the label was
not requested. Unlike Tn, the set Sn is not fully known to the learner. On those rounds, the learner
replaces the true unobserved label ys by pseudo-label ŷs, which is a suitable proxy to ys generated
by the learner itself. We denote by Ŝn the set containing data points {(xs, ŷs)} from rounds s ∈ [n]
where the label is not requested, and the true label gets replaced by the corresponding pseudo-label.

For notational convenience (and unless otherwise specified), we set ŷs = ys in rounds s where the
true label is known to the learner. Then the following two short-hands are used for empirical risk up
to round n using ground-truth labels and the empirical risk up to round n using pseudo-labels:

err
n

(h) = err(h, Sn ∪ Tn) =
1

n

n∑
s=1

`(h(xs), ys) ; êrr
n

(h) = err(h, Ŝn ∪ Tn) =
1

n

n∑
s=1

`(h(xs), ŷs) .

In the sequel, we will also need the following definition of consistency of hypothesis h ∈ H .

Definition 1. We say that h ∈ H is consistent with a labeled data point (x, y) ∈ X×Y if sgn(h(x)) =
y and, by extension, that h is consistent with a set of labeled data points Z if it is consistent with all
data points in Z. Two hypotheses h, h′ ∈ H are consistent with one another on a set of (unlabeled)
points if sgn(h(x)) = sgn(h′(x)) for all x in that set of points.

At each round n, the learner is compelled to output a hypothesis hn ∈ H , and we seek to bound its
true risk, err(hn), in terms of the true risk, err(h∗), of the best-in-class hypothesis h∗, as a function of
the total number of streamed points n thus far. In addition, we want a bound on the label complexity
of the learner, that is, the number of labels requested by the learner during the course of training.
This bound should be provably smaller than n, which is the label complexity of a passive learner
observing all labels. Further ancillary definitions will be introduced in later sections.

3 The ALPS Algorithm

At a high level, ALPS either requests the label of an instance vector xn or assigns it a pseudo-label
at each round n. The algorithm then selects a model hn that is consistent on the pseudo-labeled
points, Ŝn, and that minimizes the empirical estimate of the risk, êrrn(h), which is defined in terms
of pseudo-labeled and labeled points, Ŝn ∪ Tn, processed thus far. See pseudo-code in Algorithm 1.

More concretely, the learned hypothesis at round n is hn = LEARN(Ŝn, Ŝn ∪ Tn) where:

Definition 2. For sets of labeled data points S and Z, LEARN(S,Z) returns a hypothesis in H that
minimizes the empirical risk êrr(h, Z) on the second argument Z, and is consistent with all labeled
data points in the first argument S, where consistency is defined in Definition 1. LEARN raises a flag
if no such hypothesis is found.

In the LEARN procedure, we only need to consider hypotheses consistent with pseudo-labeled
points, Ŝn, because we can show that with high probability, the sign of the best-in-class, h∗ =
argminh∈H err(h), matches the sign of the pseudo-labeled points.

In order to decide whether to query the label of xn, ALPS leverages the disagreements between
hypotheses, h+1, h−1 ∈ H returned by the LEARN procedure, where the label of the current instance
xn is assumed to be either +1 for learning hypothesis h+1 and -1 for learning hypothesis h−1. Ideally,
the algorithm would use the empirical difference errn(h+1) − errn(h−1) based on ground-truth
labels to assess this disagreement, but because not all labels at time n have been disclosed to
the algorithm, it instead uses the pseudo-labeled version êrrn(h+1)− êrrn(h−1), which is indeed
observable. The algorithm compares this difference to a slack term, ∆̃n, derived from our theoretical
analysis. See Appendix A for all slack term definitions. If the loss difference is smaller than the

1The sign of the pseudo-label ŷ is determined by the condition êrrn−1(h−ŷ)− êrrn−1(hŷ) > ∆̃n−1 and
whether h−ŷ exist for ŷ ∈ ±1. E.g., ŷ = +1 if êrrn−1(h−1)− êrrn−1(h+1) > ∆̃n−1 or if h−1 does not exist.
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Algorithm 1: Actively Learning over Pseudo-labels for Surrogate losses (ALPS)

Input: LEARN(S,Z), Hypothesis class H , requester class R, and slack terms ∆̃n,∆
′
n.

Ŝ0 = ∅;T0 = ∅; F1 = H ×R;
for n = 1, 2, . . . , N do

Receive feature vector xn;
For ŷ = ±1, let hŷ = LEARN(Ŝn−1 ∪ {(xn, ŷ)}, Ŝn−1 ∪ {(xn, ŷ)} ∪ Tn−1);
Define version space Fn and bias pn:

Fn = {(h, r) ∈ Fn−1 : min
(h′,r′)∈Fn−1

ln−1(h′, r′) ≥ ln−1(h, r)−∆′n−1}

pn = max
(h,r),(h′,r′)∈Fn

max
y∈Y

`B(y, h(xn))I{r(xn) ≤ 0} − `B(y, h′(xn))I{r′(xn) ≤ 0}

Qn ∼ Bernoulli(pn);
if êrrn−1(h−ŷ)− êrrn−1(hŷ) > ∆̃n−1(or if no such h−ŷ is found) for some ŷ ∈ {±1} AND
Qn = 0 then
rn = argminr∈Rn E[I{r(x) > 0}], where

Rn = {r : (h, r) ∈ Fn and h consistent with Ŝn−1 ∪ {(xn, ŷ)}}

if rn(xn) > 0 then
Request yn and update Ŝn = Ŝn−1, Tn = Tn−1 ∪ {(xn, yn)};

else
Do not request yn and use1pseudo-label ŷ to update Ŝn = Ŝn−1 ∪ {(xn, ŷ)}, Tn = Tn−1;

end if
else

Request yn and update Ŝn = Ŝn−1, Tn = Tn−1 ∪ {(xn, yn)};
end if
hn = LEARN(Ŝn, Ŝn ∪ Tn);

end for
Output hN = LEARN(ŜN , ŜN ∪ TN );

slack, then the label is requested because the sign of best-in-class h∗ cannot be inferred. Otherwise,
a pseudo-label is constructed. In more detail, the sign of the pseudo-label ŷ is determined by the
condition êrrn−1(h−ŷ)− êrrn−1(hŷ) > ∆̃n−1 and whether h−ŷ exist for ŷ ∈ ±1. Note that by this
construction, the LEARN procedure can always return a consistent hypothesis on all pseudo-labeled
points.

To understand the next steps in the ALPS algorithm, we relate the ground-truth empirical difference
errn(h)− errn(h′) to its the pseudo-labeled counterpart êrrn(h)− êrrn(h′). To this effect, we define
the difference of difference of losses An(h, h′) between two hypotheses h, h′ ∈ H at time n as

An(h, h′) := err
n

(h)− err
n

(h′)−
(

êrr
n

(h)− êrr
n

(h′)
)
.

This idea is also adopted by Dasgupta et al. [2008] in their analysis of the DHM algorithm. Yet,
because they only deal with zero-one loss, in their case An(h, h′) = 0 for consistent h, h′ even when
the true label does not match the pseudo-label. This easily follows from the fact that if sgn(h) and
sgn(h′) agree on instance x, then2 I{sgn(h(x)) 6= y} − I{sgn(h′(x)) 6= y} = I{sgn(h(x)) 6= ŷ} −
I{sgn(h′(x)) 6= ŷ}, irregardless of whether y = ŷ or not.

In the surrogate loss setting analyzed here, whenever the pseudo-labels do not match their correspond-
ing true labels, the term An(h, h′) is typically non-zero even for consistent h, h′. As a consequence,
the magnitude of An(h, h′) must be carefully controlled since, otherwise, it would break both gener-
alization and label complexity bounds as well as the guarantee that the best-in-class h∗ is consistent
with Ŝn. In the sequel, we call An the noise term, as it captures the noise introduced during training
due to the discrepancy between pseudo-labels and true labels.

2Throughout, I{·} is the indicator function of its argument.
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To control the noise term, we introduce the idea of using requester functions. Specifically, we consider
a set R of functions r : X → R, where r(x) > 0 means that the label of x is requested by r, and
otherwise it is not requested. At each round n, the algorithm picks a requester function rn out of
the set R, and the algorithm’s final condition of whether or not to request the label is decided by the
sign of rn(xn). The requester function rn thus works as the final gatekeeper of whether to use the
pseudo-label.

Notice that by definition the noise term An is non-zero when the true labels do not match the pseudo-
labels, ys 6= ŷs for some s ∈ [n]. By construction, since the final condition of whether to use a
pseudo-label in round s is determined by rs, it follows that I{ys 6= ŷs} = I{ys 6= ŷs}I{rs(xs) ≤ 0}.
In addition, for any h consistent with Ŝs, it holds that ŷs = sgn(h(xs)), and since the surrogate loss
` upper bounds the zero-one loss, we have that for any h consistent with Ŝs,

I{ys 6= ŷs}I{rs(xs) ≤ 0} ≤ `(h(xs), ys)I{rs(xs) ≤ 0} = B`B(h(xs), ys)I{rs(xs) ≤ 0} . (1)

The above can thus be used as an upper bound of the noise.

To estimate this upper bound of An, the algorithm constructs an unbiased importance-weighted
estimate, ln(h, r), of E[`B(h(x), y)I{r(x) ≤ 0}] as follows:

ln(h, r) =
1

n

n∑
s=1

Qs
ps(xs)

`B(h(xs), ys)I{r(xs) ≤ 0} ,

where Qs is a Bernoulli random variable with bias ps(xs) and where ps(·) is a (random) function
only depending on the past history {(xs′ , ys′), Qs′}s−1s′=1. The algorithm will request the label ys
whenever Qs = 1 to construct this unbiased estimate. In order not to request the label (Qs = 1) too
frequently, ps(·) is based on a shrinking version space Fn that contains only the pairs (h, r) whose
empirical estimate ln(h, r) is close to the smallest one.

Given these estimates of E[`B(h(x), y)I{r(x) ≤ 0}], the algorithm chooses a requester function rn
with the smallest request rate E[I{r(x) > 0}] from a set of requester functions in the version space
Fn. In this way, the algorithm ensures that the noise term An is kept small. This is due to the fact
that the version space Fn contains pairs of function (h, r) that are provably close to those minimizing
E[`B(h(x), y)I{r(x) ≤ 0}], combined with the fact that `B(h(xn), yn)I{rn(xn) ≤ 0} is an upper
bound on the noise at round n via (1).

Putting the above together, ALPS will request the label of xn whenever one of the following three
conditions hold: 1) the loss differences of h+ and h− is smaller than the slack term, in which case
the revealed label is used as we cannot infer the sign of h∗ and cannot construct a pseudo-label 2)
Qn = 1, in which case the revealed label is used for the empirical estimates ln(h, r), 3) rn(xn) > 0,
in which case the revealed label is used to control the noise term, An, introduced by pseudo-labeling.
In all cases, the revealed labels are used in LEARN to find the best model at each round n.

Notice that, for the sake of argument, we have assumed in the above description to have access
to a large unlabeled pool of examples x so as to construct a convenient set of requester functions,
that is, to estimate E[I{r(x) > 0}] accurately. Yet, our algorithm and its associated analysis can
be generalized straightforwardly to the case when such a pool is available only in a streaming way.
Moreover, in our experiments in Section 5, we do not use an unlabeled pool to generate requester
functions or to estimate the requesting rate. Instead, we define the set of requester functions to be
margin-based functions with varying thresholds, and then estimate the requesting rate based on the
data processed thus far. See Section 5 for details.

4 Theoretical Guarantees

We now present generalization and label complexity guarantees of our algorithm. These bounds will
be in terms of the best-in-class hypothesis, h∗, whose risk err(h∗) will be denoted by ν. For these
guarantees, we consider a class R of requester functions that satisfies the following:
Assumption 1. There exists r∗ ∈ R and a constant C ≥ 0 such that E[`(y, h∗(x))I{r∗(x) ≤ 0}] =
0 and E[I{r∗(x) > 0}] ≤ Cν.

If given access to a large unlabeled pool of data, we can always construct a function r such that
E[`(y, h(x))I{r(x) ≤ 0}] = 0 for any h, since r can always be augmented in such a way to request
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more frequently (that is, making r(x) > 0 for most x). Moreover below, we will further relax the
first constraint to E[`(y, h(x))I{r(x) ≤ 0}] ≤ ε for some ε ≥ 0. However, unless more information
about the structure of the problem is known, proving that there exists a function r∗ in the set R
such that E[I{r∗(x) > 0}] ≤ Cν holds with a favorable (i.e., reasonably small) value of C is more
difficult. Nevertheless, unfavorable C values, just like unfavorable disagreement coefficients, only
impact the label complexity bound and not the generalization guarantee. After the theorems below,
we present several natural examples of favorable C values.

Note that Assumumption 1 does not dictate conditions on the true conditional class probability,
η(x) = P[y = 1 |x]. Hence, we are not relying on low-noise assumptions often adopted in active
learning in realizable scenarios. Specifically, our assumption cannot be viewed as a surrogate loss
counterpart to the Tsybakov [Mammen and Tsybakov, 1999, Tsybakov, 2004] low noise condition
in the realizable setting [Castro and Nowak, 2008, Hanneke, 2011, Koltchinskii, 2010, Dekel et al.,
2012] nor as an incarnation of the Bernstein condition, often invoked in statistical learning settings
to achieve fast rates in both passive and active learning [Massart and Nedelec, 2006, Bartlett et al.,
2006, Koltchinskii, 2006, Van Erven et al., 2015, Henneke and Yang, 2019].

In general, the richer the R class is, the easier Assumption 1 is satisfied with a small C. At the
same time, since ALPS is learning over H and R simultaneously, the complexity of R affects both
generalization bound and label complexity, as per usual in learning guarantees. Below, we first
present the generalization bound of the ALPS algorithm. Here and in Theorem 2, the Õ notation is
hiding logarithmic factors in n, 1/δ, and |H ×R|.
Theorem 1. Under Assumption 1, for any δ > 0, with probability at least 1− δ, for any n > 0,

err(hn) ≤ ν + Õ
(√

ν
n + 1

n

)
,

where hn is the hypothesis computed by ALPS in round n.

This guarantee states that the risk of the hypothesis returned by the algorithm converges to the
best-in-class hypothesis at a rate that matches that of standard supervised learning, despite the fact
that ALPS uses less labeled points. The analysis used to derive this theorem proves that the noise
introduced by the pseudo-labels is, in fact, controlled by the learned requester function so that the
above bound can be attained. In passing, we observe that if the loss ` is convex and the Bayes optimal
hypothesis is in the class H , then by using standard consistency techniques [Zhang, 2004, Bartlett
et al., 2006] in conjunction with Theorem 1 above, we could also attain a bound on the excess risk of
the zero-one loss.

The next theorem shows a bound on the expected number of labels the algorithm requests. This bound
will be in terms of a notion of disagreement coefficient derived from the one in [Hanneke, 2007].
Define a metric ρ on the space of hypotheses H as ρ(h, h′) := E(x,y)∼D

[
|`(h(x), y)− `(h(x), y)|

]
.

Using this metric, we consider the γ-ball around the best-in-class: Bγ(h∗) = {h : ρ(h, h∗) ≤ γ} .
Then, let θ := supγ>0 {Px[∃h ∈ Bγ(h∗) : sgn(h(x)) 6= sgn(h∗(x))]/γ} be the disagreement coef-
ficient of H (for the given distribution D over X× Y).
Theorem 2. Under Assumption 1, for any δ > 0, with probability 1− δ, the label complexity of the
ALPS algorithm at time n > 0 is bounded as Õ (nν(θ + C)) .

Disregarding constants θ and C, the above bound is Õ(nν). This label complexity guarantee of
ALPS in conjunction with its generalization bound matches the known lower bound Ω(nν) from
Beygelzimer et al. [2009] up to constants and is therefore optimal.

In Assumption 1, we considered the case when E[`(y, h∗(x))I{r∗(x) ≤ 0}] = 0 which is easy to
satisfy if we have a rich enough class R with functions that request more frequently. Nevertheless,
we can relax this assumption if desired as follows:
Assumption 2. There exists r∗ ∈ R and constants C ≥ 0 and ε ≥ 0 such that
E[`(y, h∗(x))I{r∗(x) ≤ 0}] ≤ ε and E[I{r∗(x) > 0}] ≤ Cν.

Under this assumption, the label complexity guarantee in Theorem 2 remains unchanged while an ε
term is added to the generalization bound in Theorem 1 when ALPS is run with slack ∆̃n−1 + ε. By
definition, ε is at most ν and if ε� ν, then this term has basically no effect on generalization.

There are several natural instances where the condition stated in Assumption 1 and Assumption 2 are
satisfied with favorable C values. Consider for example a scenario where along the margin of the
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Hypothesis

Figure 1: Left: In yellow is a margin requesting region {x ∈ X : |h∗(x)| < γ∗}, where the
hypothesis h∗, depicted by the black line, admits a conditional error of, say, 1/2. Middle: A tapered
sigmoid function that equals 1 or 0 outside the [−γ∗, γ∗] interval. Right: An example of a requesting
region (in yellow) that is not margin-based and where Assumption 2 holds with C < 1.

best-in-class hypothesis, there are hard-to-classify examples, while further away the best-in-class
hypothesis mostly classifies the examples correctly. See Figure 1 for an illustration where there is such
a margin γ∗ around the best-in-class h∗. This example is often used to explain why the popular margin
algorithm works since this algorithm queries the label of points close to the classification surface. In
our case, letting r∗(x) = γ∗ − |h∗(x)|, it holds that E[`(y, h∗(x))I{|h∗(x)| ≥ γ∗}] ≤ ε for a small
ε and E[I{|h∗(x)| < γ∗}] = ν

E[`(y,h∗(x)) | |h∗(x)|<γ∗] . If the expected loss of h∗ conditioned on the
margin region is high, say ≥ 1/2, then it follows that E[I{r∗(x) > 0}] = E[I{|h∗(x)| < γ∗}] ≤ 2ν,
so that Assumption 2 is satisfied with C = 2. Specifically, in Figure 1, it holds that C = 2 and
ε = 2/50.

When h∗ performs well outside the margin, then Assumption 2 holds with a small ε while if it
correctly classifies all points outside the margin, then ε = 0 and Assumption 1 holds. The ε = 0 case
is easily satisfied by generalized linear models, P[y = 1|x] = σ(h∗(x)), where σ is a tapered sigmoid
function. Note that Assumption 1 is not placing specific restrictions on the marginal distribution over
X, other than E[I{|h∗(x)| < γ∗}] = 2ν. This does not imply conditions on η(x) when x falls in the
region |h∗(x)| < γ∗ and hence we are not relying on realizability assumptions.

With any given class of hypotheses H , one can always associate the margin-based requester function
class R = {r : r(x) = γ − |h(x)| , γ ≥ 0, h ∈ H}. In this case, ALPS can be seen as trying to
simultaneously approximate h∗ and the best threshold γ∗. The resulting algorithm turns out to be
related to margin-based approaches since ALPS will seek to query the label of these more difficult
points along the margin, but ALPS finds this optimal pair by using a different approach.

At the same time, we would like to stress that, in our framework, the function class R need not be
restricted to margin-based requesters: if there exists a small region, {x ∈ X : r∗(x) > 0}, for some
function r∗ : X→ R such that most of the loss incurred by the best-in-class h∗ is coming from this
region, and R is rich enough to contain such function r∗, then Assumption 1 and Assumption 2 hold.
For an illustration of this situation, see Figure 1 on the right.

4.1 Comparisons to IWAL and DHM

The IWAL algorithm of Beygelzimer et al. [2009] constructs importance weighted estimates of the
expected loss and uses them to select the prediction function. In contrast, ALPS leverages importance
weighted estimators to select requester functions that minimize the noise term. Thus, even though
both algorithms construct importance weighted estimators, they serve entirely different purposes.
Both IWAL and ALPS attain generalization and label complexity bounds that are effectively of the
same order, but our empirical results show that IWAL considerably underperforms compared to other
active learning algorithm on all 18 datasets we tested. These empirical results are consistent with
other authors’ findings (e.g., Figure 2 in Cortes et al. [2019b] and Figure 3 in Cortes et al. [2020]).

Even though ALPS can be seen as a generalization of DHM [Dasgupta et al., 2008] to surrogate loss
functions, there are several key differences. The noise introduced by the pseudo-labels does not affect
DHM since by definitionAn(h, h′) = 0 for the zero-one loss. Thus, DHM does not resort to requester
functions or other techniques to deal with unreliable pseudo-labels. Moreover, unlike in DHM, the
second argument in the LEARN(·, ·) subroutine over which ALPS minimizes error is Ŝn ∪ Tn, not
just Tn. For the zero-one loss, minimizing the error over Ŝn ∪ Tn or only Tn is equivalent since
hypothesis consistent on Ŝn admit zero loss over the points in Ŝn. Note that ALPS’s pseudo-code
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Figure 2: The plots on the left show the performance of ALPS, IWAL, the ex-post best margin
algorithm, and passive learning with 4-layer networks for cifar and with 3-layer networks for
ijcnn. For the 4-layer networks for cifar, the plot on the right shows the margin algorithms with
thresholds in Γm ordered from smallest to largest threshold in Γm where Margin-1 corresponds to the
smallest threshold value in Γm, Margin-2 to the second smallest, etc. As a function of the number of
observed points (or rounds) n, the plots show the mean over the 50 repetitions and twice its standard
error of the number of requested labels as well as the accuracy and logistic loss on the test set of the
model returned by each algorithm.

reduces to DHM’s when ` is the zero-one loss and R is set to include only the never-requesting
function, that is, r(x) = 0 for all x, in which case the importance-weighted estimates ln(h, r) are
not constructed. We then attain the same guarantees as DHM’s without resorting to Assumption 1 or
Assumption 2.

5 Empirical Results

In this section, we present our experimental results in the streaming active learning setting that test
the ALPS algorithm, the IWAL algorithm, the margin algorithm (or uncertainty sampling), and a
passive learning algorithm, which requests the label of all points and finds the hypothesis that attains
the smallest empirical loss. We compare to IWAL since it is a principled algorithm in the general
agnostic scenario with strong theoretical guarantees. We test the margin algorithm since even though
its theoretical guarantees do not hold in general, it admits a strong performance in practice. We run a
passive learning algorithm to demonstrate the benefit of ALPS over standard supervised learning.

We tested these algorithms on 18 publicly available datasets where we used the logistic loss as the
surrogate loss ` and used feedforward artificial neural networks as our model class. Specifically, we
used the Multi-layer Perceptron algorithm in the scikit-learn library and ran two diverse network
architectures, one with 3-layers and another with 4-layers. For each type of neural network, we
constructed a diverse finite set of hypotheses by pre-training on small random subsets while varying
the l2 regularization parameter and initial weights. For each experiment, we randomly shuffled the
dataset, generated the finite hypothesis set, and ran all the algorithms. We repeated the experiment 50
times and averaged the results. See Appendix D for details on the datasets and model class settings.

Recall that the margin algorithm in the streaming setting first selects the hypothesis h ∈ H with the
smallest empirical loss and then requests the label of a point x if |Ph[y = +1|x]−Ph[y = −1|x]| ≤ γ,
where Ph[y = ±1|x] is the model h’s (estimated) conditional probability of labeling the given point
x either +1 or −1. We ran nine instances of the margin algorithm for all thresholds γ ∈ Γm where
the set of thresholds Γm was chosen as a result of a tuning procedure that consisted of a standard grid
search and zooming in. For ALPS, the requester class R is also defined by margin-based functions
as r(x) = I{|Ph[y = +1|x]− Ph[y = −1|x]| ≤ γ} for each hypothesis h ∈ H and each γ ∈ Γr.
Note that we run ALPS with ε = 0 for this class R. Unlike Γm, the set Γr was not tuned since ALPS
learns the best threshold in Γr. For details on Γm and Γr, please see Appendix D.

To evaluate the algorithm performance, both accuracy and logistic loss are of interest in different
applications as explained in the introduction. Thus, Figure 2 shows the accuracy and logistic loss on
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the test set of the model returned by each algorithm at each round n. Figure 2 also plots the number
of points labeled by each algorithm as a function of the number of unlabeled points (or rounds) n.

Notice, in particular, that for the passive learning algorithm, since the data is streamed in a random
order the value of the curves at time step n can be interpreted as running the algorithm up until we
gather n queries on randomly drawn points. So, for instance, at round n = 200 of the passive curve
(orange line) for the ijcnn dataset, we effectively randomly sample and reveal the label of 200 points
out of the training set, choose a model that corresponds to an empirical risk minimizer over these 200
points, and evaluate this model’s accuracy on the test set. The passive learning curve is then used as a
baseline comparator of the active learning algorithms. That is, the best performing active learning
algorithm is the one that attains an accuracy and logistic loss curve that is on par or better than that of
passive learning while requesting the fewest number of labels.

Figure 2 on the right shows that the accuracy and logistic loss curves of the margin algorithm
varies with the threshold. In almost all datasets, there exists thresholds whose corresponding margin
algorithm admits an accuracy curve that is below that of passive learning and as the threshold
increases, the accuracy curve improves eventually matching that of passive learning. This indicates
that a good set of threshold values was tested, since we seek an algorithm that requests the fewest
number of points (i.e. having a small threshold) with an accuracy curve on par to that of passive
learning. We then pick the ex-post best margin algorithm with smallest threshold that admits an
learning curve area with respect to accuracy that is within one standard error of the passive learning
curve area. If no algorithm admits such a curve, we pick the margin algorithm with the largest
learning curve area. Choosing the ex-post best margin algorithm in this way and tuning of Γm gives
the margin algorithm an unfair advantage, since both of these processes use the learning curves based
on the revealed labels. Nevertheless, it provides an upper bound on the best performance of these
uncertainty samplers.

The left-most plots of Figure 2 show that, for both cifar and ijcnn datasets, the ALPS algorithm
performs better than all baseline methods since out of the algorithms that attain the accuracy and
logistic loss curve close to that of passive learning, it requests the fewest number of points. In
Appendix D, we report these figures for all 18 datasets.

Overall for the 3-layer networks, our results show that the ALPS algorithm outperforms the ex-post
best margin algorithm on all but one dataset. Similarly, for the 4-layer networks, ALPS performs better
than the margin algorithm on all but two dataset. Thus, despite the advantage given by the ex-post
tuning of the margin algorithm, ALPS attains a better performance. Moreover, ALPS outperforms
both passive learning and IWAL on all datasets. On average across all datasets, ALPS requests only a
mere 28% of the processed points. Since ALPS was run with ε = 0, these experiments suggest that
Assumption 1 holding with favorable C values often happens in practice or that Assumption 1 is
simply an artifact of our analysis.

Additionally, the ex-post best margin algorithm outperforms IWAL on the majority of the datasets,
which is consistent with previous studies [Cortes et al., 2020]. IWAL attains a higher variance across
the trials for some datasets, and overall it performs better than passive learning. In general, the
same empirical conclusions about the relative performance of the active learning algorithms hold
for logistic loss and accuracy curves for all algorithms except for the margin algorithm. On a few
datasets, the margin algorithm attains a logistic loss curve that is worse than that of passive learning
while admitting an accuracy curve that is on par to that of passive learning (e.g., ijcnn).

6 Conclusion

We designed an active learning algorithm, called ALPS, for general loss functions that learns to
leverage pseudo-labels by using requester functions in order to train a model over a joint set of pseudo-
label and labeled points. ALPS operates in the general agnostic setting; its model is guaranteed to
converge to the best-in-class prediction model at the same rate as passive learning, while achieving
favorable label complexity guarantees under a mild assumption on the class of requester functions.
Our comprehensive empirical study on 18 datasets shows that ALPS outperforms relevant baselines,
including the margin algorithm often used in practice. As a next step, we will investigate how to
extend our algorithm and its associated analysis to multi-class classification setting.
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A Proofs of the Generalization Bound

In this appendix, we prove the generalization guarantees of the hypothesis returned by the ALPS
algorithm. We first derive necessary concentration inequalities, then prove consistency guarantees,
and show how to control the noise An. Throughout, we will be making use of some technical lemmas
in Appendix C. For simplicity, we define a disagreement-based request at time n to be when h−, h+
exist and êrrn−1(h−ŷ)− êrrn−1(hŷ) ≤ ∆̃n−1 for ŷ ∈ {±1}.

A.1 Concentration Inequalities

In this section, we provide a series of concentration inequalities used throughout. We consider finite
classes, but our analysis can straightforwardly be generalized to VC classes via standard covering
arguments. We will need the following definition:

Λn(|H|) = 2
√
B

√
4 log (n(n+ 1)|H|/δ)

n

(
1

2
+

√
1 +

1

2
log

(
1

2

√
n

4 log (n(n+ 1)|H|/δ)

))
,

whereH is a hypothesis space of cardinality |H|.
Lemma 1. Consider a hypothesis spaceH of cardinality |H| and a loss function g : R×Y→ [0, B].
Let Zn be an i.i.d sample of size n from the underlying distribution and let EZn [g] be the empirical
mean of g over the set Zn. Then, for any δ > 0, with probability at least 1− δ, it holds for all n and
all h ∈ H:

−min

(
Λn(|H|)

√
E[g],Λn(|H|)2 + Λn(|H|)

√
E
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[g]

)
≤ E
Zn

[g]− E[g]
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Λn(|H|)

√
E
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[g],Λn(|H|)2 + Λn(|H|)
√
E[g]

)
.

Proof. The lemma follows from a direct application of Corollary 14 of [Cortes et al., 2013]. Note
that the second moments fulfill E[g2] ≤ B E[g] as the loss g is assumed to be bounded and non-
negative. For finite classH, the shattering coefficient of set Zn, denoted by Sq(Zn), is bounded by
Sq(Zn) ≤ n|H|. Replacing δ by δ/n(n+ 1) while taking a union bound over all n, the following
inequalities hold for all n and all h ∈ H, for any δ > 0, with probability at least 1− δ:

E[g] ≤ E
Zn

[g] + Λn(|H|)
√
E[g],

E
Zn

[g] ≤ E[g] + Λn(|H|)
√

E
Zn

[g].

The bound follows follows directly by applying Lemma 7 (Appendix C) to inequalities above.

Next, we derive a guarantee based on the loss differences, which will dictate the form of the final
generalization guarantee of the ALPS algorithm. To do so, we define the following functions:

g+h,h′(x, y) =
(
`(h(x), y)− `(h′(x), y)

)
I{`(h(x), y)) > `(h′(x), y)},

g−h,h′(x, y) =
(
`(h′(x), y)− `(h(x), y)

)
I{`(h(x), y)) < `(h′(x), y)}.

so that the difference of g+h,h′ and g−h,h′ equals to the loss difference of h and h′, both empirically and
in expectation:

E
Z

[g+h,h′ ]− E
Z

[g−h,h′ ] = err(h, Z)− err(h′, Z),

E[g+h,h′ ]− E[g−h,h′ ] = err(h)− err(h′).

Both g+ and g− can be seen as bounded loss functions of a hypothesis (h, h′) ∈ H2 and as such
we can apply Lemma 1 to the the spaceH = H2 of cardinality |H|2, where we recall that H is the
hypothesis class used in the algorithm.

For below, we let Ãn(h, h′) = 1
n

∑n
s=1 |`(h(xs), ys)−`(h′(xs), ys)−(`(h(xs), ŷs)−`(h′(xs), ŷs))|,

which is equivalent to the definition of An(h, h′) except for absolute values and will be dealt with in
a similar way.
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Corollary 1. For any δ > 0, with probability at least 1− δ, for any h, h′ ∈ H and any n,

êrr
n

(h)− êrr
n

(h′) ≤ err(h)− err(h′)−An(h, h′) + Λn(|H|2)2 + 2Λn(|H|2)

√
Ãn(h, h′) + êrr

n
(h) + êrr

n
(h′).

Proof. First, we recall the definitions of An(h, h′):

An(h, h′) = err
n

(h)− err
n

(h′)− [êrr
n

(h)− êrr
n

(h′)] .

LettingZ be the full data set Sn∪Tn with true, unknown labels, it follows that EZ [g+h,h′ ]−EZ [g−h,h′ ] =

err(h, Sn ∪ Tn)− err(h′, Sn ∪ Tn) = errn(h)− errn(h′). Using this fact and rewriting An, it holds
that

êrr
n

(h)− êrr
n

(h′) = E
Z

[g+h,h′ ]− E
Z

[g−h,h′ ]−An(h, h′) .

Applying Lemma 1 to g+h,h′ and g−h,h′ , for h, h′ ∈ H ,
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Next, we can bound the expectations under the square roots :

E
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n

n∑
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= Ãn(h, h′) + êrr
n

(h) + êrr
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(h′) .

Inserting this above and using the fact that E[g+h,h′ ] − E[g−h,h′ ] = err(h) − err(h′) finishes the
proof.

Notice that the above bound has the noise term An and its close cousin Ãn. In the next section,
we show how by using requesters functions, this noise term can be bounded, thereby resulting in a
favorable generalization guarantee. For simplicity, throughout the rest of the paper, we will abbreviate
Λn(|H|2) by Λn.

A.2 Consistency and Controlling the Noise An.

We start by some necessarity definitions of slack terms used by the algorithm. The slack term used
for trimming the version space Fn is given by

∆′n :=
2

n

(√√√√ n∑
s=1

ps + 6

√
ln

(
(3 + n)n2

δ

))
× ln

(
8n2|F1|2 ln(n)

δ

)
and the slack term used in make the disagreement based requests is given by:

∆̃n := φn + Λ2
n + 2Λn

√
φn + êrr

n
(h+) + êrr

n
(h−) ,

where φn is defined as follows:

φn :=
8B2

n

n∑
s=1

∆′s−1 +
2B

n
ln

(
|F1|2n(n+ 1)

δ

)
+

2
√
B

n

√√√√ n∑
s=1

∆′s−1

√
ln

(
|F1|2n(n+ 1)

δ

)
.
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In the following lemma, we show a bound on the noise An (and Ãn) in terms of φn. As we will see,
the requester function rn are the key component in the proof of this lemma. In fact, the main role
of the requester functions is to control the noise term An so that it bounded by φn. Notice that this
directly implies that ∆̃n is a upper bound on the right-hand side of the generalization guarantee of
Corollary 1, excluding err(h) − err(h′), that can be empirically computed. At each round n, this
empirically known generalization upper bound is leveraged by our algorithm to decide whether to
request the label (i.e. disagreement based request) or infer the sign of h∗(xn) with high probability
and use a pseudo-label that matches this sign. The lemma below will be used both in the subsequent
consistency theorem and later also in the label complexity analysis.

Lemma 2. Assume that for any s ∈ [n], it holds that (h∗, r∗) ∈ Fs, h∗ is consistent on Ŝs−1 and if
a disagreement based request is not made for ys, then h∗ is consistent on Ŝs−1 ∪ (xs, ŷs). Then, for
any δ > 0, with probability at least 1− δ,

|An(h, h′)| ≤ φn and Ãn(h, h′) ≤ φn
for any h, h′ ∈ H .

Proof. We start by deriving an intermediate bound on An(h, h′) for any h, h′ ∈ H . First, we re-write
the noise term as:

|An(h, h′)| =
∣∣∣ 1
n

n∑
s=1

`(h(xs), ys)− `(h′(xs), ys)− (`(h(xs), ŷs)− `(h′(xs), ŷs))
∣∣∣ . (2)

Each component in the sum of Equation (2) is non-zero only when ys 6= ŷs. Note that ys 6= ŷs
whenever the algorithm does not request, rs(xs) ≤ 0, and whenever ys 6= sgn(h(xs)) for any h
consistent on Ŝs.

Consider the pair (h′s, rs) ∈ Fs where h′s is consistent on Ŝs−1 ∪ (xs, ŷs). There always exists such
a pair by the assumptions that (h∗, r∗) ∈ Fs and h∗ is consistent on Ŝs−1 ∪ (xs, ŷs). Using the fact
that sgn(h′s(xs)) = ŷs holds with probability 1− δ, it then follows with probability 1− δ that

(2) =
∣∣∣ 1
n

n∑
s=1

(`(h(xs), ys)− `(h′(xs), ys)− (`(h(xs), ŷs)− `(h′(xs), ŷs)))

I{ys 6= ŷs}I{rs(xs) ≤ 0}
∣∣∣

≤
∣∣∣ 1
n

n∑
s=1

4BI{ys 6= sgn(h′s(xs))}I{rs(xs) ≤ 0}
∣∣∣, (3)

where we bounded the loss differences by 4B.

Next, we bound the expectation of the above random variable on the right-hand-side of (3) by using
Lemma 6, which holds uniformly for all (h, r) ∈ Fs. Since (h′s, rs) ∈ Fs, Lemma 6 states that for
any δ > 0, with probability at least 1− δ,

E[`(y, h′s(x))I{rs(x) ≤ 0}] ≤ min
(h,r)∈Fs

E[`(y, h(x))I{r(x) ≤ 0}] + 2B∆′s−1. (4)

Using this fact and bounding the expectation of the right-hand-side of (3) by the surrogate loss `, it
follows that

E[I{y 6= sgn(h′s(x)}I{rs(x) < 0}] ≤ E[`(y, h′s(x))I{rs(x) < 0}]
≤ min

(h,r)∈Fs
E[`(y, h(x))I{r(x) ≤ 0}] + 2B∆′s−1

= 2B∆′s−1
where the last equality holds by Assumption 1.

The statement of the theorem onAn follows by using this inequality in conjunction with Inequality (3)
and applying Lemma 3 of [Kakade and Tewari, 2009] to the martingale difference sequence

Is = I{ys 6= sgn(h′s(xs)}I{rs(xs) < 0} − E [I{ys 6= sgn(h′s(xs)}I{rs(xs) < 0}|Is−1] ,

where Is = {(x1, y1, Q1), . . . , (xs, ys, Qs)} is the history up to time s. The above analysis can be
similarly applied to Ãn to conclude the proof.
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Theorem 3. For any δ > 0, with probability at least 1− δ, it holds that for all n > 0:

(1) (h∗, r∗) ∈ Fn;

(2) h∗ is consistent on Ŝn−1;

(3) if a disagreement based request is not made for yn, h∗ is consistent on Ŝn−1 ∪ (xn, ŷn). In
particular, h∗ is consistent on Ŝn.

Proof. We proceed by strong induction over n. For the base case, consider n = 1. Here a
disagreement-based request will always be made, so h∗ being consistent with S0 = ∅ is clear.
Also since F1 = H ×R, it follows that (h∗, r∗) ∈ F1. Assume now that the theorem holds for time
steps 1, . . . , n.

To prove (1), by Lemma 5, it holds that for (h′, r′) = argmin(h,r)∈Fn ln(h, r),

ln(h∗, r∗)− ln(h′, r′) ≤ E[`B(h∗(x), y)I{r∗(x) ≤ 0}]− E[`B(h′(x), y)I{r′(x) ≤ 0}] + ∆′n
≤ ∆′n.

The last inequality above follows since

E[`B(y, h∗(x))I{r∗(x) ≤ 0}] = min
(h,r)∈H×R

E[`B(y, h(x))I{r(x) ≤ 0}]

≤ E[`B(y, h′(x))I{r′(x) ≤ 0}] .
Thus, (h∗, r∗) ∈ Fn+1 by definition.

To prove (2) and (3), we need only consider the case where the algorithm is not querying due to
disagreement, so without loss of generality, we assume that upon seeing xn+1, we have

êrr
n

(h+)− êrr
n

(h−) > ∆̃n .

Our goal is then to show that sgnh∗(xn+1) = −1. For the sake of contradiction, assume the opposite.
Then êrrn(h∗) ≥ êrrn(h+). Using the above two conditions, it follows that

êrr
n

(h∗)− êrr
n

(h−) = êrr
n

(h∗)− êrr
n

(h+) + (êrr
n

(h+)− êrr
n

(h−))

> êrr
n

(h∗)− êrr
n

(h+) + ∆̃n ≥ ∆̃n

= φn + Λ2
n + 2Λn

√
φn + êrr

n
(h∗) + êrr

n
(h−) .

At the same time, from our Corollary 1 and Lemma 2 which holds with probability at least 1− δ and
by the inductive assumption, we have

err(h∗)− err(h−) ≥ êrr
n

(h∗)− êrr
n

(h−)− φn − Λ2
n

− 2Λn
√
φn + êrr

n
(h∗) + êrr

n
(h−) .

Combined these two bounds would imply err(h∗) > err(h−), which is a contradiction.

A.3 Final Generalization Bound

Given the above results, we are ready to prove the final generalization bound of the ALPS algorithm.
Theorem 1. Under Assumption 1, for any δ > 0, with probability at least 1− δ, for any n > 0,

err(hn) ≤ ν + Õ
(√

ν
n + 1

n

)
,

where hn is the hypothesis computed by ALPS in round n.

Proof. From Corollary 1, with probability at least 1− δ,

err(hn) ≤ ν + |An(hn, h
∗)|+ Λ2

n + 2Λn

√
Ãn(hn, h∗) + êrr

n
(hn) + êrr

n
(h∗).
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Focusing on the terms under the square root, since êrrn(hn) ≤ êrrn(h∗) by definition, we need to
bound êrrn(h∗). Since the main difference between êrrn(h∗) and errn(h∗) depends on how often the
pseudo-labels differ from the true labels, it follows that êrrn(h∗) ≤ errn(h∗) + B

n

∑n
t=1 I{yt 6= ŷt}.

By Theorem 3, h∗ is consistent on the pseudo-labels, that is with probability 1− δ, sgn(h∗(xt)) =
sgn(ŷt) for any pseudo-label ŷt for t ∈ [n]. Using this fact and since zero-one loss is bounded
by the loss function `, it holds that Bn

∑n
t=1 I{yt 6= ŷt} ≤ B errn(h∗). Putting the above together,

êrrn(h∗) ≤ (1 +B) errn(h∗) ≤ (1 +B)(ν + Λn + Λn
√
ν), where the last inequality follows from

using Lemma 1, which holds with probability 1− δ. Thus,

err(hn) ≤ ν + |An(hn, h
∗)|+ 2Λn

√
Ãn(hn, h∗) + Õ(Λ2

n + Λn
√
ν) .

By using Theorem 3 and Lemma 2, we bound the An and Ãn term as follows with probability at
least 1− δ,

err(hn) ≤ ν + φn + 2Λn
√
φn + Õ(Λ2

n + Λn
√
ν) .

Recalling that φn = 8B2

n

∑n
s=1 ∆′s−1 + 2B

n ln
(
|F1|2n(n+1)

δ

)
+

2
√
B
n

√∑n
s=1 ∆′s−1

√
ln
(
|F1|2n(n+1)

δ

)
and by the same reasoning as in Theorem 5 and by

Assumption 1, it holds, with probability at least 1− δ, that
∑s
s′=1 ∆′s′−1 = Õ(log s). The statement

then follows from Λn = Õ(1/
√
n), while absorbing constants factors of δ from the union bounds

into log factors.

B Proofs of the Label Complexity

In this appendix, we first bound the amount of labels requested due to disagreement-based requests
and then bound the queries used for learning the requester functions.

B.1 Bounding the disagreement-based requests

Lemma 3. For any δ > 0, with probability at least 1− δ, letting h∗(xn+1) = ŷ, the probability of
requesting yn+1 due to disagreement-based request is bounded as

P[êrr
n

(h−ŷ)− êrr
n

(hŷ) ≤ ∆̃n] ≤ P
[
err(h−ŷ) = O

(
ν + Λ2

n

)]
.

Proof. We use several facts that hold concurrently with probability at least 1 − δ: The original
generalization bound for a single hypothesis, Lemma 2, and Theorem 3.

Without loss of generality, we assume h∗(xn+1) = −1 and that the label is requested. The hypothesis
in the lemma statement is then h−ŷ = h+. We have

êrr
n

(h+)− êrr
n

(h−) ≤ φn + Λ2
n + 2Λn

√
φn + êrr

n
(h+) + êrr

n
(h−) .

We lower bound the left-hand-side by êrrn(h+)− êrrn(h∗) = errn(h+)−errn(h∗)−An(h+, h
∗) ≥

errn(h+)− errn(h∗)− φn by Lemma 2 and Theorem 3. Then, we upper bound the right-hand-side
by using êrrn(h+) ≤ (1 + B) errn(h+) and êrrn(h−) ≤ (1 + B) errn(h∗) by a similar reasoning
as in Theorem 1. Thus,

err
n

(h+) ≤ err
n

(h∗) + 2φn + Λ2
n + 2Λn

√
φn + (1 +B)(err

n
(h+) + err

n
(h∗)) .

Using
√
a+ b ≤

√
a+
√
b for positive a, b and Lemma 7 (therein with A = errn(h+)), we then have

err
n

(h+) ≤ err
n

(h∗) + 2φn + 4(2 +B)Λ2
n + 2Λn

√
φn + (1 +B) err

n
(h∗)

+ 2Λn

√
(1 +B)(err

n
(h∗) + 2φn + Λ2

n + 2Λn
√
φn + (1 +B) err

n
(h∗)) .
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We now use Lemma 1 on the true unknown empirical errors: errn(h+) ≥ err(h+)− Λn
√

err(h+)
and errn(h∗) ≤ ν + Λ2

n + Λn
√
ν. We further repeatedly use the reduction Λ2

n

√
ν ≤ ν + Λ2

n.

err(h+)− Λn
√

err(h+) = O

(
ν + Λ2

n + φn + Λn
√
ν + Λn

√
φn + Λn

√
φn

)
.

Putting the above together along with the definition of φn and using Lemma 7 once more finishes the
proof.

Definition 3. We define two metrics. The first on the space of hypotheses as
ρ(h, h′) := E

(x,y)∼D

[
|`(h(x), y)− `(h(x), y)|

]
.

The second metric is defined on the space H ×R:
ρ′((h, r), (h′, r′)) = E[|`B(h(x), y)I{r(x) ≤ 0} − `B(h′(x), y)I{r′(x) ≤ 0}|].

Using each metric, we define the γ-ball around the best-in-class as
Bγ(h∗) = {h ∈ H : ρ(h, h∗) ≤ γ} and B′γ(h∗, r∗) = {(h, r) ∈ H ×R : ρ′((h, r), (h∗, r∗)) ≤ γ} .

With these metrics in place, we introduce the following disagreement coefficients. These can be
thought of as two different generalizations of the binary disagreement used for the zero-one loss,
each tailored to one of the two notions of consistency or disagreement used in the analysis.
Definition 4. Let the disagreement coefficient θ with respect to H be

θ := sup
γ>0

{
Px[∃h ∈ Br(h∗) : sgn(h(x)) 6= sgn(h∗(x))]

γ

}
.

Let the disagreement coefficient θ′ with respect to H ×R be

θ′ = inf
θ′′

{
∀γ ≥ 0,

E
x

[
sup

(h,r)∈Bγ(h∗,r∗)
sup
y
|`(h(x), y)I{r(x) ≤ 0} − `(h∗(x), y)I{r∗(x) ≤ 0}|

]
≤ θ′′γ

}
,

Lemma 4. With probability 1− δ it holds for every n, that letting h∗(xn+1) = ŷ, we have
P[err(h−ŷ) ≤ η] ≤ θ(ν + η)

for any η > 0.

Proof. Consider the high probability event that h∗ is consistent with Ŝn, which holds due to Theo-
rem 3, and consider the case where a request is made. From the definition of ρ,

ρ(h−ŷ, h
∗) ≤ ν + err(h−ŷ) .

By this inequality, we get
P[err(h−ŷ) ≤ η] ≤ P[ρ(h−ŷ, h

∗) ≤ ν + η]

≤ P[∃h ∈ Bν+η(h∗) : sgn(h(x)) 6= sgn(h∗(x))]

≤ θ (ν + η) ,

where the second inequality uses that h−ŷ and h∗ disagree on xn+1 by construction and the final
inequality uses the disagreement coefficient of Definition 4.

Theorem 4. For any δ > 0, with probability at least 1− δ, for all n > 0, the expected number of
queried labels due to disagreement-based request is bounded by

E

[
n∑
s=1

P[ êrr
s−1

(h−ŷ)− êrr
s−1

(hŷ) ≤ ∆̃s−1]

]
= O

(
θνn+ θ log2 n

)
,

where the expectation is with respect to the draws of all (xs, ys).

Proof. By combining Lemmas 3 and Lemma 4, with probability at least 1− δ for all n,

P[ êrr
n−1

(h−ŷ)− êrr
n−1

(hŷ) > ∆̃n−1] = O
(
θ(ν + Λ2

n)
)
.

Summing these terms yields the above rates as Λ2
n = O(ln(n)/n).
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B.2 Bounding the component related to learning requester functions

To learn the requester functions, we use importance weighted estimates and so we seek a bound on∑n
s=1Qs, where we recall each Qs is coin flip with probability ps.

Theorem 5. For all δ > 0, for all n ≥ 0, with probably at least 1− δ, it holds that

n∑
s=1

Qs ≤8θ′
(
E[`(y, h∗(x))I{r∗(x) ≤ 0}]n+O(B

√
E[`(y, h∗(x))I{r∗(x) ≤ 0}]n log(n|F1|/δ))

)
+O(B log3(n|F1|/δ)) .

Proof. First, we prove a bound on E[ps]. By definition of ρ′, it holds that ρ′((h, r), (h∗, r∗)) ≤
E[`B(y, h(x))I{r(x) ≤ 0}] + E[`B(y, h∗(x))I{r∗(x) ≤ 0}]. For any pair (h, r) ∈ Fs,
E[`B(y, h(x))I{r(x) ≤ 0}] ≤ E[`B(y, h∗(x))I{r∗(x) ≤ 0}] + 2∆′s−1 by Lemma 6. Hence,
Fs ⊆ Bγ(h∗, r∗) where γ = 2E[`B(y, h∗(x))I{r∗(x) ≤ 0}] + 2∆′s−1. Then by definition of
disagreement coefficient:

E[ps] ≤ E[ max
(h,r),(h′,r′)∈Fs

max
y

`B(y, h(xs))I{r(xs) ≤ 0} − `B(y, h′(xs))I{r′(xs) ≤ 0}]

≤ 2E[ max
(h,r)∈Fs

max
y

`B(y, h(xs))I{r(xs) ≤ 0} − `B(y, h∗(xs))I{r∗(xs) ≤ 0}]

≤ 2E[ max
(h,r)∈Bγ(h∗,r∗)

max
y

`B(y, h(xs))I{r(xs) ≤ 0} − `B(y, h∗(xs))I{r∗(xs) ≤ 0}]

≤ 2θ′γ .

Converting from `B to the surrogate loss ` and using the definition of γ, we find that E[ps] ≤
4θ′(E[`(y, h∗(x))I{r∗(x) ≤ 0}] +B∆′s−1).

Using the above and by straightforward modifications of Lemma 6 in [Cortes et al., 2019b] and
Theorem 1 in [Cortes et al., 2019b] concludes the proof.

B.3 Final Label Complexity

Putting the above together, we attain the final label complexity guarantee.

Theorem 2. Under Assumption 1, for any δ > 0, with probability 1− δ, the label complexity of the
ALPS algorithm at time n > 0 is bounded as Õ (nν(θ + C)) .

Proof. The label complexity component is the addition of Theorem 5, Theorem 4 and the term
E[I{rn(x) > 0}]. Since (h∗, r∗) ∈ Fn for all n with high probability by Theorem 3, then it must
be the case that r∗ ∈ Rn. This in turn implies that E[I{rn(x) > 0}] ≤ E[I{r∗(x) > 0}] since
rn = argminr∈Rn E[I{r(x) > 0}].

C Some technical lemmas

We first present two technical lemma for the importance weighted estimates ln−1(h, r) of
E[`B(y, h(x))I{r(x) ≤ 0}] in term of the slack term ∆′n.

Lemma 5. For any δ > 0, with probability at least 1− 2δ, for all n ≥ 3, for all (h, r), (h′, r′) ∈ Fn,

|ln(h, r)− ln(h′, r′)− E[`B(y, h(x))I{r(x) ≤ 0}] + E[`B(y, h′(x))I{r′(x) ≤ 0}]| ≤ ∆′n .

Proof. For s ∈ [n], consider the random variables:

Zs =
Qs
ps

(`B(ys, h(xs))I{r(xs) ≤ 0} − `B(ys, h
′(xs))I{r′(xs) ≤ 0})

− E[`B(y, h(x))I{r(x) ≤ 0}] + E[`B(y, h′(x))I{r′(x) ≤ 0}] ,

for any (h, r), (h′, r′) ∈ Fn.
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Let In = {(x1, y1, Q1), . . . , (xn, yn, Qn)} be the history up to time n. By applying Lemma 4 in
[Cortes et al., 2019b], for any 0 < δ < 1, and n ≥ 3, with probability at least 1− δ,∣∣∣∣∣

n∑
s=1

Zs

∣∣∣∣∣ ≤max

{
2

√√√√ n∑
s=1

E
xs

[ps|Is−1], 6

√
log
(8 log(n)

δ

)}

×
√

log
(8 log(n)

δ

)
.

Taking a union bound over n ≥ 3 and all (h, r), (h′, r′) ∈ F1, it holds that

|ln(h, r)− ln(h′, r′)− E[`B(y, h(x))I{r(x) ≤ 0}] + E[`B(y, h′(x))I{r′(x) ≤ 0}]|

≤ 1

n
max

{
2

√√√√ n∑
s=1

E
xs

[ps|Is−1], 6

√
log
(8n2|F1|2 log(n)

δ

)}

×
√

log
(8n2|F1|2 log(n)

δ

)
.

Via Proposition 2 in [Cesa-Bianchi and Gentile, 2008], with probability at least 1− δ, for all n ≥ 3,

n∑
s=1

E
xs

[
ps|It−1

]
≤
( n∑
s=1

ps

)
+ 36 log

(
(3 +

∑n
s=1 ps)n

2

δ

)

+ 2

√√√√( n∑
s=1

ps

)
log

(
(3 +

∑n
s=1 ps)n

2)

δ

)

≤
(√√√√ n∑

s=1

ps + 6

√
log

(
(3 + n)n2

δ

))2

.

Combining the above, we attain the desired bound.

Lemma 6. For any δ > 0, with probability 1− δ, for any s > 0 and any (h, r), (h′, r′) ∈ Fs,

E[`(y, h(x))I{r(x) ≤ 0}] ≤ E[`(y, h′(x))I{r′(x) ≤ 0}] + 2B∆′s−1 .

In particular, it holds that

E[`(y, h(x))I{r(x) ≤ 0}] ≤ min
(h,r)∈Fs

E[`(y, h(x))I{r(x) ≤ 0}] + 2B∆′s−1 .

Proof. Take any (h, r), (h′, r′) ∈ Fn, then by using Lemma 5 and since Fn ⊆ Fn−1,

E[`B(y, h(x))I{r(x) ≤ 0}]− E[`B(y, h′(x))I{r′(x) ≤ 0}]
≤ ls−1(h, r)− ls−1(h′, r′) + ∆′s−1
≤ min

(h,r)∈Fs−1

ls−1(h, r) + ∆′s−1 − min
(h,r)∈Fs−1

ls−1(h, r) + ∆′s−1

≤ 2∆′s−1 ,

where we used the fact that ls−1(h, r) ≤ min(h,r)∈Fs−1
ls−1(h, r) + ∆′s−1. By multiplying by B,

the bound of the lemma directly follows.

Next consider a technical lemma used throughout the analysis, which will allow us to exchange terms
in the fast rate bounds by adding 1/n (corresponding to C2).

Lemma 7. For non-negative real numbers A,B,C ≥ 0 we have

A ≤ B + C
√
A ⇒ A ≤ B + C2 + C

√
B .
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Proof. Since it holds that A ≤ B + C
√
A, it follows that

√
A is less than the largest root of the

equation x2 −B − Cx = 0, that is

√
A ≤ C +

√
C2 + 4B

2
.

The second inequality in the lemma follows from squaring this and using
√
y + y′ ≤ √y +

√
y′ for

positive y, y′.

22



Dataset # features # unlabeled examples # test examples Notes
ijcnn 22 49990 91701

satimage 36 4435 2000 ‘red soil’ vs. rest
cod-rna 8 59535 271617
mnist 780 60000 10000 ’odd’ vs. ’even’
cifar 3072 12000 2000 ‘horse’ vs. ‘ship’

acoustic 50 78823 19705 ‘1’ vs. rest
german 24 500 500
pima 8 500 228

gestures 33 5000 4873 ‘rest position’ vs. rest
phishing 68 5000 6055
shuttle 9 43500 14500 ‘rad flow’ vs. rest
skin 3 100,000 145057

australian 14 500 190
breastcancer 10 500 183

guide 4 3089 4000
a9a 123 32561 16281

mushroom 112 5119 3005
splice 60 2000 1175

Table 1: Dataset statistics including number of features, number of unlabeled examples, number of
test examples and notes on the classification task.

D Experimental Supplements

We plot the performance of the ALPS algorithm, the IWAL algorithm, the ex-post best margin
algorithm, and the passive learning algorithm in Figure 3,4, and 5 for 3-layer neural networks and
in Figure 9,10, and 11 for 4-layer neural networks. Overall, ALPS outperforms all baselines on
almost all datasets for both types of networks. In a few cases, we find that the ex-post best margin
outperforms ALPS with respect to the accuracy curve, but not with respect to logistic loss (e.g.,
german). We also find that IWAL does not attain the accuracy or logistic loss of the passive learning
curve on a small subset of the datasets.

For each dataset, first each feature was normalized to have zero mean and unit variance, and then all
examples in the dataset were divided by the maximum l2-norm of the examples. That is, letting D be
the dataset, each data point in the dataset, xi ∈ D, was divided by maxi∈D ||xi||2. Table 1 contains
the main statistics of each dataset. The datasets were taken from the LIBSVM dataset library, the
OpenML dataset library, and MNIST and CIFAR databases Vanschoren et al. [2013], Chang and Lin
[2011], Krizhevsky [2009], LeCun and Cortes [2010]. If available, the train/test split in these libraries
was used. Most of the datasets admit binary labels, but there is a subset of multi-class datasets, which
were turned into binary classification tasks. Specifically, for gestures, satimage, acoustic,
and shuttle, the binary classification task was separating one-versus-rest for a given fixed class
(see table for which class). For mnist, the binary task was separating odd versus even digits and for
cifar, the binary task was separating ‘horse’ and ‘ship’ images.

To generate the hypothesis functions for each type of neural network models, we trained the respective
model on random subsets of the training data while varying hyperparamters. The points used in the
random training subsets were then removed from the unlabeled pool. The Multi-layer Perceptron al-
gorithm in scikit-learn library was used with solver=lbfgs and maximum number of iterations
set to 1,000 Pedregosa et al. [2011] . The number of hidden units in the 3-layer neural network was
(50, 10, 5), while in the 4-layer network it was (10, 10, 10, 10). For each dataset, we generated two
hypothesis set, one for 3-layer networks and one for 4-layer networks, and tested the algorithms on
both hypothesis sets independently to see the effects the model has on the active learning algorithms.
In order to create hypothesis set H , we generated 1,000 hypothesis functions by training the the
Multi-layer Perceptron algorithm on random subsets of between 50 and 500 points while randomly
choosing an l2-norm regularization parameter (alpha) from the set {2i}4i=−4 and randomly initial-
izing with an integer in {1, · · · , 100} the random number generation (random_state) for weights
and bias initialization. For the smaller datasets (australian, german, breastcancer and pima),
the random training subsets used for training were instead taken between 50 and 100 points.
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For the ALPS algorithm, the set of thresholds used was Γr = {0.1, 0.25, 0.5, 0.75, 0.9}. For the
margin algorithm, we defined the threshold set Γm via the following tuning procedure. We started
by running margin algorithms with Γm = Γr, which resulted in algorithms that requested too
few points admitting poor accuracy. Thus, the threshold values were enlarged until good accuracy
learning curves were reached for nine threshold values. The tuned threshold set turned out to be
Γm = {

∑j
i=1 9(1/10)i}9j=1. We found that the neural networks were overly confident in their

predictions resulting in high threshold values. Notice that the above tuning clearly gives an unfair
advantage to the margin algorithms over the other algorithms, but it gives us an upper bound on the
best possible performance in this setting.

The best exp-post margin algorithm is chosen as as follows. For all margin algorithms with thresholds
in Γm and for the passive learning algorithm, we calculated the area under the learning curve of
accuracy versus the number of observed points by using the Trapezoid Rule. The best exp-post
margin algorithm is the one with smallest threshold that admits an learning curve area that is within
one standard error of the passive learning curve area. If no algorithm exists, the best exp-post margin
algorithm is the one with the largest learning curve area.

We report the result of the margin algorithm for all these threshold values in Figure 6,7, and 8 for
3-layer networks and in Figure 12,13, and 14 for 4-layer networks. For the legend, the margin
algorithms are enumerated in order from the smallest to largest threshold in set Γm. That is, Margin-1
corresponds to the smallest threshold, Margin-2 to the second smallest, etc. The generalization ability
of the margin algorithm largely varies with the threshold values. In almost all datasets, there exist
thresholds whose corresponding margin algorithm admits an accuracy curve that is below that of
passive learning and also thresholds that are on par with passive learning, thereby indicating that we
tested a good set of threshold values.

For experiments with larger neural networks, ALPS can be run in the online batch setting of Amin
et al. [2020] where the streaming algorithm’s internal state is frozen until a batch of points is selected.
This would considerably dampen the larger networks’ longer training and inference times.

Note that we do not compare to the region-based algorithms of Cortes et al. [2019b, 2020] since these
algorithms select hypothesis functions outside the class H . Nonetheless, both algorithms in Cortes
et al. [2019b, 2020] are meta-algorithms that use IWAL as a subroutine and one can directly derive
learning guarantees for region-based algorithms that instead use ALPS as a subroutine.
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Figure 3: Comparison of the ALPS algorithm, the IWAL algorithm, the ex-post best margin algorithm
and the passive learning algorithm for 3-layer networks (1/3). The figures shows the mean over the
50 trials and twice its standard error of the number of labeled points, accuracy and logistic loss on the
test set of the model returned by each algorithm as a function of the number of observed points (or
rounds) n.
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Figure 4: Comparison of the ALPS algorithm, the IWAL algorithm, the ex-post best margin algorithm
and the passive learning algorithm for 3-layer networks (2/3). The figures shows the mean over the
50 trials and twice its standard error of the number of labeled points, accuracy and logistic loss on the
test set of the model returned by each algorithm as a function of the number of observed points (or
rounds) n.
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Figure 5: Comparison of the ALPS algorithm, the IWAL algorithm, the ex-post best margin algorithm
and the passive learning algorithm for 3-layer networks (3/3). The figures shows the mean over the
50 trials and twice its standard error of the number of labeled points, accuracy and logistic loss on the
test set of the model returned by each algorithm as a function of the number of observed points (or
rounds) n.

27



Figure 6: Comparison of all nine margin algorithms to passive learning and ALPS for 3-layer
networks (1/3). The margin algorithms are ordered from the smallest to the largest threshold in Γm,
where Margin-1 corresponds to the smallest threshold, Margin-2 to the second smallest, etc. The
figures shows the mean over the 50 trials and twice its standard error of the number of labeled points,
accuracy and logistic loss on the test set of the model returned by each algorithm as a function of the
number of observed points (or rounds) n.
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Figure 7: Comparison of all nine margin algorithms to passive learning and ALPS for 3-layer
networks (2/3). The margin algorithms are ordered from the smallest to the largest threshold in Γm,
where Margin-1 corresponds to the smallest threshold, Margin-2 to the second smallest, etc. The
figures shows the mean over the 50 trials and twice its standard error of the number of labeled points,
accuracy and logistic loss on the test set of the model returned by each algorithm as a function of the
number of observed points (or rounds) n.
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Figure 8: Comparison of all nine margin algorithms to passive learning and ALPS for 3-layer
networks (3/3). The margin algorithms are ordered from the smallest to the largest threshold in Γm,
where Margin-1 corresponds to the smallest threshold, Margin-2 to the second smallest, etc. The
figures shows the mean over the 50 trials and twice its standard error of the number of labeled points,
accuracy and logistic loss on the test set of the model returned by each algorithm as a function of the
number of observed points (or rounds) n.
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Figure 9: Comparison of the ALPS algorithm, the IWAL algorithm, the ex-post best margin algorithm
and the passive learning algorithm for 4-layer networks (1/3). The figures shows the mean over the
50 trials and twice its standard error of the number of labeled points, accuracy and logistic loss on the
test set of the model returned by each algorithm as a function of the number of observed points (or
rounds) n.
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Figure 10: Comparison of the ALPS algorithm, the IWAL algorithm, the ex-post best margin
algorithm and the passive learning algorithm for 4-layer networks (2/3). The figures shows the mean
over the 50 trials and twice its standard error of the number of labeled points, accuracy and logistic
loss on the test set of the model returned by each algorithm as a function of the number of observed
points (or rounds) n.
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Figure 11: Comparison of the ALPS algorithm, the IWAL algorithm, the ex-post best margin
algorithm and the passive learning algorithm for 4-layer networks (3/3). The figures shows the mean
over the 50 trials and twice its standard error of the number of labeled points, accuracy and logistic
loss on the test set of the model returned by each algorithm as a function of the number of observed
points (or rounds) n.
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Figure 12: Comparison of all nine margin algorithms to passive learning and ALPS for 4-layer
networks (1/3). The margin algorithms are ordered from the smallest to the largest threshold in Γm,
where Margin-1 corresponds to the smallest threshold, Margin-2 to the second smallest, etc. The
figures shows the mean over the 50 trials and twice its standard error of the number of labeled points,
accuracy and logistic loss on the test set of the model returned by each algorithm as a function of the
number of observed points (or rounds) n.
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Figure 13: Comparison of all nine margin algorithms to passive learning and ALPS for 4-layer
networks (2/3). The margin algorithms are ordered from the smallest to the largest threshold in Γm,
where Margin-1 corresponds to the smallest threshold, Margin-2 to the second smallest, etc. The
figures shows the mean over the 50 trials and twice its standard error of the number of labeled points,
accuracy and logistic loss on the test set of the model returned by each algorithm as a function of the
number of observed points (or rounds) n.
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Figure 14: Comparison of all nine margin algorithms to passive learning and ALPS for 4-layer
networks (3/3). The margin algorithms are ordered from the smallest to the largest threshold in Γm,
where Margin-1 corresponds to the smallest threshold, Margin-2 to the second smallest, etc. The
figures shows the mean over the 50 trials and twice its standard error of the number of labeled points,
accuracy and logistic loss on the test set of the model returned by each algorithm as a function of the
number of observed points (or rounds) n.
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