Deterministic Diffusion for Sequential Tasks: Rebuttal Additions

A Rectified Flow

We ran the three instructive examples described in the paper in section 4.2 based on the Rectified Flow
algorithm (Liu et al/ instead of Iterative a-(de)blending (Heitz et al] [2023): Experiment 1 (Fig[)),
Experiment 2 (Figl2) and Experiment 3 (Fig. Additional videos of the results are available on the anony-
mous project website. The results show that correct selection of the initial distribution is advantageous
for improved performance, regardless of whether the underlying algorithm is Rectified Flow or Iterative
a-(de)blending. In the videos, it can be seen that the results using Rectified Flow move in straighter lines
compared to Iterative a-(de)blending results, though the resulting distributions seem similar. These results

are based on three reflow operations (N = 3) (see (2022) for details).

(a) N ((-2,-2)",0) (b) N ((1,1)", o) () N ((2,2)",0)

Figure 1: Effects of Rectified Flow source distribution. Source distribution for each example is
described in its caption. The target distribution in all three examples is a bi-modal Gaussian, centered at
(1,1) and (3,3). Source distribution variance is & = 0.11. Red dots are samples from the source, blue dots
are samples from the model after 10 steps of the Rectified Flow process.

(a) Target (b) 10 steps (c) 3 steps (d) 3 + 7 steps

Figure 2: Rectified Flow multi-stage blending. Beginning with a source distribution of N/ ((—27 271 )
(depicted by red dots), Fig. [2bland Fig. [2¢| show results of the Rectified Flow algorithm with 10 and 3 steps
respectively of sampling towards the target bi-modal Gaussian at (1,1) and (3.5,3.5) (shown in blue in
Fig. . Samples from this first model are shown in blue. Fig. shows samples from the first model after
3 steps of Rectified Flow (blue), and additionally shows (in green) samples from a second model, trained to
start the Rectified Flow process from the output of the first model towards the target.


https://arxiv.org/pdf/2209.03003.pdf
https://sites.google.com/view/aspeed-iclr2024
https://sites.google.com/view/aspeed-iclr2024

7 ”

o

.
2

. .

2 - =

- P - i

: i P p*

_p HE -
R s o =

(a) Unconditional source (b) Conditional source dis-
distribution tribution

Figure 3: Effects of conditioning with Rectified Flow. Samples from the source (red) and targeet
(blue) distributions.

B Video prediction

Below are additional ablations on the PHYRE dataset as suggested by the reviewers. Note that we are
running experiments of the same ablation on the BAIR dataset as well; however, due to the time constraints
of the rebuttal period, results will only be available for the final version of the paper.

B.1 Ablation on PHYRE

Fig. [4] is similar to the FVD plot for the PHYRE dataset in the paper (Sec. 5, Fig. 4(b)) with the
addition of experiments where the source distribution is initialized from DDIM instead of the previous frame.
This initialization is similar to the DDIM,, initialization used for the Diffusion Policy experiments. We
experimented with DDIM,, DDIM3 and D DI M, initializations, in each case following up with deblending
steps to complete a total of 5 or 10 steps.

The experiments conducted are as follows:

e 2 DDIM steps (Blue) followed by 8 or 3 deblending steps, bringing the total to 10 or 5 steps respectively.

e 3 DDIM steps (Orange) followed by 7 or 2 deblending steps, bringing the total to 10 or 5 steps
respectively.

e 4 DDIM steps (Pink) followed by 6, bringing the total to 10 steps

On the plot in Fig. |4 each result is represented by its combined total number of steps (5 or 10).

DDIM;s produced better results than DDIMs, for both 10 and 5 total steps. We believe this is due to
the better initial prediction; although DDIM, had the worst results, we believe this is due to not enough
deblending steps. However, the DDIM,, initialization did not improve results on the PHYRE dataset
compared to the previously presented history-based initialization. As we hypothesize in the paper, this
occurs due to the nature of the task: in video prediction frames are predicted one frame at a time, and the
previous frame is a good approximation of the next frame.

C Robotic Control

In the following subsections, we present additional baselines and ablations for the robotic control domains
presented in the paper. We will replace the original figures in the paper with the new ones presented here
for the updated version of the paper.

C.1 Ablation on Push-T

We performed an ablation study on Push-T similar to the one done on the Tool-Hang task, presented in
Fig. 10 of the paper. Results of this new study are in Fig.
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Figure 4: PHYRE FVD (lower is better) with additional results of DDIM, initialization. In blue the
initialization is DDIM> followed by 3 or 8 deblending steps, in orange the initialization is D DI Mjy followed
by 2 or 7 deblending steps, in pink the initialization is D DI M, followed by 6 deblending steps. History-based
initialization outperforms D DI M, initialization, with the correct amount of perturbation noise applied.

As in the Tool-Hang task, we find it beneficial not to add any perturbation to the DDIM, source
distribution, both in terms of reward and MSE. The reward is not sensitive to changing the ratio of DDIM
to deblending steps, unlike the MSE.

C.2 Additional Baselines

In Fig@ we compare our algorithm with DPM-Solver++ (Lu et al. 2022a)) of order 2 and 3 with the
multistep solver and in Figm we add a comparison with a Consistency Model (Song et al.| |2023)) baseline
with 10 sampling steps (we note that 10 sampling steps of the Consistency Model baseline performs slightly
better than 1 sampling step). In all runs we used the DPM-Solver++ parameters suggested in the official
Github repository. We implemented Consistency Models on top of the Diffusion Policy code according to
Algorithm 3 (CT) described in their paper and \Github repository, using L2 loss which we used for all other
runs as well.

In the Tool-Hang task ASPeeD was run with 3 DDIM steps for initialization and 7 deblending steps,
while in the Push-T task ASPeeD was run with 2 DDIM steps for initialization and 8 deblending steps. In
total, all algorithms use 10 steps, except 100 DDPM which uses 100. Our approach is superior to all other
baselines both in reward and MSE.

C.3 Push-T History-Based Initialization Ablation

We added an ablation study using the history-based initialization technique in the Push-T task presented
in Fig. [B] where we duplicated the current observation and added Gaussian perturbation. We compared
history-based initialization with 10 deblending steps and different levels of perturbation: 20%, 30% and 40%
with the DDIM; based initialization, where 2 steps of DDIM are taken followed by 8 deblending steps. The
results show that in this domain DDIM,, initialization is more beneficial than history based initialization
as the rewards are higher and the MSE is lower. We suspect that this is due to the nature of the prediction
task: the output of the network is 16 future states, so initializing from the current state is not a good
approximation of the required sample.

D Extended Related Work

Diffusion models have exploded in popularity in recent years, and have been used in a wide variety of domains
as powerful generative models, most prominently in image generation (Ho et al., 2020; |Dhariwal & Nichol,
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Figure 5: Robot control ablations. Rewards (top) and MSE (bottom) for both our ablation experiments
using a DDIM,, source distribution on the Push-T domain. Fig. different variance of added Gaussian
noise. Fig. [5b} Different numbers of DDIM steps and deblending steps.
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Figure 6: Results for robot control tasks. All algorithms except 100 DDPM take a total of 10 steps.

ASPeeD is superior to DPM-Solver++ algorithm both in terms of reward and in MSE, for both Tool-Hang
and Push-T tasks.
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Figure 7: Results for robot control tasks. Same as Fig. |§| with the addition of a 10-step Consistency
Model baseline. Our approach is superior to all other baselines.
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Figure 8: Robot control history-based initialization ablations. Push-T task reward and MSE compar-
ison with different initialization techniques: history-based initialization with 20%, 30% and 40% perturbation
and 10 deblending steps, and DDI M, initialization with 2 DDIM steps and 8 deblending steps (10 total).
In this task DDIM,, initialization is superior to history-based initialization.



[2021} [Song et al.| |2020; Ramesh et all [2022)). Of particular interest to our work, diffusion models have been
applied to a variety of sequence prediction tasks. In particular, they have been used to varying degrees of
success for video prediction (Hoppe et al.| 2022} [Voleti et al.l 2022} [Yin et all, 2023} [Ho et al. 2022} [Harvey|
let al., |2022; |Qiu et al., 2019; Yang et al. |2022alb), as well as for decision making and prediction of robot
trajectories (Janner et al., 2022 |Chi et al., [2023; |Ajay et all 2023).

One detriment to the usability of diffusion models is inference time, caused by the inherent sequential
nature of the denoising process (Song et al., 2020). Many approaches have attempted to alleviate this issue;
most notably, DDIM (Song et all [2020) generalizes the denoising algorithm of DDPM 2020) to
a non-Markovian diffusion process. Both [Lu et al.| (2022alb); [Zhang & Chen| (2022) take advantage of the
semi-linear property of the diffusion ODE to use more accurate ODE solvers; [Song et al.| (2023)) recognize
the significance of a consistent prediction along a trajectory, while |[Karras et al.| (2022) explore design choices
in diffusion algorithms. All these methods trade sample quality for sampling speed. Salimans & Ho| (2021))
develop a method to distill trained diffusion models and reduce the number of steps required to generate
new samples.

Other work aims to perform denoising diffusion starting with non-Gaussian noise, in some cases even
taking deterministic steps to denoise non-stochastic transformations. Bansal et al.| (2022)) propose Cold
Diffusion, which aims to learn the reverse process of non-Gaussian image transformations such as blurring
or downsampling. Delbracio & Milanfar| (2023) take a similar iterative approach to image restoration.
propose ES-DDPM, which uses samples from a pre-trained model such as a GAN or VAE as
a starting point for the denoising process. Closely related to our work are Iterative a-(de)Blending (IADB,
[Heitz et al.|[2023) and Rectified Flow 2022). Both provide a recipe for blending between two
arbitrary distributions. While able to improve on inference time by initializing the diffusion process from
distributions other than Gaussian noise, the above approaches center almost exclusively on image generation.
In this work we focus on sequence prediction, utilizing the inherent properties and available information in
sequences to obtain better initial approximations for the denoising process. [Lee et al| (2021) considered
an audio domain, and proposed to initialize a non-deterministic diffusion process from a learned Gaussian
source distribution. In our work we consider video prediction and robotic control, and explore non-Gaussian
source distributions, using deterministic diffusion. In parallel, previous studies such as [Denton & Fergus|
have explored prior selection for video prediction; however, Denton & Fergus| (2018]) uses variational
autoencoders (VAEs), while we focus on the more performant diffusion models.
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