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Abstract

Recognizing higher-order interactions within
complex networks is crucial for predicting their
behavior. The identification of communities is
particularly important to discover regions devoted
to critical activities within the network. How-
ever, the computational cost of this task grows
rapidly with the size of the interactions, surpass-
ing the capabilities of current technologies. To
overcome this challenge, we propose leveraging
quantum computing to perform clustering over
the simplices of these networks. We define a
spectral clustering based on the bottom eigenval-
ues of the Hodge Laplacian, which is compact to
represent and efficient to analyze on a quantum
computer even for networks with large simplices.
This guarantees a significant speedup compared
to its classical analogs. Our work unveils a novel
field of application for quantum machine learn-
ing, making quantum algorithms for topological
data analysis directly applicable to the study of
biological, societal, and technological networks.

1. Introduction

Complex networks allow the study of endless tasks and prob-
lems (Albert & Barabasi, 2002; Newman, 2018; Battiston
et al., 2021). Among the most important aspects to consider,
the identification of densely connected communities is cru-
cial as these can be associated with certain activities in the
network. When studying this problem from the perspective
of graph theory, it is denoted as graph clustering (Girvan &
Newman, 2002; Schaeffer, 2007) and formulated as follows:

Problem 1.1 (Graph clustering). Given a graph G = (V, E)
and a natural number k > 2, return a k-partition of the
vertex set 'V,
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Due to the hardness of graph clustering, heuristics have been
proposed. Among the most popular is the spectral cluster-
ing (Von Luxburg, 2007), which uses the eigensystem of
the graph Laplacian Lg. The algorithm works in two steps.
Firstly, we have to define a spectral embedding, which is a
mapping ¥ : V — R from vertices to a low-dimensional
Euclidean space. Each component 1,(v) measures how
much the vertex v aligns with the ¢-bottom eigenvectors
of Ly. Secondly, we apply a Euclidean subspace cluster-
ing method to discover the clusters using, for example, k-
means (MacQueen, 1967), independent component analysis
(Comon, 1994), or SUBCLU (Kailing et al., 2004).

Despite its popularity in recent decades, the graph-based
approach is significantly constrained by its inability to cap-
ture higher-order interactions within the nodes (Battiston
etal., 2020; Hu et al., 2021). These higher-order interactions
embody crucial information for various tasks: in genetics,
such as epistasis detection (Zhou et al., 2022; Hoffmann
et al., 2023), and protein interactions (Palukuri et al., 2023);
in neuroscience (Giusti et al., 2016); in social networks,
including disease spread (Iacopini et al., 2019; St-Onge
et al., 2022), and social interactions (Alvarez-Rodriguez
et al., 2021); as well as technological networks like trans-
portation (flow) networks (Roddenberry & Segarra, 2019;
Barbarossa & Sardellitti, 2020) and trade networks (Fagiolo
etal., 2013).

Thus, we need a more general model than graphs: the ab-
stract simplicial complexes (ASCs). It is described by a
collection X of subsets of V' closed under inclusion, with
>, C X being the set of p-simplices (subsets of p + 1
vertices). These entities have been extensively studied in al-
gebraic topology (Hatcher, 2002) and combinatorics (Duval
& Reiner, 2002), play a crucial role in generalizing graph
clustering to higher-order systems, and lead to the definition
of simplicial clustering:

Problem 1.2 (Simplicial clustering). Given an ASC (V,X)
and two natural numbers k > 2,p > 1, return a k-partition
of the p-simplices set Y3, such that p-simplices are densely
connected within each cluster and loosely connected be-
tween different clusters.

The theory behind simplicial complexes, despite not being
as developed and complete as its graph theoretical coun-
terpart, is well-suited to generalize the tools developed in
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network science. Clustering approaches have been devel-
oped based on different techniques, but most of the interest
has been spent on spectral ones. In fact, we can use the
Hodge Laplacian L, (Lim, 2020) to capture higher-order
relationships, much like L captures pairwise ones. This
allows us to generalize the spectral approach from graphs to
ASCs, as shown by Ebli & Spreemann Grande & Schaub.

From a computational perspective, the operator L, has a

. . . n n 1
dimensionality of up to (,41) % (,41), posing a challenge
in constructing it for large networks and moderately large
interactions.

To overcome this challenge, an intriguing road is to ex-
plore the possibilities of quantum computing. Over the last
decade, several algorithms have been proposed to extract
specific topological information from network data. Exam-
ples include the extraction of Betti numbers (Hatcher, 2002)
using the Lloyd-Garnerone-Zanardi algorithm (Lloyd et al.,
2016) and spectral entropy (De Domenico & Biamonte,
2016) using the approach introduced in Gyurik et al. (2022).
State-of-the-art analyses indicate that these algorithms can
provide high-polynomial speedups (Schmidhuber & Lloyd,
2023) and even super-polynomial speedups in estimating
certain topological properties and for certain families of
networks (Gyurik et al., 2022). These algorithms exploit the
capabilities of quantum computers to express exp(—itLy)
efficiently despite being very large, and the ability of quan-
tum phase estimation algorithm (Manenti & Motta, 2023)
to eigendecompose this operator.

In this paper, we investigate the use of quantum computing
and quantum phase estimation to address the simplicial
clustering problem. Our algorithm is the first to extend the
algorithms typically used for topological data analysis to
complex networks, allowing us to analyze an entirely new
class of networks that have been considered beyond classical
means, the clique-dense ones.

1.1. Contributions

Our first contribution generalizes the simplicial spectral em-
bedding proposed by Ebli & Spreemann to reconcile its
formulation with the commonly used definition for vertex
embedding. This proposal maps a p-simplex onto the pro-
jected subspace of the kernel of L,,. In algebraic topology,
this corresponds to p-dimensional holes, and in Hodge the-
ory, it corresponds to harmonics, effectively capturing the
network’s structure. However, recent literature has con-
firmed that low-energy components also provide topological
information complementary to exact harmonics. This in-
formation becomes paramount when exact harmonics are
absent.

Furthermore, Ebli & Spreemann imposes a constraint on the
maximum number of exact harmonics, typically fewer than

ten, due to its direct use in an Euclidean clustering algorithm.
This algorithm requires a low-dimensional space to function
optimally because the curse of dimensionality can distort
distances between high-dimensional points. However, this
constraint can be limiting for large graphs. To address this
limitation, we employ dimensionality reduction techniques
such as random projections. These techniques leverage
the Johnson-Lindenstrauss lemma (1984), which provides
a controlled approximation of the original space and has
been proven especially effective for Euclidean clustering
approaches such as k-means (Cohen et al., 2015).

This first contribution is valuable per se as it reconciles the
definition of spectral embedding in a simplicial complex
with that from graph theory. To demonstrate this, we pro-
vide artificial and real-world examples comparing these two
definitions. However, its primary purpose is to establish a
solid theoretical foundation for the quantum algorithm.

Our second and primary contribution is the implementa-
tion of a quantum algorithm for estimating an e-additive
approximation of the simplicial spectral embedding. For
non-constant interaction sizes, where p = p(n), and for p-
simplex dense networks with inversely polynomially many
low-energy eigenvectors, our algorithm provides a signif-
icant speedup compared to the best classical algorithm.
Throughout the document, ¢, denotes the density of p-
simplices, ¢, = [%,|/(,%,), & denotes the fraction of
eigenvalues of L, lower than a threshold 7/||Ly |2, J, the
spectral gap of L,, and o} corresponds to the usual big-O
notation excluding possible logarithmic factors.

Proposition 1.3. Given an ASC (V, X)) over n vertices and
two natural numbers k > 2,p > 1, and 7 < 1. It ex-
ists a quantum channel ®yg that uniformly samples bottom
eigenvectors of Ly, /|| Ly ||, with eigenvalue < 7, in time

O((C;l/Qk:n—I—nzT_l)f_l). 2)

P

Proposition 1.3 shows that we can create a quantum oper-
ation ®,, allowing us to access the subset of eigenvectors
needed for spectral clustering efficiently, even for dense
networks. This is evident in Equation 2 where the density
of the network, ¢, is represented inversely (as the denser
the network, the easier it is to sample p-simplices). In con-
trast, a classical approach based on the diagonalization of
L, would have (, appear directly.

Our quantum algorithm takes great advantage in not need-
ing to distinguish zero and close-to-zero eigenvalues, which
would require the knowledge of the spectral gap of L, for
which there is no lower bound known. Furthermore, the
recent theory of random projection with random quantum
unitaries (Kumaran et al., 2024), we can distill the informa-
tion from the (possibly huge) set of low-energy eigenvec-
tors to an arbitrary number of randomly projected vectors
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w1, ..., Wwy; these are the ones used for constructing the
spectral embedding 1) on the quantum computer. The ran-
dom projected vectors are built by the means of a random
unitary, Ugnp, Which is an approximate 2-design and whose
quantum circuit has quadratic depth. By estimating the in-
ner product between any p-simplex o and w;,t =1,...,q,
which can be done via the Hadamard test, we can construct
the spectral embedding (o) on a quantum computer. Then,
k-means (or any other Euclidean clustering algorithm) is
used on a classical device to finish the clustering.

The asymptotic performance comparison between the clas-
sical and quantum procedures is outlined in Table 1 and
further detailed later in Section 4.2.

1.2. Related works

The concept of spectral clustering on simplicial complexes
was first introduced empirically by Ebli & Spreemann
(2019) and later theoretically justified in the work by Chen
& Meila (2021). Grande & Schaub (2023a) examined these
spectral clustering techniques by breaking it down in har-
monics, curl, and gradient eigenmodes separately to high-
light their distinct characteristics. In contrast, some proper-
ties of the graph Laplacian have been directly extended to
higher orders: Krishnagopal & Bianconi (2021) showed how
to detect higher-order connected components in the ASC,
while Saito et al. (2024) defined a higher-order Fiedler’s
vector, allowing to partition the ASC into two loosely con-
nected regions. Grande & Schaub (2023b) focused specifi-
cally on point clouds. Topological clustering has not been
exclusively explored through spectral techniques: Serrano
& Gomez (2020) relied on centrality measures, Reddy et al.
(2023) used higher-order Cheeger inequality, and Schaub
et al. (2020) employed random walks.

Turning to quantum algorithms for topological data analysis,
Lloyd et al. (2016) proposed the first algorithm to estimate
Betti numbers, Hayakawa (2022) modified the approach for
persistent Betti numbers, while Ubaru et al. (2021) enhanced
the original approach with a faster stochastic quadrature for
rank estimation. Berry et al. (2024) further improved overall
complexity with the use of Dicke states, Hamiltonian simu-

Table 1. Stepwise performance comparison of the state-of-the-art
classical approach based on diagonalization of L, and this ap-
proach for constructing a spectral embedding for p-simplices on n
vertices.

Step Classical Quantum
Simplices sampling O (o) o} C;l/zkn)
Eigenvec. sampling O O (G ?pn + nZT’l)fgl)

<(p11)<p>3§

Random projection 10) E((pzl)cp)z

0 (n?)

lation by Quantum Signal Processing, and Kaiser windows
in quantum phase estimation. Gyurik et al. (2022) showed
that the problem of estimating the spectral entropy, a quan-
tity related to the Betti numbers, is DCQ1-complete. They
identified a family of graphs with Laplacian’s spectral gap
inversely polynomial in n, where quantum techniques for
Betti number estimation have a superpolynomial advantage
over classical techniques. Conversely, Apers et al. (2023)
showed that it is efficient to estimate classically the Betti
numbers for Laplacians with a constant spectral gap. Be-
yond Betti number estimation, Leditto et al. (2023) contex-
tualized a possible quantum advantage in topological signal
processing. A quantum walk-based approach for sampling
dense communities was used in the work by Song (2024).

Finally, some quantum algorithms for graph clustering (not
ASCs) have been proposed: Kerenidis & Landman (2021);
Li et al. (2022) focused on speeding up the k-means portion
of the algorithm, later extended to weighted graphs (Liu
et al., 2023). Cade et al. (2023) studied the problem from
the perspective of connectivity patterns (motifs).

1.3. Broader impact

This work focuses on analyzing complex networks using
a quantum computer, and as far as we can discern, we
do not anticipate any potential negative societal impact.
Conversely, it has the potential to positively influence re-
searchers interested in complex networks, such as those in
genetics and neuroscience. Finally, our approach aims to
promote the use of quantum machine learning in real-world
tasks, as the field has garnered significant interest but still
lacks applications (Schuld & Killoran, 2022).

2. Preliminaries

We introduce the background and notation used throughout
the paper. For an introduction to quantum computing, read-
ers can refer to Manenti & Motta (2023) or Appendix A. An
accessible presentation of simplicial models for networks
follows here, while the details of such a framework are pro-
vided in Appendix B. Finally, Appendix C presents a few
necessary concepts related to group theory.

An undirected simple graph G = (V, E)) is a set of vertices
V = {1,...,n} connected via edges £ C (%) with at most
a single edge between a pair of vertices and no self-loops.
Edges are represented as ordered set (7, j) with i < j, al-
lowing us to refer to the first and second vertex of the edge
(this does not correspond to having directed edges).

The graph is described by incidence matrix By € RIVIXIEl

_17 €= (v,w)
e=(w,v) 3)
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encoding the relationships between vertex and edges.
From this, we retrieve the graph Laplacian Ly € RIVI*IV1,

Lo =B;B/. “)
This matrix is positive semidefinite by construction.

The spectrum of L reveals the clustering structure of the
network. ker(Lg) contains the indicator vectors of the con-
nected components in G. Furthermore, the sparsest cut of
the graph (partition of the vertex set minimizing the edges
between the two partitions) is related to the smallest nonzero
eigenvalues of Lj by the Cheeger inequalities (Cheeger,
1970), which offers a controlled approximation of such a
quantity. The strongest theoretical justification is rooted in
the Structure theorem (Peng et al., 2015), stating that for
a well k-partitioned graph, each k-bottom eigenvectors of
L is the approximate linear combination of the indicator
vector of such partitions and vice versa.

An abstract simplicial complex (ASC) A = (V,X) is a
finite, non-empty set of vertices V' = {1,...,n} and a
collection X of subsets of V' closed under inclusion. A p-
simplex is an ordered set 0 € ¥, 0 = (vo, . .., vp). The set
of p-simplices in X is denoted by ¥,,.

The incidence matrix B is generalize to a boundary matrix
Bp c R|Zp71 [x |Ep|’

(=1 T=0\{ve}
B, o = . . 5
[Bylr. {O7 otherwise ©)
The p-Hodge Laplacian is defined as:
L,=B,B,+B,.B,,,. (©6)

The work of (Krishnagopal & Bianconi, 2021) on the spec-
tral detection of communities and (Gundert & Szedlak,
2014) on higher-order Cheeger’s inequalities shows that
L, reveals the clustering structure of the ASC. This is also a
consequence of the deep connection between Hodge theory
and algebraic topology (Friedman, 1996).

3. Spectral clustering

For graphs and pairwise interactions, the spectral graph
clustering is performed as follows (Von Luxburg, 2007).
Consider the graph G = (V, E) and integer m (number of
clusters):

1. Compute the m bottom eigenvectors ¢, . ..
the graph Laplacian L.

P Of

2. To each vertex v € Cy associate the point ¢ (v) € RY,
where (¥(v)); = (v, ¢;)c,.!

'We recall that v is an element of the standard basis of Cy, ¢ y

3. Calculate k-means for m clusters on the set of points.

When generalizing the approach from graphs to ASCs in
the following way (Ebli & Spreemann, 2019). Consider the
ASC (V, X), natural numbers k (size of the interaction) and
m (clusters):

1. Compute the null space eigenvectors of ¢4, . .., g, of
the Hodge Laplacian L. Check that the Betti number
By is relatively low (< 10).

2. To each p-simplex o € C}, associate the point ¥ (c) €
RA%, where ($(0); = (0, 0,)c,.

3. Calculate k-means for m clusters on the set of points.

Note that the former (graphs) approach employs near-
harmonics, while the latter (ASCs) rely solely on harmonics.
It is crucial in the subsequent section to determine whether
the presence of near-harmonics can be advantageous or
detrimental to the clustering algorithm. For this purpose,
we have some theoretical evidence supporting the utility of
near-harmonics.

Firstly, from a signal processing perspective (Barbarossa
& Sardellitti, 2020; Schaub et al., 2021), we can treat the
eigenvectors of the Hodge Laplacian as the Fourier basis
on cochains, analogous to the continuous case. In this sce-
nario, a harmonic and its eigenvalue represent a compo-
nent and its frequency (or mode). Clearly, harmonic and
near-harmonics correspond to constant and low-frequency
components and behave similarly (slowly varying), while
high eigenvalues-eigenvectors correspond to high-frequency
components (rapidly varying). Secondly, the Fiedler vec-
tor, used to bipartite the vertices of a connected graph into
two internally well-connected regions but loosely connected
to each other, can be generalized to bipartite an ASCs ac-
cording to its p-simplices, as shown in Saito et al. (2024).
Thirdly, the Cheeger inequalities, used to connect the small-
est nonzero eigenvalues to the sparsest cut of a graph, admit
a generalization to Hodge Laplacians as well (Gundert &
Szedldk, 2014).

Although the use of near-harmonics appears beneficial, they
will result in embedding the simplices in a high-dimensional
space. To bring it back to a more manageable dimension
for clustering, we can employ random projection (Gho-
jogh et al., 2021). According to the Johnson-Lindenstrauss
lemma, there always exists a linear dimensionality reduction
transformation that preserves the distances between points.

Theorem 3.1 (Johnson & Lindenstrauss 1984). Let 0 <
e < 1, positive integers N and k € O(log N/&?). Then,
for any set of points py, ...,py € R? there exists a linear

are eigenvectors of an operator acting on C, and (-, -)¢, is the
inner product induced by the isomorphism between Cj and R".
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transformation & : RY — R¥ such that, for all pair of points
D, q we have

(1-e)llp—qll2 < [&(p)—&(@)ll2 < (1+¢)[lp—qll2- (7)

Then, a popular linear dimensionality reduction transfor-
mation £ : RY — RF, with k € O(s72log N), is given
by

E=110, 8)

where U € RV*V is a Haar-random unitary matrix, and
II € R**N is a projection matrix selecting k out of N rows.

Our approach for spectral simplicial clustering is then deter-
mined as follows. Consider the ASC (V, X)), naturals & (size
of interaction), m (clusters), ¢ (target dimensionality of the
Euclidean space), and a real 7 > 0 (eigenvalue threshold).
Then,

1. Compute the ¢’-bottom harmonic and near-harmonics
of the Hodge Laplacian L, ¢4, ..., ¢,/, where ¢ is
the number of eigenvalues < 7.

2. Pick a single Haar random unitary matrix U € RV*V,

where N = |%,|.
3. Pick g projection matrices Iy, . .., I, € RI*N,

4. Compute the g projected vectors wy, ..
where w; = ILU Y 1_, ;.

L, we € RY

5. To each p-simplex o € C¥, associate the point 1)(c) €
R, where (¢(0)); = (o, w;)cs.

6. Calculate k-means for m clusters on the set of points.

Finally, it is worth noting that Grande & Schaub have pre-
viously explored the use of low-eigenvalues eigenvectors,
and in particular have distinguished between curl and gradi-
ent contributions. Our approach differs by emphasizing the
need for random projections.

4. Quantum spectral clustering

‘We now show the implementation of our approach to spec-
tral clustering on a quantum computer. Firstly, we provide
an overview of the algorithm for estimating the Betti num-
bers, introduced in Lloyd et al. (2016). Secondly, we present
an overview of the quantum algorithm for the spectral em-
bedding of p-simplices. Finally, we give an analysis of our
approach.

4.1. Overview of Lloyd et al. (2016)

Let (V, X) be an ASC with n vertices. Any p-simplex o is
encoded as an n-bit binary string with a Hamming weight
of k 4 1. This encoding partitions the Hilbert space H into

H=Ho®oH1D...OH, ©))

10)
‘On> QHSURNGHIU;

Figure 1. High-level description of the quantum circuit used to
estimate the inner product between the i-th projected component
w; and the input simplex o.

— Re(w;, o)

where p-simplices |o) belong to Hj1. The subspace of
Hp41 of the p-simplices of X is denoted as H}, ;.

Note that L, acts only on C (), here encoded as Hj;, ;.
The core idea of the algorithm exploits the quantum phase
estimation algorithm (Manenti & Motta, 2023) to force the
decomposition of a quantum state according to the eigenval-
ues and eigenvectors of a Hermitian operator. We start with
the (normalized) classical mixture of states spanning Hy 1>

Iy= 1
k+1
= = loXo|. (10)
AL ] 2

oEX,

Pk

Then, we use an auxiliary register of p qubits (p chosen
arbitrarily), to apply the quantum phase estimation of the
operator exp(—i/||Ly| 2L, ), obtaining

le)el = QPE ((|0X0)®” @ pr) QPET (11

1 [H3
=—5— > W) Gllel (12
|Hk+l i=1
2P 1
=" ay ) le,) Ayl (o, - (13)
n=0

Equation (12) illustrates that when the QPE is fed with
the classical mixture of states spanning Cf, it produces a
classical mixture of pairs (\;, ¢;) consisting of (p-bit ap-
proximations) eigenvalues and their corresponding eigen-
vectors. This p-bit approximation leads to the discretiza-
tion of the eigenvalues )\;, placing them within intervals
[n27P, (n + 1)27P). This allows us to factorize, leading to
Equation (13), where |\,,) represents one of the possible
discretized eigenvalues, and |y, ) is the sum of eigenvectors
associated with that particular eigenvalue.

Lloyd et al. (2016) uses Equation (13) to estimate cvy, which
is the fraction of eigenvalues in the range [0,277). If the
quantity 277 is lower than the spectral gap of L,,, the esti-
mation of «y is called the normalized Betti numbers, and
corresponds to By = f1,/|2,|. There are no known bounds
on the spectral gap of L, in general; however, for certain
families of graphs, this is known to be inversely polynomial
in n (Gyurik et al., 2022).
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4.2. Overview of the quantum spectral embedding

Consider we need to calculate the spectral embedding
(o) € R? for a p-simplex o given as input. Let0 < 7 < 1
be the eigenvalue threshold.

In contrast with the quantum algorithm for Betti number
estimation, for the spectral embedding we will exploit the
eigenvectors in Equation (13), and not the eigenvalues. Let
p = [logy(1/7)]. We define the quantum channel ®ys as
follows,

Dus(0X0)®" = (1017 @ 1°") el (10)F @ 1°")

= |po )Xol - (14

This is obtained by first loading py, pairing the state with
an auxiliary register (|0)(0|)®?, then applying the QPE as
in Equation (13), finally performing a post-selection on
the eigenvalue register of the binary value 0P, resulting
in a state that is the superposition of eigenvectors having
eigenvalue [0, 277). The post-selection makes the operation
non-unitary; therefore, we have to describe it as a quantum
channel. The post-selection succeeds with probability £, =
o, which needs to be poly(1/n).

Now, to obtain the random projections, we implement Ugyp,
an approximate unitary 2-design, which approximates the
behavior of a Haar-random unitary up to the second order
moment. As shown in Kumaran et al. (2024), this is enough
to obtain random projected vectors that are well-behaved,
meaning they satisfy the Johnson-Lindenstrauss lemma. The
use of a unitary 2-design instead of Haar-random unitaries
is advantageous from the computational point of view.

To define the ¢ components of the spectral embedding ),
we need to define the projectors II;,72 = 1, ..., q. For sim-
plicity, we set ¢ = 2. In this case, each projector is defined
to be the sum of N = 2" /2™ states of the computational
basis,

N
ZzN-i—j (iN +j|. (15)

Finally, the i-th random projected vector is

lw;) =1L - Urno -+ [0 - (16)
Loading the p-simplex o is trivial, and requires defining a
constant depth quantum circuit U, [0)®" = |o) by placing
a X gate on the ¢-th qubit of the ASC register (n qubits in
total) if the i-th vertex belongs to o.

Finally, the inner product between w; and o can be calcu-
lated via the Hadamard test, and uses one single ancillary
qubit,

(H®I®") - c-(Uy,Ul) - (H @ 1%")0),10...0),, (17)

for which the expectation value (z) calculated on the an-
cillary qubit corresponds to Re({w;, ¢)). There is no need
to estimate the imaginary part. The process is depicted in
Figure 1.

The detailed construction of these quantum circuits is shown
in Appendix D.

4.3. Analysis of the quantum spectral clustering

Let X be the ASC and 0 < 7 < 1 the eigenvalue threshold.
Cp = [Zpl/(,1,) the density of p-simplices in X, and &, the
fraction of eigenvalues of Lj,/||L,||2 lower than 7. Then,
the algorithm works as follows:

1. Sample an arbitrary amount of p-simplices of the ASC
>’ on the quantum computer.

2. For each p-simplex o, estimate (o) on a quantum
computer.

3. Calculate k-means on the set of points {1)(c)} for m
clusters on a classical computer.

The sampling of p-simplices on a classical computer has
complexity O(C; 1) obtained by randomly generating a set
of k + 1 distinct vertices, checking if the set is a p-simplex
(cost of the checking assumed to be negligible), as the pro-
cedure succeeds with probability (. O ignores logarithmic
factors. In contrast, a quantum search based on Grover’s
algorithm performs O(Cp ) repetitions of a walk opera-
tor having cost O(1) 4+ O(pn), for the oracle and diffusion
operator built with Dicke states, respectively (construction
detailed in Appendix D); this leads to an overall cost of

O pn).

The spectral clustering on a classical computer is doable
only if the Laplacian Ly, is sparse. If that’s the case, as L,
is symmetric, we could rely on Lanczos’s or Davidson’s
algorithms for extremal eigenvalues (Golub & Van Loan,
2013), and there is no benefit using the quantum approach.
In contrast, for denser? L,, classically we rely on the di-
agonalization of L,, with cost O(( (,+1)¢»)?). The random
projection has a cost as the vector-matrix multiplication, if
we consider constant and negligible the number of projec-
tions ¢, the cost is O(((pil)cp)Q) Note that we assume
the diagonalization is necessary to access the eigenvectors,
which is intuitively reasonable but not proven yet (c.f. Sec-
tion 6).

In contrast, the quantum algorithm has a cost O(¢ 1/2 pn)
for the state preparation, O(n?71) for the Hamﬂtoman
simulation of L, and &, ! the factor due to the postselec-
tion on the eigenvalue register. This has an overall cost

21t can have up to n2" nonzero coefficients, n per row, as the
operator is n-sparse.
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of O((Cp_l/zpn +n?77 )€, ). The unitary 2-design can
be implemented in O(n?), and the cost of the projection is
considered negligible.

The cost of k-means is the same for both classical and quan-
tum procedures.

Considering the regime in which the quantum algorithm
succeeds, (' = n® and {; ' = n” for o, # > 0, we can
find a ratio between the cost of the quantum and classical
approaches.

The classical approach based on diagonalization is lower
bounded by the dimensionality of the p-Hodge Laplacian,
which is Q(((,}')¢p)?). The quantum procedure is upper

bounded by O((¢p /pn + n?r=1)¢ 1), if we ignore the

logarithmic cost in the precision of the Hamiltonian simula-
tion step, which is negligible.

The ratio C/Q is then Q(C)/O(Q). We use n? < (!, ) and
consider 7 a fixed constant. Then, the ratio is

2
(pil) C,Q; n2pPp—2c n2p—2a—3—2

na/2—1p +1
(18)

(G P+ n2)gt T (0 Ppnt 02

For a < 2, the denominator converges to 2 for large n.
Thus, the quantum procedure results in a speedup for 2p >
2004+ B+ 2.

For « > 2, the denominator converges to ne/ 2p for

large n, and the +1 is negligible. The ratio becomes
n2P=5/2a=B+1 /p, Thus, the quantum procedure results in a
speedup for 2p > 5/2a + 5 — 1.

5. Numerical example

We have created an artificial numerical example to highlight
certain characteristics of the spectral clustering. Firstly, we
want to prove that there are networks with a large number
of zero eigenvalues, for which the spectral clustering by
Ebli & Spreemann (2019) cannot be immediately applied,
and thus, we need dimensionality reduction. Secondly, we
want to see the effect of the dimensionality reduction on
the performances. Finally, Appendix F shows an additional
experiment with three real-world datasets. For these latter
ones, we do not have the clustering structure, and therefore,
the analysis can be performed only on a higher level.

Briefly, we have considered networks of 20 vertices, whose
3-simplices are arranged in two clusters, densely connected
internally and loosely connected within each other. An
arbitrary fraction of 4-simplices is added to simulate the
presence and absence of holes. We test spectral clustering
with various configurations: the dimensionality of the em-
bedding Euclidean space is ¢ € {3, 5, 7,9}, the eigenvalue
threshold is 7 € {1le—7,1e—2,1e—1,5e—1, 1e0}, and the

dimensionality reduction technique can be no technique at
all, Haar-based, or PCA-based. For a detailed explanation of
our experimental setup, the reader can refer to Appendix E.
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Figure 2. Number of eigenvectors of L, having corresponding
eigenvalue lower than 7 for ASCs with few 4-simplices.

In Figure 2 we show that is effectively possible to construct
networks with a large number of zero eigenvalues. This
case has been generated by keeping only one-fourth of the
possible 4-simplices in Y.
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Figure 3. Normalized mutual information score of the result of
spectral clustering and the ground truth for different threshold 7,
dimensionality reduction technique (columns) and embedding size
(rows).

In Figure 3, we depict the score, defined as the normalized
mutual information score, between the ground truth and the
result of clustering with spectral embedding followed by k-
means. In this case, we observe that increasing the threshold
7 for small values of ¢ has little effect, although it becomes
non-negligible for higher values of ¢q. There is often an
optimal value of 7; in our example, it is 5 x 10~*. Beyond
this threshold, the inclusion of other eigenvectors worsens
the performance. There is no clear best dimensionality
reduction technique, and this aspect is expected to vary
from task to task. For a further discussion of these results,
the reader can refer to Appendix E.
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6. Conclusions

We have introduced a quantum algorithm to perform spec-
tral clustering on the p-simplices of a network. Our work
exploits quantum computing to efficiently encode and eigen-
decompose the Laplacian operator L,, associated with the
network. Building upon and improving the algorithm by
Ebli & Spreemann (2019), which introduced the concept
of spectral clustering on classical computers, our approach
overcomes limitations by allowing the use of a richer set
of eigenvectors. In contrast to the previous approach, our
method leverages random projection, enabling to consider
of an arbitrary number of eigenvectors and potentially pro-
viding a more comprehensive understanding of the relation-
ships between simplices. We conclude by briefly comment-
ing on potential applications and future directions of this
research.

6.1. Potential applications in biological networks

We argue that, among the myriad applications of spectral
clustering for complex networks, a particularly promising
domain is that which intersects with biological networks.

In genetics, systems biology, and neuroscience, the networks
are often constructed as correlation networks (graphs): an
edge (4, j) is present if its score s(i, j) falls below a specific
threshold. Here, the score function is a metric of statistical
significance between the data associated with member 7 of
the population and member j. Notably, these structures
can and have been generalized to utilize simplices, thereby
capturing higher-order interactions.

A convenient aspect of applying quantum algorithms to cor-
relation networks lies in our ability to verify the presence
of a p-simplex through an O(poly(n, k)) procedure in su-
perposition. This avoids the need for classical enumeration
of all simplices and loading them into a quantum state (e.g.
via a QRAM, Giovannetti, Lloyd, and Maccone 2008).3

Another critical point concerns the asymptotic runtime of
our approach: it depends on the density of p-simplices ¢,
and the fraction of low eigenvalues &,. For the procedure to
be feasible for large networks, this fraction must be (small)
inversely polynomial in n. We can use various score func-
tions, including the x2-test, quadratic regression, K2-score,
and maximum likelihood model, see e.g. Blumenthal et al.
(2021). The choice of the score function can lead to the
construction of radically different networks, some of which
may exhibit more favorable characteristics than others, i.e.
higher ¢, and &,,. This flexibility is a unique advantage not
possible when the network’s topology is given a priori.

3This is not an issue for ASCs effectively described by Maxi-
mal Simplicial Trees (Boissonnat et al., 2017), which efficiently
represents them as a list of maximal simplices, albeit complex
networks benefiting this representation are rare.

6.2. Future directions

Three important topics that have yet to be explored are the
following ones.

Dequantization Apers et al. (2023) have shown that it is
possible to estimate normalized Betti numbers efficiently on
a classical computer, for certain classes of networks. Other
properties, such as spectral entropy, are shown to be much
harder to capture without a quantum device. Whether the
spectral clustering can be executed efficiently on a classi-
cal device is definitively an open problem. An interesting
direction can be the dequantization, i.e. the search for a
classical algorithm running in a time polynomial in the time
of the quantum algorithm; this might be obtained via the
path integral Monte Carlo or tensor networks. Anyway,
even if we succeed in the dequantization of this algorithm,
a polynomial speedup of the quantum algorithm is still of
great interest in a practical setting.

Use of the qubiterate The gubiterate operator €) pro-
posed by Berry et al. (2018) has been used to sample the
eigenvalues of a Hamiltonian operator H with a constant
amount of query to its block encoding, without the need of
the Hamiltonian simulation — leading to shorter circuits and
basically no error in the eigenvalue estimation. This is pos-
sible because the eigenvalues of H and () are easily related.
As for the spectral clustering, we are instead relying on the
eigenvectors; it is still to investigate how the eigenvectors
of H and (2 are related and if we can exploit the qubiterate
to build much shorter quantum circuits.

Timeframe for wide availability The algorithm de-
scribed is not by any means suited to be executed on near-
term quantum devices (c.f. Appendix G). While the Betti
number estimation algorithm has been modified in Ubaru
et al. (2021) reaching a quantum circuit depth of only O(n)
and making their algorithm feasible for early-term fault-
tolerant quantum devices, our spectral clustering algorithm
requires the expensive quantum phase estimation. Exploring
whether is possible to access the eigenvectors of L,, without
quantum phase estimation might help achieve a runtime
similar to Ubaru et al. (2021).
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A. Background in quantum computing

We here review some basic concepts of quantum computation. The reader can refer to Manenti & Motta (2023) for a more
detailed explanation.

A.1. Fundamentals of quantum mechanics in the Dirac notation

A n-qubit quantum state is described by a vector |1/), denoted as ‘ket’, that lives in the Hilbert space H(C)®" = C2" and
satisfies

)2 = 1. (19)
The space is spanned by the elements of the computational basis, denoted with |0), |1),...,|2™ — 1), with the number
being sometimes denoted in binary. The vector |¢) admit representation as the column vector [6ij]]2;61 € C?". Through

the document, the initial state of the quantum system is always |0) = [60j}§:gl. An element of the dual space of H is (¢/],
denoted as ‘bra’, admit representation as a row vector that is the conjugate transpose of the corresponding ket. The notion
(¢|¢) denotes an inner product, while |¢)(1)| denotes the outer product and results in a rank-1 projector.

A quantum system evolves according to the Schrédinger equation,

0
iha [9(1) = H[¢(1)) (20)

where £ is set to one and the solution of the equation is a unitary operator U = exp(—itH), i.e. an operator such that
UU' = UTU = Iyn. Thus, the system evolves according to

) = Ul) 21)

A quantum measurement or positive-operator valued measure (POVM) is a set of positive semi-definite operators { M} 7,
such that MJ M; = I». When measuring a quantum system in the state |¢)) via the given POVM, we obtain the outcome
i € {1,...,m} with probability

p(outcome i) = (| M M;[)) (22)

after which the quantum state collapses to the state

M; |¢)

) ey

(23)

A.2. Fundamentals of quantum mechanics in the density matrix notation

A more powerful formalism that takes into account a mixture of quantum states is the formalism of density matrices. A n-
qubit quantum state is described by a positive semi-definite density matrix p, that lives in the Hilbert space £(H) = Cc2"x2"
and satisfies

Tr[p] = 1. (24)

If p is a rank-1 projector, it is called a pure state; otherwise, it is called a mixed state and can be expressed as a convex
combination of pure states,

p="Y_pili)eil (25)

with p; > 0 for all 4, and ), p; = 1. The mixed state can be interpreted as a probability distribution over pure states. A
quantum computation via the unitary U maps the system to

p— UpUT. (26)

A POVM (M, ..., M,,), applied to the quantum system in the state p ends up with the outcome ¢ € {1,...,m} with
probability
p(outcome i) = Tr[M; M;p] (27)
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after which the quantum state collapses to the state

M;pM]
pro——t (28)
Tr[M; M;p]
For a bipartite quantum system H = H 4 ® H p in the state p, a partial trace is defined as
pa="Trplp] = ([Ia (is)pla®lip)) (29)

]

where |ip) is an element of the computational basis of system B, and is equivalent to measuring the system B and discarding
the result. A quantum operation or quantum channel ® is a linear operator between density matrices that is completely
positive and trace-preserving. The unitary evolution, restriction (partial trace), and post-selection can be all described as
quantum channels.

A.3. Quantum circuits

A quantum computation task can be represented by a quantum circuit. In analogy with classical circuits, we use a
diagrammatic representation having one wire per qubit and apply quantum gates corresponding to unitary operations on the
qubit to which they are applied. In contrast to classical circuits, each gate has the same number of fan-ins and fan-outs, as
the theory of quantum information prohibits otherwise (no-cloning and no-deleting theorems). A (non-minimal) universal
set of gates, i.e. any quantum circuit is efficiently decomposable into a sequence of gates from such a set, is made up of the
following elements:

. 1 0 . 0 1
Identity gate = (O 1) Pauli X X = (1 0)
. 0 —1 . 1 0
Pauli Y Y = <z 0 ) Pauli Z Z= (0 _1>
Hadamard H= <1 _11> Controlled-NOT CNOT = |0)(0] @ I + |1X1| ® X
1 0
Phase gate S = <0 z) Controlled-U C-U=0)0| I+ |1X1|®@ U
T gat 7— (! 0 Rotation over R,(0) = b
gate =lg eina otation over o o(0) = exp| —igo

Here, o is one of the Pauli matrices X, Y, Z.

A.4. Matrix arithmetic on a quantum computer

An important feature of quantum computing is the ability to perform matrix arithmetic on large matrices, leading to important
speedups. Let H be a complex matrix of size 2™ x 2™, which for simplicity of presentation we set to be a Hermitian operator.

We can access the matrix according to different input models. A popular model is the Hamiltonian simulation, encoding the
unitary U = exp(—itH ) for some ¢. The simplest Hamiltonian simulation technique is the Trotter-Suzuki algorithm, which
requires us to decompose H into a sum of tensor products of Pauli matrices, which is not always convenient as we might
have up to 4™ — 1 terms in this sum.

Alternatively, we can rely on a block encoding, a procedure that directly encodes H by embedding it as a block of a larger
unitary matrix. This procedure is especially convenient for sparse matrices. Formally, the unitary Uy over n + m qubits is
an (o, m, €)-block encoding for H, with || H|| < a + ¢, if

IH — a((0]*" @ L) Un(|0)*™ @ I,)|| < e. (30)

Un = (H/O‘ > 31)
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We can perform arithmetic operations on these matrices by applying the Quantum Signal Processing (Low & Chuang,
2017) or the Quantum Singular Value Transformation (Gilyén et al., 2019) algorithms, for Hermitian and general matrices,
respectively. These algorithms apply an arbitrary polynomial p (usually a low-degree one) to the input matrix, and this
results in a block encoding of p(H).

B. Background in models for network science

B.1. Graph theory

An undirected graph G is a set of vertices V' = {1,...,n} connected via edges in the set £ C (‘2/) i.e. subsets of two

distinct elements in V. The graph is simple if it has at most one edge between each pair of vertices and no self-loops.

We can set an orientation to the edges by representing them as an ordered set, the order induced by the natural orientation of
the vertices. So, instead of {i, j}, the edge is represented by (i, j) with ¢ < j. This allows us to refer to the first and second
elements of the set. Note that orientation is a different concept from the directed edges.

The graph can be described by means of an adjacency matrix A € R"*",
1, (i,j)€E

Al = 32

[ALis {0, otherwise (32)

and the degree matrix is D, which is diagonal and with each entry being the number of edges acting on the i-th vertex,

[D]ii=>_len{i}l. (33)

eckE

Similarly, the graph can be described by the incidence matrix By € R™*IEl,

-1, e=(v,w)
[Bl]’U,E = 13 €= (’LU, ’U) : (34)
0, enfv}=2

An alternative representation for the graph is given by the graph Laplacian L € R™"*",

deg(i)v i:j
Lo=A—-D=BB/, [Lolij { —1, i#jand (i,j) € E . (35)
0, i#jand (i,j) ¢ E

The graph Laplacian possesses certain properties that make it favorable compared to the adjacency matrix, such as being
positive semidefinite. This also implies that the operator is Hermitian and has only non-negative (real) eigenvalues.

The spectrum of Ly shows certain characteristics of the graph: ker (L) reveals the connected components of the graph, with
dim ker(Lg) being the number of connected components while v; € ker(Lg) is the indicator vector of the i-th connected
component, i.e.

1, v € i-th component of G

v = . 36
] {O, v ¢ i-th component of G (36)
Note that ), ¥; = L.

Similarly, the low-energy eigenvectors, i.e., the ones associated with close-to-zero eigenvalues, bear topological meaning. In
a connected graph, the second smallest eigenvalue is related to the sparsest cut of a graph via Cheeger’s inequalities,

% <o) <2k @7

where 5\2 is the second smallest eigenvalue of the normalized Laplacian, I~JO =D 3 LOD*%, and
E(S,V\S
(b(G) — min M (38)

scv  wvol(9)
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is the conductance of the graph, with vol(S) =} s deg(v). The smaller the conductance, the better separable the graph
is. As finding the sparsest cut is computationally difficult, we can rely on the spectral properties to find an approximate
solution. The eigenvector 1o with energy A, is the Fiedler vector. It can be used to bipartition the set of vertices into two
loosely connected components according to the sign of each component.

Stronger guarantees of the success of spectral clustering have recently been proven in (Peng et al., 2015), in which the
Structure theorem has been formulated. It informally states that for a well k-clustered graph, with a large gap between A
and A1, each of the k bottom eigenvectors of the graph Laplacian is a linear combination of the indicator vectors of the
clusters, and vice versa.

B.2. Algebraic topology

While a graph can capture only pairwise interactions, the abstract simplicial complex (ASC) can capture relationships of
arbitrary order. An ASC (V, X) is a finite, non-empty set of vertices V' = {1,...,n} and a collection ¥ of subsets of V'
closed under inclusion. A k-simplex is an ordered set o € ¥ in the form

U:[UO’-~-7U]C]- (39)

The set of p-simplices in ¥ is denoted by X,,. Each p-simplex is assigned an orientation €)(c) € {£1}. The orientation is
positive for vy < ... < vg; while if we permute the positive order of vertices according to 7, the orientation is determined

by Q(w(0)) = sign(r).

It is convenient to study ASCs via linear algebraic means. For that, we need to define the (real) vector space of p-simplices,
or p-chain space sz (3 dropped from the notation for simplicity),

Cp = span(Z,; R). (40)

The p-boundary map 0, : C, — Cp,_1 maps a p-simplex to the alternating sum of its faces,

Opo = > _ (=1 (0 \ {v;}). (41)

V€0

The key property of the boundary map is that the boundary of a boundary is zero, stated 9,_1 o 0, = 0, or equivalently,
im(9p41) C ker(9p). (42)

With regard to the boundary map, we can classify certain p-chains: a p-cycle is a p-chain ¢ with a zero boundary, i.e.,
¢ € ker(0,), while a p-boundary is a p-cycle and is also the boundary of some p + 1-simplex, i.e., ¢ € im(0p41). The space
of linearly independent p-cycles that are not p-boundaries,

H, =ker(0,)/im(0p+1), (43)

is termed the p-homology group with each equivalence class corresponding to a p-hole in 2. Its dimension is referred to as
the p-Betti number,
Bp = dim Hp, (44)

which is as a topological invariant.
The dual space of C,,, i.e. the space of homomorphisms over p-simplices is the p-cochain space, is denoted as

CP ={f:Cp, — R f linear functional on Cp}. (45)

To accommodate the orientation of the simplices, the functions f € C” must be alternating. The dual of 0,4 is the
k-coboundary map §,,,
6p =011, (46)

which leads to the definition of cocycle, coboundary, and cohomology space,
H? = ker(d,)/im(0p—1). 47)

15



A quantum algorithm for spectral clustering via Hodge Laplacians

B.3. Hodge theory

Similarly to the graph Laplacian, the p-Hodge Laplacian generalizes this concept, representing the diffusion over higher-
order simplices. It is defined in terms of B,,, the matrix representation of 9, with respect to the standard orthonormal basis

{o:} 2 of €,
B, {(1)4 r=o\{u} )

0, otherwise

Note that the basis {o;} is ordered lexicographically once fixed a global ordering of the vertices (it can and should be the
natural ordering).

The p-Hodge Laplacian is defined as:
L,=B,B,+B,.B,,,. (49)

where the term B;— B, is the down-p-Hodge Laplacian, and shows that two p-simplices are connected via a common face,
while the term Bp+1B; 11 1s the up-p-Laplacian, and shows that two p-simplices are connected via being two faces of the
same (p + 1)-simplex. Note that, due to the duality between boundary and coboundary map, L,, can be interpreted as both
an operator on Cj, and C.

(Friedman, 1996) has shown that
Bp = dimker(L,), (50)

bridging algebraic topology and Hodge theory.

According to Hodge’s decomposition, we can decompose a k-cochain into its solenoidal (im(B;,r ), irrotational (im(B11))
and harmonic (ker(L,)) parts,
C? = im(B,) ) @ ker(L,) ® im(Bp11). (51

The spectrum of the p-Hodge Laplacian can reveal the clustering structure of the ASC. Although the mathematical framework
of spectral simplicial theory is not as complete as the graph theoretical analog, many pieces of evidence in the literature
point in this direction.

Firstly, a large effort has been spent to generalize the Cheeger inequalities to ASC (Gundert & Szedlak, 2014; Parzanchevski
et al., 2016; Parzanchevski, 2017). This is of paramount importance as it would connect the spectrum of the smallest
eigenvalues of L,, to the clustering structure of the networks, laying the foundation for a simplicial structure theorem. We
can prove that for any finite ASC A it holds that

n|F(Ay, ..., Ap)

< — i 20 e p)
Az < h(A) Ao A, =V | oz P 2)

where F is the set of p-simplices having one vertices in each A;. Furthermore, a lower bound for A2 has been conjectured in
the form Ch(A) — ¢, with C, ¢ constants.

Secondly, (Krishnagopal & Bianconi, 2021) has shown how the support of the nonzero eigenvectors of the (up)-p-Hodge
Laplacian can reveal the clustering structure. Furthermore, the Fiedler vector, used to bipartite the vertices of a connected
graph into two internally well-connected regions but loosely connected to each other, can be generalized to bipartite an
ASCs according to its p-simplices, as shown in Saito et al. (2024).

To the best of the authors’ knowledge, no equivalent of the Structure theorem has been proposed for ASCs.

C. Background in group theory

The unitary group of degree d, denoted with /(d; C), is the group of N x N complex matrices satisfying UUT = UTU =1,
forall U € U(d;C).

A Haar measure on the group U(d) is the unique measure y that satisfies for all (integrable) functions f and V' € U(d) the
following condition,

/ F@p) = [ FUVYap() = / FOVYdu(U), (53)
U(d) U(d)

U(d)
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i.e. is both left-invariant and right-invariant. As the Haar measure is effectively a probability measure, we can use the
integral over f as the expected value of f,

Boeplf(U)) = | SO)0(0). (54)

We can then define the k-th moment operators as,

gy, [URF () USH). (55)

The Haar random unitaries refer to an ensemble of unitary matrices uniformly distributed with respect to . Additionally,
the ensemble of states {U |¢)) | U ~ p, |1) fixed} is denoted as the Haar random states. Constructing a quantum circuit
implementing an exact Haar random unitary is unfeasible; therefore, we have to rely on approximations.

A unitary t-design is a probability distribution v over a set of unitaries V' C U(N) that ‘mime’ the behavior of the
Haar-random distribution up to the ¢-th statistical moment (Sim et al., 2019). Formally, it holds that:

E [VetO(VH® ] = E [U®'OWUN®Y forall O e (CH)®L. (56)

Vv U~p
A e-approximate unitary t-design is an ensemble of unitary matrices ' such that

E [V®t(VT)®t] - E [U®t(UT>®t]

<€ (57)
Vey Uel(d)

1

with ||-||; = Tr[-]. The explicit construction of a quantum circuit implementing an approximate unitary 2-design is shown in
the subsequent appendices.

The work by Kumaran et al. has applied the theory of random unitaries to perform dimensionality reduction by proving
that the mapping made of a Haar-random (or approximate unitary 2-design) follower by a projection satisfied the Johnson-
Lindenstrauss lemma.

Formally, let U ~ p and x, 2’ € RY. Let I € R**4 k < d such that IT select the first k& rows of /d/kU. Then, for all

€ > 0 the following statement holds with probability greater than 1 — Zk_ d’z ,
(1= ollz —2'|l, < [Tz —2)| < (1 + o)z -2/, (58)

A similar statement holds if U is sampled from a c-approximate 2-design.
D. Construction of the quantum circuits
We detail the construction of the single components leading to the quantum circuit in Figure 1.

D.1. Construction of ®yg

The transformation @y is composed of three parts, depicted in Figure 4:

1. the sampling of the p-simplices; this is obtained via a unitary Us,yp returning the coherent superposition of p-simplices
in the input ASC X, then a measure operation modifies the coherent superposition to a classical mixture of pure states.

2. the Hamiltonian simulation of the (normalized) Laplacian L,,, which we obtain by creating a block-encoding for L,,

and then applying the Quantum Signal Processing algorithm (Low & Chuang, 2017) to create a block-encoding of
—i/||Lpll2Lp
e .

3. the Quantum Phase Estimation and subsequent post-selection, to obtain a superposition of the bottom eigenvectors.
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[+X+ @ pk >y )l e, Xe,|
|0)” { H®P | QFT E post select 0P
ignore

107) = Usar B AT (e79/ 114112 1y ool

Figure 4. Quantum circuits for ®ys.

D.1.1. EFFICIENT SAMPLING OF p-SIMPLICES

According to Figure 4, we load the classical mixture of p-simplices by first applying the unitary Us,yp and then performing
a measurement operation. This procedure allows us to obtain a quadratic speedup compared to the classical procedure,
which simply consists of sampling the p-simplices classically. We discuss both procedures here.

A simple and classical procedure for sampling p-simplices of ¥ involves randomly generating a set of k + 1 vertices and
checking if it forms a simplex in the given ASC. This checking operation is typically efficient (in time polynomial in the
number of vertices n), even for clique complexes for constant and small k£ and for ASCs described as maximal simplicial
trees. The success probability of this classical procedure is denoted by (;,, where (, = |Z,|/ ( kil) represents the density of
p-simplices in 2. This procedure is efficient when ¢, ! € poly(n) or for relatively small and constant k (having the whole
search space ( kf_l) polynomial in n).

In contrast, Grover’s search (Manenti & Motta, 2023) can achieve a quadratic speedup over the classical procedure by
defining Ugsapp as

Usawe = (P(2]0)(0] —I)P'Ox, )" P, (59)
where Oy, is the oracle checking whether a p-simplex belongs to %,
|0> y O ¢ ZP
Ox. o) = ; 60
s, o) {—|a>, ces, (60)

P is the unitary that defines the search space of Grover’s search, loading the superposition of all the items in the wanted search
space (for P = H®" we load all the possible 2" elements); 2 |0)(0] — I is a reflection implemented via a multi-controlled-Z
with negated control; and finally, r is the number of repetitions.

Note that we can restrict the search space to only the solutions having Hamming weight k£ + 1; in this case, P prepares the
Dicke state | Dy 1), representing the superposition of states with Hamming weight k& + 1:

Depi) = Y |b). 61)
HW(b)=k+1

The search space will consist of ( kj_l) < 2" elements. We can follow the procedure outlined in (Aktar et al., 2022), which
is deterministic and has a depth of O(kn).

For N = (kil) possible p-simplices in the search space and M = |3, solutions, the classical procedure has complexity
O(N/M). In contrast, Grover’s search needs a number of repetitions r in Equation (59) equal to

r = M\/glJ . (62)

For this, the length of the circuit is O(y/N/M ), leading to the quadratic speedup.

Determining the number of repetitions r is challenging as |3,| is unknown. This is crucial since r is the optimal value, and
both its over- and under-estimation result in a larger error. Among the possible solutions, one could employ a trial-and-error
approach (Boyer et al., 1998) that allows estimating |%, | up to a multiplicative error. A more precise estimation is given if
we employ quantum counting (Brassard et al., 1998), at a much larger computational cost. Alternatively, the fixed-point
Grover’s search (Yoder et al., 2014) does not require prior knowledge of |,|, at a slightly larger cost in terms of depth.
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D.1.2. BLOCK-ENCODING OF L,

The construction of the operator exp(—i/||Ly||2L,) requires us to have access to a block encoding of L,,. Here, with L,
we denote L?, but we avoid explicitly referring to X for clarity of notation.

The procedure relies on L, being a sparse and row-efficient operator. This allows us to use the scheme in (Lin, 2022). It
creates a block encoding of a s-sparse Hermitian operator H, and uses m + 1 ancillary qubits. The operator must be scaled
so that || H||2 < 1 for the block encoding to exist. We need to define two oracles Orow, Oeniry as follows:

OfOW |£>m ‘]>n = M>m, |Cj,e>n (63)
Oentry [0) 1), 13)yy = (He; 0,510) + 4/ 1 = [Hey 512 1)) 16),, 15), (64)

where c; ¢ is the row-index of the ¢-th nonzero element in the j-th column. The corresponding quantum circuit is depicted in
Figure 5. The procedure succeeds with probability || H |¢)]|, where |¢) is the state input to the Hermitian operator. We also
want the block encoding to be Hermitian itself, for that we can rely on the circuit in Figure 6 using one extra ancilla and two
applications of the non-Hermitian block encoding.

|0) ———— ~A| post select 0
0)®™ H®™ Uentry —|L®m|—|i| post select 0™
UrOW
| Hlp)
[¥) TH )

Figure 5. Block encoding of a M -sparse Hermitian operator. The procedure is especially convenient for M = 2™, as that allows us to use
H®™ to load the superposition of all the M indices.

0) —@ T H postselect 0

|()>®m e — — postselect 0™
Un Ul
H|1p)
) —— TH )T

Figure 6. Given a possibly-non-Hermitian block-encoding of H, this quantum circuit builds a Hermitian block-encoding at the cost of
using two queries to the original encoding and one extra ancillary qubit.

Note that, although it is possible to encode L, directly, which is n? sparse, it is much more convenient to build the Dirac
operator Dy, which is n-sparse, and apply it twice as LE = (DE)? We recall the definition of the Dirac operator:

0 B} 0 L, 0 0
Dy = | (BY)" 0 By, ,|, My?*=( 0 LF o0 |[. (65)
0  BL)T 0 0o 0 LYY

The row index oracle for D% is defined as follows:

0,10\ {00}, €< HW(o)

66
10),, o U{te}), , otherwise (66)

Orow |l>m |0>n = {

For ¢ < HW(o) (the valid inputs), the row index corresponds to the ¢-th element in the column ¢ and corresponds to the
row of the face o without the vertex v,. For £ > HW(o), it will denote an invalid input and be erased by having a coefficient
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zero by Oeniry. However, the output must be chosen to make the oracle unitary: when £ exceeds the Hamming weight, we
add the /-th vertex of the complement simplex of .

The oracle O, works by applying the unitary Uggr 2n times. Uggr stands for ’if Set then Inc, if Equals then Flip’. It acts
on the register |¢), , a counter register of the same size |cnt), , and one qubit |v;) associated with the i-th vertex in the
simplex o:
|0),, lent +1) [1®0b), b=1and/=cnt+1
Usigr [£),, |ent),. [b) = 1 1), [ent 4+ 1), [b), b=1land/#cnt+1. (67)
|€),, lent) |b), b=0

The unitary Uggr is shown in Figure 7.

0) - ’_T_‘ —
loi) X

L2

Figure 7. Quantum circuits for Use. If the register o; the counter is incremented. The unitary (=) and its inverse (:)T compare the two
registers and set the output flag if the registers are equal. If the flag is set, the value of o; is flipped. At the end, the intermediate register
|0) has been uncomputed.

To implement Uy, we assume the counter register is initialized to —1, so we start decrementing it. Then, for each vertex,
we apply the unitary User, which will flip (unset) the ¢-th nonzero vertex and increment the counter register by HW (o). We
are not done, as we cannot uncompute the counter register yet. For that, we negate the o register and apply Usier again,
which will not unset any vertex but will increment by n — HW (o) the counter register, which can now be uncomputed with
a decrement operation. Finally, the o register is restored. The quantum circuit is shown in Figure 8.

o T T
|Cnt> — Usier 1 Usier — Usigr — Usigr — DEC (n - 1) —
Usise Usigr
0) — —
00) (X (X}
‘0'1> Usier E Usier @
|0n—1> @_@ Ugier @

Figure 8. Quantum circuits for Urow.
The entry oracle Uepyy is defined by

(—1)10)|0) o), o €Sand HW(o) =k +1and0< ¢ <k
Oentry [0)16),,, 0),, = 1 (=1)°|0) [€) [0}, o € L and HW(0) =k +2and 0 < £ <k +1 (68)
1) |€) |o), otherwise
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The ancillary qubit mark to non-zero elements only for ¢ € ¥, (HW (o) = k + 1 and o € ¥), and corresponds to filling
the block B and adjoint, and for 0 € 3,11 (block B}’ '+, and adjoint). The parity of ¢ decide if the sign is +1 (rotation
R, (—m)) or —1 (rotation Ry()). Its quantum circuit is shown in Figure 9.

Ok
<k

0<k), 4"

<k+1

%2
0<k+1 !

1 L]

)
)

|parity), .

]| -
ex

|O'€Z>1— o H HW =

k+1

HW =
k42

|[HW (o) =k + 1),

[HW (o) = k+2), .

|set),
|OUt>1 Ry(*ﬂ) 1 Ry(ﬂ') r

fan)
A\
a
A\

Figure 9. Quantum circuits for Urnrry. All the auxiliary registers have to be uncomputed at the end by applying each gate in the reverse
order (not explicitly shown in the picture).

D.1.3. HAMILTONIAN SIMULATION

Once we have access to the (normalized) block encoding of L, we can construct e~"L» . This task is known as Hamiltonian
simulation, and we can use the Quantum Signal Processing (QSP) algorithm, as this problem has a complexity matching its

lower bound (Low & Chuang, 2017).

Before delving into the details of this algorithm, let’s introduce a few unitaries that will be used in QSP. Consider the
definition of the CNOT gate,
cNoT = |0) (0] ® I + 11| ® X, (69)

where the action of this operator applies the bitflip operation X whenever the control qubit is in the image of the projector
IT = |1)(1]. We can generalize this operation by defining the projector-controlled NOT, denoted as C;yNOT, as

cgNoT=(I - I+ I ® X. (70)

We will particularly need the case for IT = |0 ) 0™, for which C;yNOT is an m + 1 qubit operator. In this case, the m
control qubits are controlled by the value 0, and the bitflip operation is applied to the target qubit. Furthermore, note that a
reflection over II is obtained by applying a Hadamard operation on the target qubit before and after the C;yNOT,

Un=2II-1={®H)cnuNoT(I ® H). (71)

The quantum circuit of U, requires m + 1 qubits, although the last qubit (the target of the CyNOT) can be ignored as it will
remain untouched after the operation, and the gate can act on m qubits only. Furthermore, we will need a projector-controlled
phase gate, denoted as e**U~ and acting on m -+ 1 qubits, defined by

eUn — cpNoT(e*? ® I,,,)CNOT. (72)

Finally, note that

s

Un = (—i)e' 5. (73)
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The QSP revolves around the following theorem (Gilyén et al., 2019; Lin, 2022). Let Uy be a («, m)-block encoding of
H. Let P, @ be complex polynomials in x, and d > 0 positive integer. Then, if the following conditions are satisfied: (1)
deg(P) < d and P has even parity; (2) deg(Q) < d and Q has odd parity; (3) |P(z)|> + (1 — 2%)|Q(=)|? for z € [-1,1].
Then, there exists a set of phases ® = (¢, . .., dq) € R¥1, ¢; € [—m, ) such that the unitary (cf. Figure 10)

d—1
Up = | [ e ZHo)UnUy | e'oetn, (74)

Jj=0

where Uy is a Hermitian block encoding of H, takes the form

B P(H) —iQ(H)WI — H?
U@‘(z@*(ﬂ) T—m PiA) ) )

meaning Us is a (o, m + 1)-block encoding of P(H ).

|0) ._6 R.(¢q) —P D— R(Pa—1) —P - D— R (60) —P post select 0

.. P(H) )
1¥) TP 0]

a

Figure 10. Quantum circuit for quantum signal processing, meaning the construction of the block encoding of the polynomial P(H).

The phase factors ¢; can be found numerically and efficiently via the approach proposed by Dong et al. (2021). The same
authors made available the software QSPPACK (https://github.com/gsppack/QSPPACK).

The function P(z) = e~ has no defined parity, thus the theorem does not apply. However, we can use Euler’s formula to
divide into the sum of cos(x) and sin(x) and proceed via a linear combination of unitaries, as in Figure 11.

|0) S T St post select 0

— .. exp(—iH
[4) cos(Ht) B4 sin(Ht) { —A HexgE*ngmil\

Figure 11. Quantum circuits for Hamiltonian simulation using the block encodings of cos(Ht) and sin(Ht).

Note that the advancement of quantum algorithms for Betti number estimation could also impact our quantum spectral
clustering algorithm. Some of the alternative schemes we could have used to define @y include the approach in McArdle
et al. (2022), which has introduced a more compact encoding for the p-simplices (compared to the one in Equation (9), that
uses O(klogn) instead of O(n) qubits. Ubaru et al. (2021) has introduced an alternative encoding that does not rely on the
row and entry oracles. Furthermore, the work by Berry et al. (2024) has introduced several major improvements, including
the use of a Kaiser window in the quantum phase estimation.

D.2. Construction of Ugyp

We can efficiently create an approximate unitary 2-design using local random circuits. Among the various ansatz options,
one of the most popular is the one presented by McClean et al. (2018), known to converge to an exact 2-design beyond a
certain depth. The unitary (over n qubits) is defined as:

¢ n—1 n n
.. N, T
Uwo = |TTTT 2970 ] B, 0) | [ TIRY (D] (76)
i=1j=1 j=1 i=1

as depicted in Figure 12. Here, ¢ is the number of layers (proportional to the depth), F; ; are Pauli matrices uniformly
sampled in {X, Y, Z}, and 0; ; are real values uniformly sampled in [0, 27).

22


https://github.com/qsppack/QSPPACK

A quantum algorithm for spectral clustering via Hodge Laplacians

0) — Ry(7/4) b Rpy . (01,1) Rp, ,(01,2)
0) — Ry(7/4) F— Rp..(02,1) Rp, ,(02,2)
0) — Ry(7/4) F— Rp, . (05,1) Rp,,(032)

0) — By(7/4) = Bp,., (0n1) l Rp, ,(0n2) L

Figure 12. Quantum circuits Urnp With £ = 2 layers. To obtain an approximate unitary 2-design, it is sufficient to set £ = O(n) where n
is the number of qubits.

It has been proven by Kumaran et al. (2024) that random quantum circuits with a depth of O(n) are sufficient to obtain the
expected results, specifically random projections satisfying the Johnson-Lindenstrauss lemma.

D.3. Construction of II;

A projection can be implemented via a Hadamard test together with a post-selection operation. Consider the simple example
in Figure 13(a) implementing the single-qubit projector [0)0] or |1)(1| depending on the post-selection value. The system
evolves as follows:

(H®T)-cz- (H&T)-[0)|4)

1 1
—(HeT)-cz- (ﬁ 0+ 5 |1>) )
1 1
—(H o). (\@ 1) + 1>z|w>)
—j0) &2y 2y
[0)0] [1)(1]

Then, post-selection on the ancillary qubit of the value 0 leads to the projector IT = |0X0|, while a post-selection on the
same qubit of the value 1 leads to IT = |1)(1].

The process can be easily extended to multiple qubits, as for the two-qubit projector in Figure 13(b).
(HI®I)-ccz- (HRI®I)-|0), |¥)y
1 1
=HIel)-ccz- | —=0); + —=]1
(o181 ccz- (510, + o5 I, ) 10,

1 1
% |0Y I |ep) + 7 1) CZI¢>)
(I+ cz)

(I-cz)
- ).

[4) +11) =
——
I—|11)11] [11)X11]

=(HeIal)- <
=10)
A simple modification of this scheme allows us to implement any projector. For example, negating before and after the

control and z implement the projector |00)(00|, while, in general, for IT = [¢)(¢| and P [0)®™ = |t), we can use the scheme
in Figure 13(c).

Consider the implementation of the projector II;, « = 1,...,¢q, over n qubits, where let ¢ = 2™ for simplicity. Each
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projector can be defined to be the sum of N = 2™ /2™ states of the computational basis. This results in
N
I = S i + )N + i, (77)

which can be easily obtained with the scheme in Figure 13(c) using as P the binary representation of ¢ in the first m qubits
and placing a Hadamard gate on the remaining ones.

o

Figure 13. Quantum circuit to create projections. (a) Quantum circuit whose postselection on the ancillary qubit of value 1 leads to the
single qubit projection IT = |1)(1|. (b) Quantum circuit whose postselection on the ancillary qubit of value 1 leads to the two-qubit
projection IT = |11)11]. (c) Quantum circuit whose postselection on the ancillary qubit of value 0 leads to the arbitrary qubits projection
IT = |s)(s| for P |0) = |s).

D.4. Overlap test

The overlap between two states [i) , |¢), once we are able to prepare them via the unitaries
Uy 0) = [¢) (78)
Uy 0) = |9) (79)

is obtained via the Hadamard test, repeated twice to estimate separately the real and imaginary parts of the inner product (cf.
Figure 14 and Figure 15). The controlled transformation in both quantum circuits is

U=UlUy. (80)
0
‘0>®n iﬂi

Figure 14. Hadamard test whose expectation value (z @ I®™) (probability of obtaining output 0 minus the probability of obtaining 1)
corresponds to Re((0| U |0)).

E. Extended description of the numerical experiment
E.1. Extended setup
E.1.1. DATA GENERATION

The ASCs are generated using the generate_abstract_simplicial_complex function. This function takes the
number of vertices n, the number of clusters m, the interaction size to analyze k, and a density parameter 0 < p < 1 as
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0) —{ 7} 1]

N | I
) U]

Figure 15. Hadamard test whose expectation value (z ® I®™) (probability of obtaining output 0 minus the probability of obtaining 1)
corresponds to Im((0] U |0)).

inputs.

We create m |n/m]-simplices, each acting on independent vertices, then define the ASCs with maximal simplices
corresponding to the determined |n/m |-simplices. This process generates many k- and (k + 1)-simplices, which are the
primary objects of our analysis. To loosely connect initially disconnected clusters, we introduce additional p-simplices. The
number of bridge simplices is randomly sampled from a range of 0 to 600 x m. Finally, to simulate the presence of holes in
the ASC, a certain percentage (determined by the parameter p) of (k + 1)-simplices is removed.

The ground truth for clustering is defined such that any p-simplex belongs to cluster ¢ € {1, ..., m} if the majority of its
vertices belong to the i-th maximal simplex. It is important to note that this clustering task is highly artificial and may not
necessarily represent real-world use cases. However, its flexibility allows us to simulate various scenarios, including denser
or sparser situations with few or many holes.

In our experiments, we set the number of vertices to n = 20, the number of clusters to m = 2, and the interaction size to
k = 3. The density ranges in p € {0.25,0.33,0.50,0.66,0.75}. For each different value of p, we generate 50 ASCs.

E.1.2. SPECTRAL CLUSTERING

The spectral embedding is calculated using the spectral_embedding function, which takes the ASC as input, along
with the target dimensionality of the Euclidean space g, the eigenvalue threshold 7, and the chosen dimensionality reduction
technique (no reduction, Haar random unitaries, or PCA).

The process begins by computing the Laplacian matrix L, and its eigendecomposition. Subsequently, components with
eigenvalues < 7 are filtered out. In cases where all components are deleted (which can rarely happen for simplices with no
holes and 7 = 0), the bottom two components are selected to proceed. If no dimensionality reduction is applied, only the
bottom g components are considered, and the rest are disregarded. If there are fewer than ¢ elements, the process continues
with a lower target dimensionality of the Euclidean space.

Alternatively, one of the supported dimensionality reduction techniques can be applied. The Haar-random unitary technique,
which is more easily implementable on quantum devices, is one option. PCA is also included for a more extensive
comparison.

Spectral clustering is tested with various configurations: the dimensionality of the embedding Euclidean space is set to
q € {3,5,7,9}, the eigenvalue threshold is varied across 7 € {le—7,1e—2,1le—1,5e¢—1,1e0}, and all the described
dimensionality reduction techniques are considered, including no reduction.

The performance of the clustering is assessed using the normalized mutual information score, where accuracy serves as
a pertinent measure in this context. Take, for instance, the ground truth [0, 1] and the clustering result [1, 0]. The correct
normalized mutual information score is 1.0 because a permutation of the predicted labels aligns with the ground truth.
However, the accuracy would be 0.0 as it does not consider the permutation of labels.

E.2. Extended results

In Figure 16, we show the expected number of “small” eigenvalues of the Laplacian L3 when creating the ASCs on 20
vertices using the technique detailed in Appendix E.1.1. For small values of the density p, such as p = 0.25 and p = 0.33,
we observe that the number of zero eigenvectors (7 ~ 0 plus a small numerical error) is very large—on average, beyond
100. This implies that, in this case, it is challenging to directly apply the spectral clustering approach in Ebli & Spreemann
(2019). In contrast, with higher values of p, e.g. p = 0.66 and p = 0.75, we encounter fewer holes, and Ebli & Spreemann
(2019) can be employed. However, at this point, it is unclear whether this is convenient in terms of performance.
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Figure 16. Number of eigenvalues below the threshold 7 of the operator L calculated on ASC with different density of 4-simplices kept.

In Figure 17, the normalized mutual information score in various configurations is presented. For lower densities, e.g.,
p = 0.25,p = 0.33, where a large number of zero eigenvectors is present, the introduction of even more components is
not beneficial. In this situation, the best performance is obtained by applying no dimensionality reduction. Surprisingly,
maintaining a very low target dimensionality of the Euclidean space (¢ = 3) yields comparable performance to higher values
(¢=9).

For higher densities, e.g., p = 0.50, which has a few tenths of zero eigenvalues, adding more components is beneficial up to
the threshold t = 1e — 2 for Haar dimensionality reduction. However, adding even more components degrades performance.
This already suggests the trend that the fewer zero eigenvalues there are in the spectrum of the Laplacian, the more we need
to include in the embedding to compensate for the limited topological information. Furthermore, PCA has proven to be
a more robust approach; including components beyond 7 = le — 2 does not degrade performance, as they likely do not
significantly affect the principal components. From a quantum perspective, though implementing PCA is feasible, it is not
as efficient and immediate as an approximate unitary 2-design.

For even higher densities, e.g., p = 0.66,p = 0.75, we confirm the trend that adding more components is necessary to
increase performance. The optimal value is 7 = 5 x 10e — 1. Increasing the dimensionality of the Euclidean space has the
desired effect of improving performance, as expected. In these latter experiments, however, the use of PCA is comparable to
Haar dimensionality reduction, and it is not necessarily true that the approach is robust in this case.

E.3. Code

The code used to perform the experiments has been written in Python 3. The experiments can be reproduced by either
uploading the Python notebook file quantum_spectral_clustering. ipynb to Google Colab, or by setting up an
environment that includes Python 3.10.12 with PIP version 23.3.2. In the latter case, the required libraries can be installed
using the attached file requirements.txt. This configuration has been tested on Ubuntu 22.04.3 LTS.
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Figure 17. Normalized mutual information with respect to the eigenvalue threshold 7 (on the x-axis), target dimensionality of the Euclidean
space (on the rows), dimensionality reduction technique (on the columns; Ebli: no reduction, Haar: Haar-random unitary, PCA: principal
component analysis) and density of 4-simplices. The score is calculated via the spectral embedding followed by k-means.
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E.4. Data

To recreate the plots without rerunning the experiments from scratch, you can load the file df _densityXX.pickle.
Here, XX can be 25, 33, 50, 66, 75, and corresponds to the percentage of 4-simplices removed from the ASC; lower values
of XX lead to simplices with more holes.

F. Numerical example on real-world dataset

The proposed experiment is highly artificial, driven by the absence of a dataset based on a simplicial complex with a clear
"ground truth’ regarding its clustering structure.

In addition to our artificial example, we conducted a higher-level analysis on three real-world datasets: the Zachary Karate
Club network (Zachary, 1977), the Polbooks network (Krebs, 2004), and a football network (Girvan & Newman, 2002). The
absence of a "ground truth’ labeling of the clusters, coupled with the NP-hardness of calculating it, restricts our analysis
to a high-level assessment of their clustering structure. We examined the clique complex of these networks, with the
dimensionalities of the simplices detailed in Table 2.

Table 2. The cardinality of the set of p-simplices for the three real-world datasets under consideration.

Dataset VI 121 182 12| |24 |1Z5] 2]
Zachary Karate Club 34 78 45 11 2 - -
Polbooks 115 613 560 319 81 7 -
Football 105 441 810 732 473 237 &9

The table 3 presents the count of harmonics and close-to-harmonics for each dataset, classified by the eigenvalue magnitude

of ”fﬁ and the order of the simplices p.

Table 3. Number of eigenvectors below a fixed threshold.

Dataset ~0 <107 <107® <1072 <107! <1
Zachary (p=1) 9 9 9 9 57 18
Zachary (p=2) 0 0 0 0 18 45
Zachary (p=3) 0 0 0 0 0 11
Football (p=1) 120 120 120 147 613 613
Football (p=2) 7 7 7 60 810 810
Football (p=3) 2 2 2 21 732 732
Football (p=4) 1 1 1 1 437 437
Football (p=5) 0 0 0 0 237 237
Football (p=6) 0 0 0 0 17 89
Football (p=7) 0 0 0 0 0 20
Polbooks (p=1) 27 27 27 59 423 441
Polbooks (p=2) 5 5 5 43 553 560
Polbooks (p=3) 0 0 0 5 310 319
Polbooks (p=4) 0 0 0 0 34 81

Given the eigenvalue distribution, we can assess the clustering structure of each dataset. This enables us to determine whether
the spectrum, particularly its exact harmonics, offers informative clustering insights for each dataset and configuration.
However, due to the absence of a ground truth for the clustering structure (unlike our artificial example) and the impracticality
of identifying the optimal clustering structure (i.e., the one minimizing the higher-order conductance, a metric related to
higher-order Cheeger’s inequality, which is NP-complete), calculating the Mutual Information Score between ground truth
and our approach is not feasible. A high-level clustering analysis for these datasets is presented in Table 4.
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Table 4. High-level clustering structure analysis for datasets

Dataset

Clustering structure

Ebli et al

Our approach Feasible to find the

ground truth

Zachary (p=1)
Zachary (p=2)
Zachary (p=3)
Football (p=1)

Football (p=2)

Football (p=3)

Football (p=4)

Football (p=5)
Football (p=6)

Football (p=7)

Polbooks (p=1)

Polbooks (p=2)

Polbooks (p=3)

Polbooks (p=4)

9 exact harmonics contribute to the
clustering structures (;= 9 clusters)

Weak clustering structure captured
by the 18 close-to-harmonics

No clear clustering structure

120 exact harmonics contribute to
the clustering structures (> 120
small clusters)

7 exact harmonics reveal the clus-
tering structure, beyond that, further
structure is hidden in the close-to-
harmonics

2 exact harmonics reveal the clus-
tering structure, and the 21 close-
to-harmonics reveal additional struc-
ture

1 exact harmonic reveals the cluster-
ing structure while no further struc-
ture can be extracted from the spec-
trum

The spectrum is uninformative

A weak cluster structure is revealed
by the 17 close-to-harmonics, the p-
simplices are almost fully connected
The spectrum is uninformative

The cluster structure is revealed by
the exact harmonics

The 5 exact harmonics reveal a
strong cluster structure while addi-
tional structure can be extracted with
43 close-to-harmonics

The exact harmonics reveal no struc-
ture, close-to-harmonics reveal 5
loosely connected clusters

The exact harmonics reveal no struc-
ture, close-to-harmonics reveal 34
loosely connected clusters

May succeed
Fails
Fails

May succeed

May succeed

May succeed

Succeed

Fails
Fails

Fails
Succeed

Succeed

Fails

Fails

May succeed
May succeed
Fails

May succeed

May succeed

May succeed

Succeed

Fails
Succeed

Fails

Succeed

Succeed

Succeed

Succeed

No (78 variables)

No (45 variables)

No (613 variables)

No (810 variables)

No (732 variables)

No (437 variables)

No (89 variables)

No (441 variables)

No (560 variables)

No (319 variables)

No (81 variables)

29



A quantum algorithm for spectral clustering via Hodge Laplacians

G. Infeasiblility of the implementation of the spectral embedding on NISQ devices

In this appendix, we provide further evidence regarding the inapplicability of our algorithm on NISQ devices. To the best of
the authors’ knowledge, the only experiment involving Topological Data Analysis (TDA) on quantum hardware, particularly
on an optical platform, is documented in (Huang et al., 2018), which examined only three data points. While this experiment
holds significance within the experimental community, its relevance to network analysis is limited.

Despite significant algorithmic advancements, practical implementation on NISQ devices remains elusive. This is primarily
due to many of these algorithms relying on the resource-intensive Quantum Phase Estimation (QPE) primitive, which is
crucial in our approach. Although (Ubaru et al., 2021) proposed a modification of the original quantum TDA algorithm,
circumventing the use of QPE and enabling execution with linear depth in the number of network vertices, this adaptation
does not directly apply to our scenario as we heavily rely on QPE for Laplacian eigenvector calculations. Furthermore,
linear depth alone does not ensure suitability for execution on current NISQ platforms.

A recent overview of the implementation landscape, as outlined in (Berry et al., 2024), estimated the necessity of 106 — 1012
Toffoli (controlled-controlled-NOT) operations for quartic to 32-ary interaction analysis in Betti number estimation.

G.1. Difference between NISQ and Fault-tolerant quantum hardware

For NISQ hardware, algorithms are designed to operate under (reasonably) noisy conditions and therefore should not be
severely affected. This is exemplified in variational algorithms, which utilize parameter-shift instead of the finite differences
method for calculating gradients of a loss function, thereby ensuring noise resilience. In addition to being inherently ‘robust’
(often without speedup guarantees), error mitigation procedures can be employed. These procedures may involve splitting a
single circuit into (many) smaller ones or applying post-processing techniques based on deterministic or learning-based
algorithms.

For fault-tolerant quantum hardware, computation is protected through the use of error-correcting codes. The threshold
theorem informally states that for quantum gates with an error rate below a certain threshold, any error can be corrected.
However, beyond this threshold, the hardware used for the code itself introduces errors at a faster rate than it can correct
them. One of the popular codes realized experimentally is the toric code, which maps each logical qubit to between x9 and
x25 (and beyond) physical qubits, depending on parameters such as the error rate and desired level of fault tolerance.

G.2. Estimating the number of operations applicable from the T1 and T2 times

We can demonstrate that error mitigation alone is insufficient for the successful execution of our algorithm; rather, we
need to rely on fully fault-tolerant hardware. Consider the IBMQ Kyoto hardware, boasting 128 qubits, with average T1
“relaxation time” and T2 “dephasing time” of 223 s and 115us, respectively. These times essentially represent the duration
taken to transition from an excited to ground state and from a coherent state to a mixed one. Assuming a very optimistic
gate speed of 10ns, we find that we can perform at most 1.5 x 10* operations before encountering a quantum state deemed
useless. (This simplification disregards whether a specific device can perform multiple gates in parallel and, if so, how
many.)

Now, when analyzing the Laplacian LO for a network of only 5 vertices encoded in the most compact manner possi-
ble—explicitly defining the correct unitary (although this method is somewhat deceptive, as I should define the circuit from
the oracles as stated in the appendices, but this would require hundreds of qubits and millions of gates, rendering it infeasible
to simulate on any classical device)—and utilizing the more resource-intensive quantum circuit optimization techniques
provided by the Qiskit framework, we end up with a circuit consisting of 2.8 x 10° gates.

G.3. Noisy simulations

We have also simulated the circuit with and without the noise model of IBM Kyoto. We have calculated the spectral
embedding of a single vertex for & = 1 components and performed Quantum Phase Estimation (QPE) over 3 bits of
precision of the eigenvalue register, after postselection of value ‘000’ in the eigenvalue register.

Noiseless simulation

* Value sampled after postselection ‘000° on the QPE qubits: {*000 00101°: 89, 000 10001°: 142, *000 00000’: 74, *000
01001°: 117,000 00011°: 99}
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e o(v) =~ 0.142

Noisy simulation with IBM Kyoto noise model

* Value sampled after postselection ‘000’ on the QPE qubits: {*000 00000’: 1, ’000 00100’:
10110’: 5,°000 10111°: 2,000 01100’: 3, 000 01010’: 1, °000 11001°: 3,°000 11111°:
01101’: 5,000 01000’: 3, 000 10001°: 6, °000 00110’: 5, *000 00101’: 5,000 11011":
01111’: 3,°000 11000’: 1, °000 01011°: 9,°000 11100’: 6, 000 00011’: 3,000 11110’:
00010’: 7,000 10010’: 1, °000 00111°: 4, °000 11010’: 4, *000 10000’: 4, *000 01001’:

10101°: 6}
e p(v) = 0.0

25,7000 10100’:
1, °000 00001°:
6,°000 10011°:
6,°000 01110’:
6,°000 11101°:

3,000
3,°000
6, °000
4,000
2,000

It is immediately evident that the results from the noisy simulation are essentially white noise. Scaling from 5 to several

million vertices quickly shows how such an approach is unsuitable for noisy devices.
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