
A APPENDIX

A.1 PROOFS

Lemma A.1. The local robustness of a multi-class linear model f(x) = w⊤x+ b (with w ∈ Rd×C and b ∈ RC) at point
x with respect to a target class t is given by the following. Define weights ui = wt −wi ∈ Rd,∀i ̸= t, where wt,wi are
rows of w and biases ci = ui

⊤x+ (bt − bi) ∈ R. Then,

probust
σ (x) = ΦUU⊤

 ci
σ∥ui∥2

∣∣∣∣Ci=1
i ̸=t


where U =

ui

∥ui∥2

∣∣∣∣Ci=1
i̸=t

∈ R(C−1)×d

and ΦUU⊤ is the (C − 1)-dimensional Normal CDF with zero mean and covariance UU⊤.

Proof. First, we rewrite probustσ in the following manner, by defining gi(x) = ft(x)− fi(x) > 0, which is the “decision
boundary function".

probust
σ = Pϵ∼N (0,σ2)

[
max

i
fi(x+ ϵ) < ft(x+ ϵ)

]
= Pϵ∼N (0,σ2)

 C⋃
i=1;i ̸=t

gi(x+ ϵ) > 0


Now, assuming that f, g are linear such that gi(x) = u′

i
⊤
x+ g(0), we have gi(x+ ϵ) = gi(x) + ui

⊤ϵ, and obtain

probust
σ = Pϵ∼N (0,σ2)

 C⋃
i=1;i ̸=t

ui
⊤ϵ > −gi(x)

 (1)

= Pz∼N (0,Id)

 C⋃
i=1;i̸=t

ui

∥ui∥2

⊤
z > − gi(x)

σ∥ui∥2

 (2)

This step simply involves rescaling and standardizing the Gaussian to be unit normal. We now make the following
observations:

• For any matrix U ∈ RC−1×d and a d-dimensional Gaussian random variable z ∼ N (0, Id) ∈ Rd, we have U⊤z ∼
N (0,UU⊤), i.e., an (C-1) -dimensional Gaussian random variable.

• CDF of a multivariate Gaussian RV is defined as Pz[
⋃

i zi < ti] for some input values ti

Using these observations, if we construct U = ui

∥ui∥2

∣∣∣∣Ci=1
i ̸=t

∈ R(C−1)×d, and obtain

probust
σ = Pr∼N (0,UU⊤)

 C⋃
i=1;i ̸=t

ri <
gi(x)

σ∥ui∥2


= CDFN (0,UU⊤)

 gi(x)

σ∥ui∥2

∣∣∣∣Ci=1
i̸=t





where gi(x) = ui
⊤x+ gi(0) = (wt −wi)

⊤
x+ (bt − bi)

Lemma A.2. (Extension to non-Gaussian noise) For high-dimensional data (d → ∞), Lemma 1 generalizes to any
coordinate-wise independent noise distribution that satisfies Lyapunov’s condition.

Proof. Applying Lyupanov’s central limit theorem, given ϵ ∼ R is sampled from some distribution R to equation 2 in the
previous proof, we have we have u

σ∥u∥2

⊤ϵ =
∑d

j=1
uj

σ∥u∥2
ϵj d

−→ N (0, 1), which holds as long as the sequence { uj

∥u∥2
ϵj}

are independent random variables and satisfy the Lyapunov condition. In particular, this implies that U⊤z ∼ N (0,UU⊤),
and the proof proceeds as similar to the Gaussian case after this step.

Lemma A.3. (Extension to non-isotropic Gaussian) Lemma 1 can be extended to the case of ϵ ∼ N (0, C) for an arbitrary
positive definite covariance matrix C:

probust
σ (x) = ΦUCU⊤

 ci
∥ui∥2

∣∣∣∣Ci=1
i ̸=t


Proof. We observe that the Gaussian random variable ui

∥ui∥
⊤ϵ|Ci=1

t̸=t
= U⊤ϵ has mean zero as ϵ is mean zero. Computing its

covariance matrix, we have Eϵ U
⊤ϵϵ⊤U = U⊤ Eϵ(ϵϵ

⊤)U = U⊤CU. We use this result after equation 2 in the proof of
Lemma 1.

Proposition A.1. The Taylor estimator for the local robustness of a classifier f at point x with respect to target class t
is given by linearizing f around x using a first-order Taylor expansion, with decision boundaries gi(x) = ft(x)− fi(x),
∀i ̸= t, leading to

ptaylor
σ (x) = ΦUU⊤

 gi(x)

σ∥∇xgi(x)∥2

∣∣∣∣Ci=1
i̸=t


with U and Φ defined as in the linear case.

Proof. Using the notations from the previous Lemma A.1, we can linearize g(x + ϵ) ≈ g(x) +∇xg(x)
⊤ϵ using a first

order Taylor series expansion. Thus we use ui = ∇xgi(x) and ci = gi(x), and plug it into the result of Lemma A.1.

Proposition A.2. The estimation error of the Taylor estimator for a classifier with a quadratic decision boundary
gi(x) = x⊤Aix+ u⊤

i x+ ci for positive-definite Ai, is upper bounded by

|probustσ (x)− ptaylorσ (x)| ≤ kσC−1
C∏
i=1
i ̸=t

λAi
max

∥ui∥2

for noise ϵ ∼ N (0, σ2/d), in the limit of d → ∞.



Proof. Without loss of generality, assume that x = 0. For any other x1 ̸= 0, we can simply perform a change of variables of
the underlying function to center it at x1 to yield a different quadratic. We first write an expression for probustσ for the given
quadratic classifier gi(x) at x = 0.

probustσ (0) = Pϵ

(⋃
i

gi(ϵ) > 0

)

= Pϵ

(⋃
i

u⊤
i ϵ+ c > −ϵ⊤Aiϵ

)

Similarly, computing, ptaylorσ we have ∇xgi(0) = u⊤ and gi(0) = ci, resulting in

ptaylorσ (0) = Pϵ

(⋃
i

gtaylori (ϵ) > 0

)

= Pϵ

(⋃
i

u⊤
i ϵ+ c > 0

)

Subtracting the two, we have

|probustσ (0)− ptaylorσ (0)|

=

∣∣∣∣∣P
(⋃

i

0 > u⊤
i ϵ+ c > −ϵ⊤Aiϵ

)∣∣∣∣∣
=

∣∣∣∣∣P
(⋃

i

0 >
u⊤
i ϵ+ c

σ∥ui∥2
> − ϵ⊤Aiϵ

σ∥ui∥2

)∣∣∣∣∣

For high-dimensional Gaussian noise ϵ ∼ N (0, σ2/d), with d → ∞, we have that ∥ϵ∥2 =
∑

i ϵ
2
i → σ2 from the law of

large numbers. See [Vershynin, 2018] for an extended discussion. Thus we have ϵ⊤Aϵ ≤ λA
max∥ϵ∥2 = λA

maxσ
2.

Also let zi =
u⊤

i ϵ+c
σ∥ui∥2

be a random variable. We observe that zi|i is a tensor extension of zi, has a covariance matrix of UU⊤

as before. Let us also define Ci = λ
Ai
max

∥ui∥2
.



|probustσ (0)− ptaylorσ (0)|

=

∣∣∣∣∣P
(⋃

i

0 > zi(ϵ) > − ϵ⊤Aiϵ

σ∥ui∥2

)∣∣∣∣∣
≤

∣∣∣∣∣P
(⋃

i

0 > zi > − λAi
max

∥ui∥2
σ

)∣∣∣∣∣ (ϵ⊤Aϵ < λA
maxσ

2)

=

∣∣∣∣∫ ...

∫ 0

−Ciσ

pdf(zi|i) dzi|i
∣∣∣∣ (Defn of mvn cdf)

≤ max
zi|i

pdf(zi|i)
∏
i

|Ciσ| (Upper bound pdf with its max)

≤ (2π)−(C−1)/2 det(UU⊤)−1/2
C∏
i=1
i̸=t

Ciσ

= k

σC−1
C∏
i=1
i ̸=t

λAi
max

∥ui∥2



where k = maxz pdf(z) = (2π)−(C−1)/2 det(UU⊤)−1/2, which is the max value of the Gaussian pdf. Note that as the
rows of U are normalized, det(U) ≤ 1 and det(UU⊤) = det(U)2 ≤ 1.

We note that these bounds are rather pessimistic, as in high-dimensions ϵ⊤Aiϵ ∼ λAi
mean ≤ λAi

max, and thus in reality the
errors are expected to be much smaller.

Proposition A.3. The MMSE estimator for the local robustness of a classifier f at point x with respect to target class t is
given by an MMSE linearization f around x, for decision boundaries gi(x) = ft(x)− fi(x), ∀i ̸= t, leading to

pmmse
σ (x) = ΦUU⊤

 g̃i(x)

σ∥∇xg̃i(x)∥2

∣∣∣∣Ci=1
i ̸=t


where g̃i(x) =

1

N

N∑
j=1

gi(x+ ϵ) , ϵ ∼ N (0, σ2)

with U and Φ defined as in the linear case, and N is the number of perturbations.

Proof. We would like to improve upon the Taylor approximation to g(x+ϵ) by using an MMSE local function approximation.
Essentially, we’d like the find u ∈ Rd and c ∈ R such that

(u∗(x), c∗(x)) = argmin
u,c

E
ϵ∼N (0,σ2)

(g(x+ ϵ)− u⊤ϵ− c)2

A straightforward solution by finding critical points and equating it to zero gives us the following:



u∗(x) = E
ϵ

[
g(x+ ϵ)ϵ⊤

]
/σ2

= E
ϵ
[∇xg(x+ ϵ)] (Stein’s Lemma)

c∗(x) = E
ϵ
g(x+ ϵ)

Plugging in these values of U∗, c∗ into Lemma A.1, we have the result.

Proposition A.4. The estimation error of the MMSE estimator for a classifier with a quadratic decision boundary
g(x) = x⊤Ax+ u⊤x+ c, and positive definite A is upper bounded by

|probustσ (x)− pmmse
σ (x)| ≤ kσC−1

C∏
i=1
i ̸=t

|λAi
max − λAi

mean|
∥ui∥2

for noise ϵ ∼ N (0, σ2/d), in the limit of d → ∞ and N → ∞.

Proof. We proceed similarly to the proof made for the Taylor estimator, and without loss of generality, assume that
x = 0. Computing, pmmse

σ we have Eϵ ∇xgi(ϵ) = u⊤
i and Eϵ gi(ϵ) = c + E(ϵ⊤Aiϵ) = c + E(trace(ϵ⊤Aiϵ)) =

c+ E(trace(Aiϵϵ
T )) = c+ trace(Ai)σ

2/d = c+ σ2λAi
mean, resulting in

pmmse
σ (0) = Pϵ

(⋃
i

ĝi(ϵ) > 0

)

= Pϵ

(⋃
i

u⊤
i ϵ+ c > −σ2λAi

mean

)

Subtracting the two, we have

|probustσ (0)− pmmse
σ (0)|

≤

∣∣∣∣∣P
(⋃

i

−σ2λAi
mean > u⊤

i ϵ+ c > −σ2λAi
max

)∣∣∣∣∣
=

∣∣∣∣∣P
(⋃

i

−σ
λAi

mean

∥ui∥2
>

u⊤
i ϵ+ c

σ∥ui∥2
> −σ

λAi
max

∥ui∥2

)∣∣∣∣∣
Similar to the previous proof, let zi = u⊤

i ϵ + c be a random variable, and that zi|i is a tensor extension of zi from our
previous notation.



|probustσ (x)− pmmse
σ (x)|

≤

∣∣∣∣∣P
(⋃

i

−λAi
meanσ

2 > zi > −λAi
maxσ

2

)∣∣∣∣∣
=

∣∣∣∣∣
∫

...

∫ −λ
Ai
meanσ

2

−λ
Ai
maxσ2

pdf(zi|i) dzi|i

∣∣∣∣∣
≤ max

zi|i
pdf(zi|i) σC−1

∏
i

|(λAi
max − λAi

mean)|
∥ui∥2

= kσC−1
∏
i

|λAi
max − λAi

mean|
∥ui∥2

where k = maxz pdf(zi|i) = (2π)−(C−1)/2 det(UU⊤)−1/2 like in the Taylor case. Note that as the rows of U are
normalized, det(U) ≤ 1 and det(UU⊤) = det(U)2 ≤ 1.

We note that these bounds are rather pessimistic, as in high-dimensions ϵ⊤Aiϵ ∼ λAi
mean ≤ λAi

max, and thus in reality the
errors are expected to be much smaller.

A.1.1 Approximating the Multivariate Gaussian CDF with mv-sigmoid

One drawback of the Taylor and MMSE estimators is their use of the mvn-cdf, which does not have a closed form solution
and can cause the estimators to be slow for settings with a large number of classes C. In addition, the mvn-cdf makes these
estimators non-differentiable, which is inconvenient for applications which require differentiating probustσ . To alleviate these
issues, we approximate the mvn-cdf with an analytical closed-form expression. As CDFs are monotonically increasing
functions, the approximation should also be monotonically increasing.

To this end, it has been previously shown that the univariate Normal CDF ϕ is well-approximated by the sigmoid function
[Hendrycks and Gimpel, 2016]. It is also known that when UU⊤ = I , mvn-cdf is given by Φ(x) =

∏
i ϕ(xi), i.e., it is

given by the product of the univariate normal CDFs. Thus, we may choose to approximate Φ(x) =
∏

i sigmoid(x). However,
when the inputs are small, this can be simplified as follows:

ΦI(x) =
∏
i

ϕ(xi) ≈
∏
i

1

1 + exp(−xi)

=
1

1 +
∑

i exp(−xi) +
∑

j,k exp(−xj − xk) + ...

≈ 1

1 +
∑

i exp(−xi)
(for xi → ∞ ∀i)

We call the final expression the “multivariate sigmoid” (mv-sigmoid) which serves as our approximation of mvn-cdf,
especially at the tails of the distribution. While we expect estimators using mv-sigmoid to approximate ones using mvn-cdf
only when UU⊤ = I, we find experimentally that the approximation works well even for practical values of the covariance
matrix UU⊤. Using this approximation to substitute mv-sigmoid for mvn-cdf in the ptaylorσ and pmmse

σ estimators yields the
ptaylor_mvs
σ and pmmse_mvs

σ estimators, respectively.

A.1.2 Relationship between mv-sigmoid, softmax, and the Taylor estimator

A common method to estimate the confidence of model predictions is to use the softmax function applied to the logits fi(x)
of a model. We note that softmax is identical to mv-sigmoid when directly applied to the logits of neural networks:



softmaxt

(
fi(x)

∣∣∣C
i=1

)
=

exp(ft(x))∑C
i=1 exp(fi(x))

=

1

1 +
C∑
i=1
i ̸=t

exp(fi(x)− ft(x))

= mv-sigmoid

(
gi(x)

∣∣∣Ci=1
i̸=t

)

Recall that gi(x) = ft(x)− fi(x) is the decision boundary function. Note that this equivalence only holds for the specific
case of logits. Comparing the expressions of softmax applied to logits above and the Taylor estimator, we notice that they are
only different in that the Taylor estimator divides by the gradient norm, and uses the mvn-cdf function instead of mv-sigmoid.
Given this similarity to the Taylor estimator, it is reasonable to ask whether softmax applied to logits (henceforth psoftmax

T

for softmax with temperature T ) itself can be a “good enough” estimator of probust
σ in practice. In other words, does psoftmax

T

well-approximate probust
σ in certain settings?

In general, this cannot hold because softmax does not take in information about UU⊤, nor does it use the gradient
information used in all of our estimators, although the temperature parameter T can serve as a substitute for σ in our
expressions. In Appendix A.1, we provide a theoretical result for a restricted linear setting where softmax can indeed match
the behavior of ptaylor_mvs

σ , which happens precisely when UU⊤ = I and all the class-wise gradients are equal. In the next
section, we demonstrate empirically that the softmax estimator psoftmax

T is a poor estimator of average robustness in practice.

The softmax estimator We observe that for linear models with a specific noise perturbation σ, the common softmax
function taken with respect to the output logits can be viewed as an estimator of probustσ , albeit in a very restricted setting.
Specifically,

Lemma A.4. For multi-class linear models f(x) = w⊤x + b, such that the decision boundary weight norms ∥ui∥2 =
k, ∀i ∈ [1, C], i ̸= t,

psoftmax
T = ptaylor_mvs

σ where T = σk

Proof. Consider softmax with respect to the tth output class and define gi(x) = ft(x) − fi(x), with f being the linear
model logits. Using this, we first show that softmax is identical to mv-sigmoid:

psoftmax
T (x) = softmaxt(f1(x)/T, ..., fC(x)/T )

=
exp(ft(x)/T )∑
i exp(fi(x)/T )

=
1

1 +
∑

i;i̸=t exp((fi(x)− ft(x))/T )

= mv-sigmoid

gi(x)/T ∣∣∣∣Ci=1
i ̸=t


Next, by denoting ui = wt −wi, each row has equal norm ∥ui∥2 = ∥uj∥2,∀i, j, t ∈ [1, ...C] which implies:

ptaylor_mvs
σ (x) = mv-sigmoid

 gi(x)

σ∥ui∥2

∣∣∣∣Ci=1
i̸=t


= mv-sigmoid

gi(x)/T ∣∣∣∣Ci=1
i̸=t

 (∵ T = σk)

= psoftmax
T (x)



Lemma A.4 indicates that the temperature parameter T of softmax roughly corresponds to the σ of the added Normal noise
with respect to which local robustness is measured. Overall, this shows that under the restricted setting where the local linear
model consists of decision boundaries with equal weight norms, the softmax outputs can be viewed as an estimator of the
ptaylor_mvs
σ estimator, which itself is an estimator of probustσ . However, due to the multiple levels of approximation, we can

expect the quality of psoftmax
T ’s approximation of probustσ to be poor in general settings (outside of the very restricted setting),

so much so that in general settings, probustσ and psoftmax
T would be unrelated.

A.2 DATASETS

The MNIST dataset consists of images of gray-scale handwritten digits spanning 10 classes: digits 0 through 9. The
FashionMNIST (FMNIST) dataset consists of gray-scale images of articles of clothing spanning 10 classes: t-shirt, trousers,
pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot. For MNIST and FMNIST, each image is 28 pixels x 28
pixels. For MNIST and FMNIST, the training set consists of 60,000 images and the test set consists of 10,000 images.

The CIFAR10 dataset consists of color images of common objects and animals spanning 10 classes: airplane, car, bird, cat,
deer, dog, frog, horse, ship, and truck. The CIFAR100 dataset consists of color images of common objects and animals
spanning 100 classes: apple, bowl, chair, dolphin, lamp, mouse, plain, rose, squirrel, train, etc. For CIFAR10 and CIFAR100,
each image is 3 pixels x 32 pixels x 32 pixels. For CIFAR10 and CIFAR100, the training set consists of 50,000 images and
the test set consists of 10,000 images.

A.3 MODELS

For the MNIST and FMNIST, we train a linear model and a convolutional neural network (CNN) to perform 10-class
classification. The linear model consists of one hidden layer with 10 neurons. The CNN consists of four hidden layers: one
convolutional layer with 5x5 filters and 10 output channels, one convolutional layer 5x5 filters and 20 output channels, and
one linear layer with 50 neurons, and one linear layer 10 neurons.

For CIFAR10 and CIFAR100, we train a Vision Transformer model to perform 10-class and 100-class classification,
respectively, by fine-tuning a Vision Transformer that was pre-trained on ImageNet (https://huggingface.co/
google/vit-base-patch16-224-in21k) on each dataset. For these models, the test set consists of 100 images.
We chose this number of datapoints so that pmc

σ would run within a reasonable amount of time. We also train a ResNet18
model to perform 10-class and 100-class classification, respectively. The model architecture is described in [He et al., 2016].
For CIFAR10 and CIFAR100, we also train the ResNet18 models using varying levels of gradient norm regularization to
obtain models with varying levels of robustness. The larger the weight of gradient norm regularization (λ), the more robust
the model.

All models were trained using stochastic gradient descent. Hyperparameters were selected to achieve decent model
performance. The emphasis is on analyzing the estimators’ estimates of local robustness of each model, not on high model
performance. Thus, we do not focus on tuning model hyperparameters. All models were trained for 200 epochs. The test set
accuracy for each model is shown in Table 2.

EXPERIMENTS

Due to file size constraints, Section A.4 can be found in the Supplementary material.

https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/google/vit-base-patch16-224-in21k


Dataset Model λ Test set accuracy

MNIST Linear 0 92%
MNIST CNN 0 99%

FashionMNIST Linear 0 84%
FashionMNIST CNN 0 91%

CIFAR10 Vision Transformer 0 99%
CIFAR10 ResNet18 0 94%
CIFAR10 ResNet18 0.0001 93%
CIFAR10 ResNet18 0.001 90%
CIFAR10 ResNet18 0.01 85%

CIFAR100 Vision Transformer 0 91%
CIFAR100 ResNet18 0 76%
CIFAR100 ResNet18 0.0001 74%
CIFAR100 ResNet18 0.001 69%
CIFAR100 ResNet18 0.01 60%

Table 2: Test set accuracy of models.



A.4 EXPERIMENTS

In this section, we provide the following additional experimental results:

1. Figure 5 shows results on the convergence of pmc
σ . pmc

σ takes a large number of samples to converge and is computa-
tionally inefficient.

2. Figure 6 shows results on the convergence of pmmse
σ . pmmse

σ takes only a few samples to converge and is more
computationally inefficient than pmc

σ .

3. Figure 7 shows the distribution of probustσ as a function of σ. Consistent with theory in Section 3, (1) as noise increases,
probustσ decreases, and (2) pmmse

σ accurately estimates pmc
σ .

4. Table 3 presents estimator runtimes. Our analytical estimators are more efficient than the naïve estimator (pmc
σ ).

5. Figure 8 shows the accuracy of the analytical robustness estimators as a function of σ. pmmse
σ and pmmse_mvs

σ are the
best estimators of probustσ , followed closely by ptaylor_mvs

σ and ptaylorσ , trailed by psoftmax
T .

6. Figure 9 shows the accuracy of the analytical estimators for robust models. For more robust models, the estimators
compute probustσ more accurately over a larger σ.

7. Figures 10 and 11 shows that mv-sigmoid well-approximates mvn-cdf over σ.

8. Figure 12 shows that psoftmax
T is not a good approximator of probustσ .

9. Figure 13 shows the distribution of probustσ among classes (measured by pmmse
σ ), revealing that models display robustness

bias among classes.

10. Figures 14 and 15 show the application of pmmse
σ and psoftmax

T to identification of robust and non-robust points. probustσ

better identifies robust and non-robust points than psoftmax
T .

11. Figures 16, 17, 18, and 19 show examples of noisy images with the level of noise analyzed in our paper. Overall, the
noise levels seem visually significant.

R
el

at
iv

e
er

ro
r

A
bs

ol
ut

e
er

ro
r

MNIST CNN FMNIST CNN CIFAR10 ResNet18 CIFAR100 ResNet18

Figure 5: Convergence of pmc
σ . In practice, pmc

σ takes around n = 10, 000 samples to converge and is computationally
inefficient.

A.4.1 probustσ identifies images that are robust to and images that are vulnerable to random noise

For each dataset, we train a simple CNN to distinguish between images with high and low pmmse
σ . We train the same CNN

to also distinguish between images with high and low psoftmax
T . The CNN consists of two convolutional layers and two

fully-connected feedforward layers with a total of 21,878 parameters. For a given dataset, for each class, we take the images
with the top-25 and bottom-25 pmmse

σ values. This yields 500 images for CIFAR10 (10 classes x 50 images per class) and
5,000 images for CIFAR100 (100 classes x 50 images per class). We also perform the same steps using psoftmax

T , yielding



R
el

at
iv

e
er

ro
r

A
bs

ol
ut

e
er

ro
r
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Figure 6: Convergence of pmmse
σ . In practice, pmmse

σ takes around n = 5−10 samples to converge and is more computationally
efficient than pmc

σ .

(a) MNIST, Linear (b) MNIST, CNN (c) FMNIST, Linear

(d) FMNIST, CNN (e) CIFAR10, ResNet18 (f) CIFAR100, ResNet18

(g) CIFAR10, Vision Transformer (h) CIFAR100, Vision Transformer

Figure 7: Distribution of probustσ over σ. As noise increases, probustσ decreases. In addition, pmmse
σ accurately estimates pmc

σ .



(a) MNIST, Linear (b) MNIST, CNN

(c) FMNIST, Linear (d) FMNIST, CNN

(e) CIFAR10, ResNet18 (f) CIFAR100, ResNet18

(g) CIFAR10, Vision Transformer (h) CIFAR100, Vision Transformer

Figure 8: Accuracy of probustσ estimators over σ. The smaller the noise neighborhood σ, the more accurately the estimators
compute probustσ . pmmse

σ and pmmse_mvs
σ are the best estimators of probustσ , followed closely by ptaylor_mvs

σ and ptaylorσ , trailed
by psoftmax

T .



(a) CIFAR10, ResNet18 (b) CIFAR100, ResNet18

Figure 9: Accuracy of probustσ estimators over σ for robust models. For more robust models, the estimators compute probustσ

more accurately over a larger σ.

Figure 10: Correlation of mvn-cdf(z) and mv-sigmoid(z) for the CIFAR10 ResNet18 model. The formulation of z is described
in Section 4.1. In practice, mv-sigmoid approximates mvn-cdf well.

another 500 images for CIFAR10 and another 5,000 images for CIFAR100. For each dataset, the train/test split is 90%/10%
of points.

Then, we compare the performance of the two models. For CIFAR10, the test set accuracy for the pmmse
σ CNN is 0.92 while

that for the psoftmax
T CNN is 0.58. For CIFAR100, the test set accuracy for the pmmse

σ CNN is 0.74 while that for the psoftmax
T

CNN is 0.55. The higher the test set accuracy of a CNN, the better the CNN distinguishes between images. Thus, the results
indicate that probustσ better identifies images that are robust to and vulnerable to random noise than psoftmax

T .

We also provide additional visualizations of images with the highest and lowest probustσ and images with the highest and
lowest psoftmax

T .

A.4.2 Softmax probability is not a good proxy for average-case robustness

To examine the relationship between probustσ and psoftmax
T , we calculate pmmse

σ and psoftmax
T for CIFAR10 and CIFAR100

models of varying levels of robustness, and measure the correlation of their values and ranks using Pearson and Spearman
correlations. Results are in Appendix A.4 (Figure 12). For a non-robust model, probustσ and psoftmax

T are not strongly
correlated (Figure 12a). As model robustness increases, the two quantities become more correlated (Figures 12b and 12c).
However, even for robust models, the relationship between the two quantities is mild (Figure 12c). That probustσ and psoftmax

T

are not strongly correlated is consistent with the theory in Section 3: in general settings, psoftmax
T is not a good estimator for

probustσ .



Figure 11: mv-sigmoid’s approximation of mvn-cdf over σ. mv-sigmoid well-approximates mvn-cdf over σ.

(a) CIFAR10
Non-robust model (λ = 0)

(b) CIFAR10 and CIFAR100
Varying model robustness

(c) CIFAR10
Robust model (λ = 0.01)

Figure 12: Relationship between probustσ and psoftmax
T for CIFAR10 and CIFAR100 ResNet18 models. (a) For a non-robust

model, probustσ and psoftmax
T are not strongly correlated. (b) As model robustness increases, the two quantities become more

correlated. (c) However, even for robust models, the relationship between probustσ and psoftmax
T is mild. Together, these

results indicate that, consistent with the theory in Section 3, psoftmax
T is not a good estimator for probustσ in general settings.

While working on the paper, we hypothesized that probustσ (e.g., pmmse
σ ) might be correlated with model accuracy. However,

we did not find this in practice. Instead, what we find is that probustσ succeeds in identifying canonical data points of a class,
and does so much better than psoftmax

T . We first assess this finding through visual inspection, finding that images with higher
probustσ tend to be more canonical and clear images, and that this distinction is less apparent for psoftmax

T (Figures 3 and 14).
We then use a model to classify these images as an additional, more objective assessment of this pattern (as discussed in
Section 4.3).



(a) MNIST, Linear (b) MNIST, CNN (c) FMNIST, Linear

(d) FMNIST, CNN (e) CIFAR10, ResNet18 (f) CIFAR100, ResNet18

Figure 13: Local robustness bias among classes. probustσ reveals that the model is less locally robust for some classes than for
others. The analytical estimator pmmse

σ properly captures this model bias.
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Figure 14: Additional images with the lowest and highest probustσ and psoftmax
T values among CIFAR10 classes. Images with

high probustσ tend to be brighter and have stronger object-background contrast (making them more robust to random noise)
than those with low probustσ . The difference between images with high and low psoftmax

T is less clear. Thus, probustσ better
captures the model’s local robustness with respect to an input than psoftmax

T .
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Figure 15: Images with the lowest and highest probustσ and psoftmax
T values among CIFAR100 classes. Images with high

probustσ tend to be brighter and have stronger object-background contrast (making them more robust to random noise) than
those with low probustσ . The difference between images with high and low psoftmax

T is less clear. Thus, probustσ better captures
the model’s local robustness with respect to an input than psoftmax

T .
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Figure 16: Examples of noisy images for MNIST.
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Figure 17: Examples of noisy images for FMNIST.
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Figure 18: Examples of noisy images for CIFAR10.



CPU: Intel x86_64 GPU: Tesla V100-PCIE-32GB

Estimator # samples (n) Serial Batched Serial Batched

pmc
σ

n = 100
n = 1000
n = 10000

0:00:59
0:09:50
1:41:11

0:00:42
0:07:22
1:14:38

0:00:12
0:02:00
0:19:56

0:00:01
0:00:04
0:00:35

ptaylorσ N/A 0:00:08 0:00:07 0:00:02 < 0:00:01

ptaylor_mvs
σ N/A 0:00:08 0:00:07 0:00:01 < 0:00:01

pmmse
σ

n = 1
n = 5
n = 10
n = 25
n = 50
n = 100

0:00:08
0:00:41
0:01:21
0:03:21
0:06:47
0:13:57

0:00:10
0:00:31
0:01:02
0:02:44
0:05:38
0:11:31

0:00:02
0:00:06
0:00:11
0:00:26
0:00:51
0:01:42

0:00:02
0:00:02
0:00:02
0:00:03
0:00:04
0:00:06

pmmse_mvs
σ

n = 1
n = 5
n = 10
n = 25
n = 50
n = 100

0:00:08
0:00:41
0:01:21
0:03:24
0:06:47
0:13:28

0:00:08
0:00:32
0:01:00
0:02:37
0:05:35
0:11:32

0:00:01
0:00:05
0:00:10
0:00:25
0:00:51
0:01:42

0:00:01
0:00:01
0:00:02
0:00:02
0:00:03
0:00:06

psoftmax
T N/A 0:00:01 < 0:00:01 < 0:00:01 < 0:00:01

Table 3: Runtimes of each probustσ estimator. Each estimator computes probustσ=0.1 for the CIFAR10 ResNet18 model for 50
data points. For estimators that use sampling, the row with the minimum number of samples necessary for convergence
is italicized. Runtimes are in the format of hour:minute:second. The analytical estimators (ptaylorσ , ptaylor_mvs

σ , pmmse
σ , and

pmmse_mvs
σ ) are more efficient than the naïve estimator (pmc

σ ).
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Figure 19: Examples of noisy images for CIFAR100.
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