
5 Appendix

The appendix is organized as follows:

1. Subsections 5.1 to 5.3 describe the preliminaries.

2. Subsection 5.4 explains the datasets, experimental parameters, and DNN architectures used
in this work.

3. Subsections 5.5 to 5.9 give proofs for all theorems.

5.1 Why A Potential Game?

A potential function in a game is defined in Chapter 8 of [34]. It is a function indicating the incentives
of all players (in our case robots), and any game with a potential is called a potential game. Typically,
the goal of a player is to maximize its incentive expressed by the potential function. In our case,
minimizing the loss function L (ρDr+1

c
,ρDtarget) in Eq. 3d is the common goal for all robots, so the

potential function is the negative of the loss function, −L (ρDr+1
c

,ρDtarget). Note that the potential
function −L (ρDr+1

c
,ρDtarget) is concave since the loss function L (ρDr+1

c
,ρDtarget) is convex.

5.2 Confusion Matrix

The confusion matrix of robot i at round r is defined as Cr
i , obtained by calculating the validation

accuracy from a validation dataset. Its j-th row represents the probability vector of classifying a
data-point of class j to different classes. If the confusion matrix is an identity matrix, it means that
the classifier is perfect with 100% accuracy. The matrix is:

Cr
i =

 pr
i (ŷ1|y1) . . . pr

i (ŷNclass |y1)
pr

i (ŷ1|y2) . . . pr
i (ŷNclass |y2)

.
pr

i (ŷ1|yNclass) . . . pr
i (ŷNclass |yNclass)

 . (4)

5.3 Calculating the correct conditional probabilities

As mentioned in Sec. 2, the robot’s transmitted dataset ar
i is calculated from the predicted class

labels ŷ j and not the true class labels y j, which are not available on-robot. However, we can
use predicted class probabilities pr

i (ŷ j) to estimate true class probabilities pr
i (y j) by: pr

i (y j) =

∑
Nclass
k=1 pr

i (ŷk) · pr
i (y j|ŷk).

We can obtain the conditional probability pr
i (y j|ŷ j) by pr

i (y j|ŷ j) =
pr

i (ŷ j |y j)·pr
i (y j)

pr
i (ŷ j)

from the confusion
matrix Cr

i and pr
i (ŷ j) can be calculated from the model inference on robot i. Note that pr

i (y j) can be
estimated using a Bayesian Filter since we upload data at previous round r− 1, which is assigned
ground-truth labels.

5.4 Experiments

In the experiments, we simulated a system of multiple robots observing different image distributions
pr

i (y) with the aim of sampling correct images to make the cloud dataset D r
c as close as possible to the

uniform target dataset Dtarget. First, an initial dataset D0
c with random class distributions is selected

to train the initial classification model f (x;θ 0
i). Next, the classification model is trained on the initial

dataset D0
c and its confusion matrix C0

i is calculated on the validation dataset. All robots have the
same vision model in a simulation, thus the same confusion matrix. However, their incoming class
distributions pr

i (y) are quite different, so each robot’s feasible space Hr
i is different. In each round

r, the robots label the images with their own classification model and solve the convex optimization
problem to determine label allocations in the cache. At the end of each round r, sampled images are
uploaded to the shared cloud, labeled by a human expert, and added to the cloud dataset with the
correct labels. The cloud dataset statistics are updated and shared with all robots. When all sampling
rounds are finished, the classification model is retrained on the final cloud dataset, which contains

12

the initial dataset and sampled images from all robots. All the DNNs are written in PyTorch, and the
CVXPY package is used to solve the convex optimization problem.

In all experiments, we have divided our dataset into three non-overlapping parts: training, validation,
and testing datasets. The training dataset is used to create the initial datasets and the images observed
by robots. The validation and testing datasets are used to calculate the confusion matrix and the final
accuracy, respectively.

We now explain the datasets, the simulation parameters, training/validation/testing splits, and DNN
training hyperparameters used in the simulations.

5.4.1 MNIST Dataset

The MNIST dataset is a digit classification dataset consisting of 70,000 28× 28 grayscale images
with ten classes. The dataset consists of 60,000 training images and 10,000 testing images.

Simulation Parameters: For the MNIST dataset, we simulated Nrobot = 20 robots for 7 rounds
each observing 2000 images and sharing only Ncache = 2 images with the cloud. The initial dataset
size is set to ND0

c
= 200 and at the end of the rounds a dataset of size ND7

c
= 480 is accumulated.

Training, Validation, and Testing Split: We divided the original training dataset into training and
validation datasets of sizes 54,000 and 6000, respectively, and used the original test dataset of size
10,000. Thus 0.3% of the overall dataset size is used in the initial vision model. At the end of data
sharing, we uploaded 0.8% of the full MNIST standard dataset to train the vision model. Training a
model on this dataset yields a final accuracy of 93.07% on the full held-out test dataset. This value
is close to 99.91% state-of-the-art accuracy for the full training dataset, which is very good given
that our scheme uploads only a fraction of the data.

DNN and Training Hyperparameters: We now describe the vision model for the classification
task. A DNN with four convolutional layers and two fully connected layers with ReLU activation
layers is used as the classification model. Between the convolutional layers, dropout is applied with
a rate of 0.3. In the convolutional layers, a kernel with a filter size of (3,3) and stride of 1 are used
with a padding of 1. Finally, fully connected layers with sizes of (128,10) are used in consecutive
fully connected layers. When the models are trained, a learning rate of 0.01 is used, and the batch
size is set to 1000. We used the ADAM optimizer in training and used the exponential learning
rate scheduler with a decay rate of 0.99. The DNN models are trained for 200 epochs. We only
normalized the images before inputting them into the classification model.

5.4.2 CIFAR-10 Dataset

The CIFAR-10 dataset consists of 60000 32× 32× 3 RGB images with ten different classes. The
original dataset is divided into training and testing datasets of sizes 50000 and 10000 respectively.
This dataset contains 10 object classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck.

Simulation Parameters: For the CIFAR-10 dataset, we simulated Nrobot = 20 robots for 5 rounds,
each observing 5000 images and sharing only Ncache = 200 images with the cloud. The initial dataset
size is set to ND0

c
= 10000 and at the end of the rounds a dataset of size ND5

c
= 30000 is accumulated.

Training, Validation, and Testing Split: We divided the original training dataset into training and
validation datasets of sizes 45,000 and 5000, respectively, and used the original test dataset of size
10,000. Thus 20% of the overall dataset size is used in the initial vision model. At the end of data
sharing, we uploaded 60% of the full CIFAR-10 dataset. Training a model on this dataset yields a
final accuracy of 81.55% on the full held-out test dataset. This value is comparable to 91.25% state-
of-the-art accuracy for the full training dataset, which is very good given that our scheme uploads
only a fraction of the data.

DNN and Training Hyperparameters: We now describe the vision model for the classification
task. A ResNet32 Model with 32 convolutional layers and skip connections is used as the classifica-
tion model. We didn’t use any pretrained weights for the vision model. When the models are trained,

13

a learning rate of 0.1 is used, and the batch size is set to 1000. We used the ADAM optimizer in
training and used an exponential learning rate scheduler with a decay rate of 0.99. The DNN models
are trained for 100 epochs. During training, we applied random cropping and random horizontal
flips as data augmentation methods.

5.4.3 Adversarial-Weather Dataset

The Adversarial Weather dataset consists of thousands of 720×1280×3 RGB image sequences
collected in various weather conditions from moving vehicles. Most of the sequences are dynamic,
while some are static recordings. The classes included in the dataset are rain, fog, snow, sleet,
overcast, sunny, and cloudy. These weather conditions were recorded at various times of the day:
morning, afternoon, sunset, and dusk. For the simulations, we have combined the time of day labels
and the weather labels and created a total of 7 classes. Since the images are created from video
sequences, we have subsampled the images once in every five frames to prevent having similar
images. In the end, we created a dataset with 46025 images.

Simulation Parameters: For the Adversarial Weather dataset, we simulated Nrobot = 10
robots for 5 rounds, each observing 2000 images and share only Ncache = 20 images with the cloud.
The initial dataset size is set to ND0

c
= 1000 and at the end of the rounds a dataset of size ND5

c
= 2000

is accumulated.

Training, Validation, and Testing Split: We divided the dataset into training, validation, and test
datasets of sizes 37279, 4143, and 4603, respectively. At the end of data sharing, training the model
on the accumulated dataset yields a final accuracy of 94.27% on the full held-out test dataset.

DNN and Training Hyperparameters: A ResNet18 Model with 18 convolutional layers and skip
connections is used as the classification model. We initialized the model weights with weights pre-
trained on the ImageNet dataset and updated all layers. During training, a learning rate of 0.1 is
used, and the batch size is set to 128. We used the ADAM optimizer during training and used the
exponential learning rate scheduler with a decay rate of 0.99. The DNN models are trained for 50
epochs. During training, we first downsampled the images to a size of 256× 455× 3, and applied
random cropping and random horizontal flips as data augmentation methods.

5.4.4 DeepDrive Dataset

The DeepDrive dataset with 100,000 images is a driving video dataset from various cities in differ-
ent weather conditions. The dataset consists of 70000 training, 10000 validation, and 20000 testing
images. However, the testing images aren’t publicly available. Therefore, we only used original
training and validation datasets. We used the weather labels as the target of the classification model.
The weather labels included in the datasets are: rainy, snowy, clear, overcast, partly cloudy, and
foggy. We had to discard the foggy classes from the simulations because this class included only
181 images. Therefore, we trained the classification model on 5 classes.

Simulation Parameters: For the DeepDrive dataset, we simulated Nrobot = 20 robots for 5
rounds, each observing 5000 images and sharing only Ncache = 50 images with the cloud. The
initial dataset size is set to ND0

c
= 8000 and at the end of the rounds the dataset of size ND5

c
= 13000

is accumulated.

Training, Validation, and Testing Split: We divided the original training dataset into training and
validation datasets of sizes 36968, 24646, respectively, and used the original validation dataset as
the testing dataset of size 8830. Thus 11.43% of the overall dataset size is used in the initial vision
model. At the end of data sharing, we uploaded 18.57% of the full DeepDrive dataset. Training a
model on this dataset yields a final accuracy of 68.10% on the full held-out test dataset. This value
is comparable to 81.57% state-of-the-art accuracy for the full training dataset, which is very good
given that our scheme uploads only a very small fraction of the data. Moreover, our scheme beats
the Greedy Benchmark by 12.4% as shown in Fig. 3.

DNN and Training Hyperparameters: A ResNet18 Model with 18 convolutional layers and skip
connections is used as the classification model. We initialized the model weights with weights pre-

14

MNIST CIFAR10

Adversarial Weather DeepDrive

Figure 4: The true class probabilities pr
i (y j) of 10 randomly selected agents for experiments is non-

uniform: As expected for real-life robotics settings, different robots observe non-identical, skewed data distri-
butions in our experiments. We randomly shuffled data for the synthetic datasets (MNIST/CIFAR). However,
we plot real-world data distributions observed in the AV datasets. We randomly selected 10 agents for visual
clarity.

trained on the ImageNet dataset and updated all layers. During training, a learning rate of 0.1
is used, and the batch size is set to 128. We used the ADAM optimizer in training and used the
exponential learning rate scheduler with a decay rate of 0.99. The DNN models are trained for 50
epochs. During training, we first downsampled the images to a size of 256× 455× 3, and applied
random cropping and random horizontal flips as data augmentation methods.

5.4.5 Heterogenous Data Distributions for Robots

We now show that all experiments have heterogenous data distributions. This is a hallmark of real
robotics settings that we observed from the real AV datasets. Fig. 4 illustrates that each agent (x-
axis) has a markedly different data distribution of true class probabilities pr

i (y) than others (y-axis
barplot). For the synthetic MNIST and CIFAR-10 datasets, we randomly shuffled data distributions
across agents. However, we plot the true data distributions across AVs for the real-world autonomous
driving datasets.

Fig. 5 shows the distribution of classes across different cities in the DeepDrive dataset is also
heterogeneous. Clearly, a majority of rainy scenes are in New York and a majority of foggy scenes
are in SF. Moreover, New York has the highest percentage of city street scenes.

Finally, the highly heterogenous distribution of classes can be seen in the map views from the
DeepDrive dataset in Fig. 6. Clearly, the majority of rainy points occur in NYC, especially lower
Manhattan (top row). In the bottom row, we first divide the city into regions of a few miles and then
create a probability distribution over the classes that appear in that sector. Then, we cluster these
probability distributions into 4 meta-classes/clusters using k-means. Clearly, close by areas of a city

15

Weather Labels Scene Labels

Figure 5: Heterogeneous Data Label Distributions Across Cities. Even if we group across a full city, the
cities differ in their label distributions. For example, a majority of scenes with rain occur in New York (left),
while a majority of scenes with fog occur in SF. Thus, this paper’s algorithms to coordinate data collection in
heterogenous environments are needed for real-world AV datasets.

have similar probability distributions over classes, but they are quite distinct in different geographic
areas.

16

New York San Francisco Bay Area Berkeley

W
ea

th
er

 L
ab

el
s

C
lu

st
er

ed
 L

ab
el

s

Figure 6: Heterogenous data in real world AV datasets. Top: The distribution of weather across cities is
skewed, with much of the rain in the DeepDrive dataset in New York. Bottom: First, we group regions in a
city and obtain a frequency distribution over classes in that area. Then, we perform k-means clustering with 4
clusters of the frequency distributions. Clearly, the frequency distributions of different weather conditions are
similar locally, but very different across regions of a city.

17

5.4.6 Visualizing Heterogenous Data Distributions Across Space and Time

t=0s, Snowy
Observed Image Histogram

t=30s, Snowy

t=1 day, Overcast

Trajectory

t=0s, Dusk

t=30s, Dusk

t=1 day, Overcast,Rain

Ro
bo

t 1
Ro

bo
t 2

Figure 7: Observed Image Statistics Differ Across Space and Time for Real-World Robot Trajectories.
We show two robots’ trajectories on a map (only 2 for visual clarity). The robots operate in different parts of
a city and observe different images - Robot 1 observes snowy and overcast images whereas Robot 2 observes
Dusk and Overcast/Rain images. For all robots, we see that closely-spaced frames (30 seconds apart) have
the same class. But even then, the pixel values are different from each other, as seen by the histogram of
pixel intensities being different. For the same robots, randomly selected images from 1 day later have very
different classes and pixel value distributions. Also, when we compare different locations we see that the pixel
distributions vary significantly.

We now show that the distribution of observed image pixels and classes change for a robot across
its trajectory (space and time). Fig. 7 shows this heterogeneity across several real-world trajectories

18

Ta
rg

et
 D

is
tr

ib
ut

io
n

1
Ta

rg
et

 D
is

tr
ib

ut
io

n
2

Figure 8: Our INTERACTIVE policy quickly converges to non-uniform target data distributions. Each
row shows an independent experiment with a different, non-uniform desired target distribution set by the roboti-
cist (pink). In the barplot, we see that the initial distribution of classes seen by heterogeneous robots is skewed.
Clearly, our Interactive policy (green) quickly converges to the desired non-uniform target data distribution
(left panel). Moreover, the final data distribution achieved by our Interactive policy (green) closely matches
the desired target distribution (pink) in the right barplots. Finally, we significantly outperform the heuristic
benchmarks of greedy and uniform sampling. Thus, we verify that our algorithm works even when the target
distribution is not uniform but rather any arbitrary target distribution. This is guaranteed by our theory since
the target distribution is fixed and we have a convex loss function penalizing the difference between the current
cloud distribution and the target (see Theorems 1-3).

on a map. These complement the computed aggregate statistics in Appendix Figs. 4-6. We now
describe visualize the heterogenous data distributions robots see in real-world autonomous driving
datasets.

Any Given Robot Sees Different Pixels/Classes As it Moves Along its Trajectory (Space + Time) :

Fig. 7 shows two robots’ trajectories on a map (only 2 for visual clarity). The robots operate in two
different parts of a city in the Adversarial Weather dataset within different environments. Robot 1
observes mostly snowy and overcast images, whereas Robot 2 observes dusk and overcast images.
For any two randomly selected frames close together (30 seconds apart), the images are temporally
correlated so are not independent. Further, for the same robot, randomly selected images 1 day
later have totally different classes (the scene transitions from snow to overcast or dusk to rain).

19

Therefore, the classes are not identically distributed across space nor across time. We observed this
for hundreds of robots and randomly selected 2 for visual clarity.

Aggregate Statistics Across Real-World Driving Datasets:

Next, we show such heterogeneity across a full dataset. We do not shuffle these datasets artificially
- they are the original, naturally-occurring, real world adversarial weather and DeepDrive datasets.
For each robot, we show that the distribution of classes it sees across its trajectory is very different
from robot to robot in Appendix Figs. 4-6.

Histogram of Pixel Differences:

Our algorithm targets distributed collection of diverse classes of data. Since these robots observe
diverse real-world images across space and time, naturally the distribution of raw pixels will be
different. To prove this, we compute a histogram of pixel color values in the right panel of Fig. 7.
First, in Fig. 7, we show that even for the same robot, the distribution is different for two randomly
selected images which are 30 seconds apart. Then, in Fig.7 column 3, we compare the distribution
of pixel intensities for different robots and different classes, which are indeed different.

5.4.7 Convergence to Non-Uniform Target Data Distributions

We now illustrate that our algorithm can converge to any non-uniform target distribution. Our algo-
rithm does not assume the “true” distribution of classes is uniform. Instead, we let a roboticist choose
any desired “target” distribution of classes that they want to collect in the cloud for their analytics
or ML use case. Our theory is general – once the target distribution is chosen and fixed, we have a
convex loss function between the current and target distribution, which guarantees convergence via
Theorems 1-3.

Often, in practice, a roboticist might want an equal distribution of classes to train a robust ML model,
which was the case we showed in Figure 3 of the main paper. However, if the roboticist wants to
create a model to especially focus on weak points (safety critical examples) for which we have few
examples in the cloud, they can select a non-uniform target distribution. Fig. 8 shows that our
algorithm is able to easily converge to a non-uniform target distribution. In the barplot, the initial
data distribution among robots is highly skewed (grey). The target distribution is pink and is clearly
non-uniform. The left panel illustrates our Interactive and Oracle policies quickly converge as our
theory guarantees. Moreover, the barplot shows the final data distribution achieved in the cloud
under the Interactive and Oracle policies closely matches the target (in pink) and is much closer
than the heuristic uniform sampling and greedy sampling benchmarks (orange and red). Finally, we
repeat this experiment for another non-uniform target distribution in the bottom panel and see it also
converges, as expected by our theory.

20

5.5 Performance Gap Between ORACLE and GREEDY

Here, we prove the performance gap between ORACLE and INTERACTIVE. All definitions with
feasible mean that they satisfy the constraints in Eq. 1, 2, and 3.
Definition 3 (Feasible space of all robots). A feasible space of all robots under ORACLE is the
Minkowski sum of all robots’ feasible spaces (see Def. 2). The feasible space of all robots is:

Hr = {
Nrobot

∑
i=1

vr
i | ∀i = 1, ...,Nrobot, vr

i ∈ Hr
i }.

Definition 4 (Feasible actions). We define the optimal feasible action for robot i in round r as v∗,ri .
The symbol of ∗ can denote g or o, standing for GREEDY or ORACLE respectively. Also, we define
the optimal action a∗,ri with the left inverse of Pr

i as Pr
i

†. The actions are obtained by solving the
optimization problems under different scenarios like ORACLE or GREEDYas follows:

vg,r
i = argmin

vr
i

L (ρDr
c + vr

i ,ρDtarget).

subject to: vr
i ∈ Hr

i

vo,r
i = argmin

vr
i

L (ρDr
c +

Nrobot

∑
i=1

vr
i ,ρDtarget).

subject to: vr
i ∈ Hr

i ,∀i = 1, ...,Nrobot

ag,r
i = Pr

i
†vg,r

i .

ao,r
i = Pr

i
†vo,r

i .

Now, we compare the optimal values of ORACLE and GREEDY and show that ORACLE outperforms
GREEDY. Then we formulate the performance bound between ORACLE and GREEDY with a lower
bound.
Definition 5 (Optimal values of loss functions). For simplicity, we define the optimal values of loss
functions under ORACLE and GREEDY policies as L g and L o. These are the values of the loss
functions resulting from feasible actions:

L g,r = L (ρDr
c +

Nrobot

∑
i=1

vg,r
i ,ρDtarget),

L o,r = L (ρDr
c +

Nrobot

∑
i=1

vo,r
i ,ρDtarget).

Theorem 4 (ORACLE outperforms GREEDY). The optimal value of GREEDY policy L g,r is always
greater than or equal to the optimal value of ORACLE policy L o,r, i.e. L g,r ≥L o,r.

Proof. By Def. 3 and 4, ∑
Nrobot
i=1 vg,r

i ∈Hr and ∑
Nrobot
i=1 vo,r

i ∈Hr. By Def. 5, L o is the minimum of the
loss function under feasible space Hr, so all other loss functions generated by vectors in the same
feasible space must be larger. Therefore, L g,r ≥L o,r.

Theorem 5 (Performance gap of ORACLE and GREEDY). We use Def. 5 and the triangle inequality
to show the performance gap between ORACLE and GREEDY.

0≤L g,r−L o,r =‖ρDtarget −ρDr
c −

Nrobot

∑
i=1

vg,r
i ‖−‖ρDtarget −ρDr

c −
Nrobot

∑
i=1

vo,r
i ‖

≤‖
Nrobot

∑
i=1

(vo,r
i − vg,r

i)‖

21

As a special illustrative case, if all Hr
i s are identical, then vg,r

i = vo,r
i . According to Thm. 5, 0 ≤

L g,r−L o,r ≤ 0, hence L g,r−L o,r = 0. GREEDY is the optimal policy in this case, and there is no
need to do cooperative data sharing. This could arise, for example, when all robots have the same
vision model uncertainty and same local data distribution.

Next, we show an easy way to obtain the lower bound of ORACLE, using the Euclidean norm as an
example. We create a new relaxation of Eq. 1 by removing the first constraint in Eq. 1. That is,
the number of the data-points uploaded need not be positive. In this case, since robots can upload
negative data-points, any combination of data-point is feasible as long as its sum is less than or
equal to Ncache. Thus, confusion matrices of robots do not matter here, and this mimics a case with
no perceptual uncertainty.
Lemma 6 (Lower bound of ORACLE). The relaxation of Eq. 1 by removing the first constraint in
Eq. 1 is the lower bound of ORACLE.

Proof. The original feasible set of the optimization problem is a subset of the new feasible set since
we expand the set by removing a constraint from the original problem. Hence, we know the new
optimal value is less than or equal to the original one. Namely,

L low,r = min L (ρDr
c +

Nrobot

∑
i=1

vr
i ,ρDtarget)≤L o,r.

subject to: 1T · vi
r ≤ Ncache; ∀ i = 1, . . . ,Nrobot

For L2 norm, a closed-form solution of L low,r can be obtained by projecting the objective value to
the feasible space:

L low,r = max(1>(ρDtarget −ρDr
c)−Ncache×Nrobot,0)×

√
Nclass.

5.6 Theorem 1: While loop in Alg. 1 converges eventually

We first show that there is a unique solution of INTERACTIVE then show that Alg. 1 will converge
to that solution.
Lemma 7 (Uniqueness of INTERACTIVE solution). The optimal solution of INTERACTIVE

∑
Nrobot
i=1 vint,r

i is unique.

Proof. We use proof by contradiction. First, we know ∑
Nrobot
i=1 vint,r

i ∈ Hr, and Hr is a convex set. If
there exist more than two optimal solutions, we arbitrarily pick two of them and name them vint,r

and v
′int,r. Since L (·, ·) is strictly convex,

L (ρDr
c +

1
2
[vint,r + v

′int,r],ρDtarget)<
1
2
[L (ρDr

c + vint,r,ρDtarget)+L (ρDr
c + v

′int,r,ρDtarget)]

= L (ρDr
c + vint,r,ρDtarget).

Then 1
2 [v

int,r + v
′int,r] achieves a lower loss function and contradicts with our assumption that vint,r

and v
′int,r are optimal solutions. Hence, ∑

Nrobot
i=1 vint,r

i is unique.

Theorem (Convergence Eventually). The while loop (lines 6 - 11) in Alg. 1 will eventually converge.

Proof. For the proof of convergence, refer to Theorem 2 of [41]. The potential function defined in
[41] corresponds to the negative value of our objective function, as stated in section 5.1. The random
revision law there is replaced by our deterministic order of updates in line 7. From Lemma 7, we
know there is only one unique solution, thus eventually Alg. 1 will converge to it.

Intuitively, a potential game with a strictly concave potential function will converge eventually since
all players (robots in our case) strictly increase the potential function.

22

5.7 Theorem 2: INTERACTIVE converges to ORACLE

We prove our proposed method INTERACTIVE described in Eq. 3 and Alg. 1 is equivalent to
ORACLE as described in Thm. 2. We discuss two cases respectively: 1>(ρDtarget −ρDr

c) > Nrobot×
Ncache and 1>(ρDtarget −ρDr

c)≤ Nrobot×Ncache. The first case holds for all rounds except for the last
round that reaches the target distribution, upon which data collection terminates (see Thm. 3). When
1>(ρDtarget −ρDr

c)> Nrobot×Ncache holds, INTERACTIVE will certainly converge to ORACLE in one
while loop execution (running Alg. 1 line 6 - 11 once). While in the last round, 1>(ρDtarget−ρDr

c)≤
Nrobot×Ncache holds, and it takes more than one execution to converge.

Lemma 8 (Uniqueness of ORACLE solution). The optimal feasible action of ORACLE, namely
∑

Nrobot
i=1 vo,r

i , is unique.

Proof. The proof is similar to Lemma 7. We use proof by contradiction. First, we know ∑
Nrobot
i=1 vo,r

i ∈
Hr, and Hr is a convex set. If there exist more than two optimal solutions, we arbitrarily pick two of
them and name them v and v

′o,r. Since the loss L (·, ·) is a strictly convex function,

L (ρDr
c +

1
2
[vo,r + v

′o,r],ρDtarget)<
1
2
[L (ρDr

c + vo,r,ρDtarget)+L (ρDr
c + v

′o,r,ρDtarget)]

= L (ρDr
c + vo,r,ρDtarget).

Then 1
2 [v

o,r + v
′o,r] achieves a lower loss function and contradicts with our assumption that vo,r and

v
′o,r are optimal solutions. Hence, ∑

Nrobot
i=1 vo,r

i is unique.

Theorem (INTERACTIVE converges to ORACLE). The while loop in Alg. 1 line 6 - 11 is guaranteed
to return action aint,r

i that is equal to the ORACLE policy’s action, ao,r
i . aint,r

i denotes the action of
robot i at the end of round r using the INTERACTIVE policy. Similarly, ao,r

i denotes the action of
ORACLE policy.

Proof. The convergence (optimality) conditions for the convex optimization problems of all robots
are of this form with the gradient of the loss function ∇vint,r∗

i
‖ρDtarget −ρDr

c −∑
Nrobot
j=1 vint,r∗

i ‖:

∀i,vi ∈ Hr
i ,

(vi− vint,r∗
i)>∇vint,r∗

i
‖ρDtarget −ρDr

c − vint,r∗
i −

Nrobot

∑
i 6= j, j=1

vint,r∗
j ‖

=(vi− vint,r∗
i)>∇vint,r∗

i
‖ρDtarget −ρDr

c −
Nrobot

∑
j=1

vint,r∗
i ‖ ≥ 0.

By the chain rule,

∇vint,r∗
i
‖ρDtarget −ρDr

c −
Nrobot

∑
j=1

vint,r∗
j ‖= ∇

∑
Nrobot
j=1 vint,r∗

j
‖ρDtarget −ρDr

c −
Nrobot

∑
j=1

vint,r∗
j ‖.

Thus, summing up the optimality conditions of all robots, we get:

Nrobot

∑
i=1

(vi− vint,r∗
i)>∇vint,r∗

i
‖ρDtarget −ρDr

c −
Nrobot

∑
j=1

vint,r∗
j ‖

=(
Nrobot

∑
i=1

vi−
Nrobot

∑
i=1

vint,r∗
i)>∇

∑
Nrobot
j=1 vint,r∗

i
‖ρDtarget −ρDr

c −
Nrobot

∑
j=1

vint,r∗
i ‖ ≥ 0.

This implies the optimality condition of ORACLE is:

∀
Nrobot

∑
i=1

vi ∈ Hr, (
Nrobot

∑
i=1

vi−
Nrobot

∑
i=1

vo,r
i)>∇

∑
Nrobot
j=1 vo,r

i
‖ρDtarget −ρDr

c −
Nrobot

∑
j=1

vo,r
i ‖ ≥ 0.

23

We know there is only one unique solution of ORACLE from Lemma 8, so INTERACTIVE will
converge to ORACLE in Alg. 1 line 6 - 11, and

aint,r
i = ao,r

i = Pr
i

†vo,r
i .

Lemma 9 (Sum of feasible actions lies on a hyperplane). For ORACLE and GREEDY, the sum of
action lies on the same hyperplane 1>v = Nrobot×Ncache when 1>(ρDtarget−ρDr

c)> Nrobot×Ncache.

Proof. Since ρDtarget lies outside Hr, the closest point to it must lie on the boundary of the convex
set. Thus, ∑

Nrobot
i=1 vo,r

i lies at the edge of Hr, the hyperplane 1>v = Nrobot×Ncache. Thus,

1>
Nrobot

∑
i=1

vo,r
i = Nrobot×Ncache.

Every shared action in Alg. 1 line 5 is the GREEDY action ag,r
i and the corresponding feasible action

vg,r
i lies at the edge of Hr

i , the hyperplane 1>v = Ncache for the same reason as above. Thus, we
know:

1>
Nrobot

∑
i=1

vg,r
i =

Nrobot

∑
i=1

1>vg,r
i = Nrobot×Ncache

The sum of greedy feasible actions also lies on the same hyperplane 1>v = Nrobot×Ncache.

Now, using the fact that the sum of feasible actions lies on the same hyperplane from Lemma 9, we
can show that the while loop in Alg. 1 line 6 - 11 will terminate in one iteration.

5.8 Theorem 3: While loop converges in one iteration

Theorem (Convergence in one iteration). For cases when the total number of uploadable data-
points is less than the difference between target cloud dataset ρDtarget and current cloud dataset ρDr

c ,
namely 1>(ρDtarget−ρDr

c)> Nrobot×Ncache, the while loop in Alg. 1 line 6 - 11 will terminate in one
iteration.

Proof. Since the optimal solution of ORACLE is unique from Lemma 8, we know the update direc-
tion of solution (the vector from the previous solution pointing to the new solution) in the first opti-
mization execution in line 6 - 11 is the vector pointing from the GREEDY feasible solution ∑

Nrobot
i=1 vg,r

i

to the ORACLE solution ∑
Nrobot
i=1 vo,r

i . Both points lie on the hyperplane 1>v = Nrobot ×Ncache by
Lemma 9. Also, all feasible spaces in Eq. 3 intersect with the hyperplane 1>v = Nrobot×Ncache,
so all update directions in line 6 - 11 during the while loop lie on the same hyperplane until the
solutions converge.

Let the solution after the first iteration of the while loop be viter
r and the solutions of each for loop

execution before it be
vfor, j

r , for j = 1, ...,Nrobot.

Note that,
Nrobot

∑
i=1

vo,r
i ∈ {v : 1>v = Nrobot×Ncache},

viter ∈ {v : 1>v = Nrobot×Ncache},
vfor, j

r ∈ {v : 1>v = Nrobot×Ncache}, for j = 1, ...,Nrobot,

since all the updates happen on the hyperplane.

We then assume viter is not the solution of ORACLE , ∑
Nrobot
i=1 vo,r

i , and prove it is wrong by contradic-
tion. If they are not identical, let the difference between solutions of ORACLE and the first iteration
be

∆v =
Nrobot

∑
i=1

vo,r
i − viter 6= 0.

24

1 2 𝑁!"#"$

𝑣%!"#"$
!,'

!
!"#

$!"#"$

𝑣!
%,'

+

𝑣(
!,'

𝑣(
%,(!

!")

$!"#"$

𝑣!
%,'

+ !
*"(

#

𝑣*
%,(

+ !
*"(

$!"#"$+(

𝑣*
%,(

𝑣)
!,'

𝑣$!"#"$
%,'

Figure 9: Communication Optimization in Alg. 1 While loop: First, each robot shares it greedy actions
(grey arrows facing left) vr,0

i . Then, each robot passes the sum of optimized actions vr,1
i and other robots’ actions

vr,0
j as opposed to individual actions, leading to O(Nrobot) messages.

∆v is the same direction as all update directions in line 6 - 11. All vfor, j
r +α∆v are infeasible (6∈ Hr

j)

for any j and an arbitrary small step size of update α > 0 because all vfor, j
r are already optimal

solutions that cannot move further in the update directions. Hence,

Nrobot

∑
i=1

vo,r
i = viter +∆v 6∈ Hr.

This contradicts with Def. 4, so we prove that ∆v = 0 and ∑
Nrobot
i=1 vo,r

i = viter. In other words, the
while loop in Alg. 1 line 6 - 11 will terminate in one iteration.

5.9 Proposition 1: The total number of messages passed between the robots.

We first calculate the number of messages passed in every iteration of Alg. 1 using an un-optimized
method of communication that requires O(N2

robot) messages. Then, we show a simple, optimized
method that requires only O(Nrobot) messages per loop.
Proposition 1 (Total Number of Messages). The total number of messages passed between the
robots in line 5 will be N2

robot−Nrobot. While in each iteration (for loop line 7 - 10), the number is
also N2

robot−Nrobot.

Proof. Each robot i shares its decision Pr
i ar

i with (Nrobot−1) other robots, and this process repeats
Nrobot times for all robots. Hence, the total numbers of messages passed between the robots in line
5 and for loop line 7 - 10 are both

Nrobot× (Nrobot−1) = N2
robot−Nrobot.

5.9.1 An Optimized Method with only O(Nrobot) messages

Our key insight to reduce communication, shown in Fig. 9, is that robots only need to share their
individual actions initially and afterwards can only share sums of their actions with each other.

As shown in Fig. 9, let us denote a feasible action on round r by vr
i = Pr

i ar
i . Further, let us index

iterations of communication within a loop by k, meaning vr,0
i is the initial greedy action from robot

25

i at round r (i.e., at iteration 0). After solving Prob. 3 once and multiplying by Pr
i , the next action

is given by vr,1
i . As shown in Fig. 9, all robots send their initial greedy action vr,0

j to robot 1 for
j = 2 . . .Nrobot. This amounts to Nrobot−1 messages sent. Then, robot 1 solves Prob. 3, assuming all
other robots’ actions are fixed, to generate vr,1

1 . The sum of the new optimized action vr,1
1 and previous

unoptimized actions ∑
Nrobot
j=2 vr,0

j is sent to robot 2. Robot 2 then subtracts its current greedy action vr,0
2

in Eq. 3d and solves Prob. 3 again. The process repeats until we reach robot Nrobot, leading to another
Nrobot−1 messages. As such, for each while loop iteration, we only need (Nrobot−1)+(Nrobot−1)=
2(Nrobot−1) messages, so O(Nrobot) messages as opposed to O(N2

robot).

26

	Introduction
	Problem Formulation
	A Cooperative Algorithm for Data Collection
	Experiments and Conclusion
	Appendix
	Why A Potential Game?
	Confusion Matrix
	Calculating the correct conditional probabilities
	Experiments
	MNIST Dataset
	CIFAR-10 Dataset
	Adversarial-Weather Dataset
	DeepDrive Dataset
	Heterogenous Data Distributions for Robots
	Visualizing Heterogenous Data Distributions Across Space and Time
	Convergence to Non-Uniform Target Data Distributions

	Performance Gap Between Oracle and Greedy
	Theorem 1: While loop in Alg. 1 converges eventually
	Theorem 2: Interactive converges to Oracle
	Theorem 3: While loop converges in one iteration
	Proposition 1: The total number of messages passed between the robots.
	An Optimized Method with only O(Nrobot) messages

