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Abstract

Link prediction in knowledge graphs (KGs) re-
quires integrating structural information and se-
mantic context to infer missing entities. While
large language models (LLMs) offer strong
generative reasoning capabilities, they often
struggle with structural sparsity, semantic
ambiguity, and limited exploitation of struc-
tural signals, especially under incomplete or
zero-shot settings. To address these chal-
lenges, we propose SLINT (Structure-aware
Language model with Injection and coNtrastive
Training), a modular framework that injects
KG-derived structural context into frozen
LLMs for robust link prediction. Specifically,
Structure-Guided Neighborhood Enhance-
ment (SGNE) retrieves pseudo-neighbors to
enrich sparse entities and mitigate missing
context; Dynamic Hard Contrastive Learn-
ing (DHCL) introduces fine-grained supervi-
sion by interpolating hard positives and neg-
atives to resolve entity-level ambiguity; and
Gradient-Decoupled Dual Injection (GDDI)
performs token-level structure-aware interven-
tion without altering the LLM backbone. Ex-
periments on WN18RR and FB15k-237 show
that SLiNT outperforms both embedding-based
and generation-based baselines, demonstrating
the effectiveness of structure-aware represen-
tation learning for scalable knowledge graph
completion.

1 Introduction

Knowledge graphs (KGs) encode real-world facts
as structured triples (h,r,t), where h and t de-
note the head and tail entities, respectively, and
r is the relation connecting them. As a backbone
for structured knowledge representation, KGs em-
power a variety of downstream applications such
as question answering (Saxena et al., 2020), recom-
mendation (Wang et al., 2019), and commonsense
reasoning (Lin et al., 2019). However, real-world
KGs are often incomplete, which motivates the

task of knowledge graph completion (KGC), i.e.,
predicting missing entities or relations.
Traditional KGC methods such as TransE (Bor-
des et al., 2013), DistMult (Yang et al., 2015), and
RotatE (Sun et al., 2019) learn low-dimensional
embeddings for entities and relations, and rank
candidate triples based on geometric scoring func-
tions. While these models perform well in dense
regions of the KG, they often underperform on
long-tail entities with sparse local neighborhoods.
To mitigate this, some extensions incorporate tex-
tual features (Wang et al., 2021b) or graph-aware
context (Vashishth et al., 2020), but still struggle
with generalization and semantic discrimination.
Recent advances in large language models
(LLMs) have introduced a new paradigm for knowl-
edge graph completion (KGC), where pretrained
models leverage semantic priors to generate miss-
ing entities from textualized queries (Lewis et al.,
2020; Raffel et al., 2020; Xie et al., 2022; Sax-
ena et al.,, 2022). To improve grounding, sev-
eral strategies incorporate KG-derived signals into
prompts. Instruction tuning (Liu et al., 2024) en-
codes relation semantics and output formats into
natural language templates, while structural aug-
mentation (Liu et al., 2025; Wei et al., 2024; Yang
et al., 2025) with local subgraphs or structure-
aware demonstrations to better align with graph
context. Despite these strategies have shown
promising improvements in generation controlla-
bility and KG-awareness, Persistent limitations
emerge when examining the link prediction query
(?,born_in, Salzburg), as illustrated in Figure 1:

* Challenge 1: Structural Sparsity — KG-
augmented LLMs rely on local subgraph con-
text for grounding, yet many entities are
poorly connected. In this case, sparse links
around the gold entity “Wolfgang Amadeus
Mozart” offer little structural support, caus-
ing the model to hallucinate plausible but un-
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Figure 1: Motivating example for SLiNT. Given query
(?,born_in, Salzburg), (a) LLMs hallucinate due to
sparse KG; (b) Semantic similarity overrides structural
correctness, causing misprediction; (c) SLINT disam-
biguates candidates via contrastive reasoning and struc-
ture injection.

supported answers such as “Vienna Philhar-
monic.” This reflects a critical failure: the gen-
eration collapses when the KG lacks sufficient
structural cues.

* Challenge 2: Semantic Ambiguity — Even
when structurally valid entities like “Wolf-
gang Amadeus Mozart” are retrieved, models
may mispredict by selecting semantically sim-
ilar but incorrect alternatives such as “Joseph
Haydn.” This confusion arises because current
LLMs favor surface-level similarity over struc-
tural alignment, lacking mechanisms to re-
solve fine-grained, relation-specific conflicts
in entity semantics.

To tackle the aforementioned challenges, we
propose SLINT (Structure-aware Language model
with Injection and coNtrastive Training), a uni-
fied generative framework that explicitly inte-
grates structural context and fine-grained super-
vision into frozen LLMs. To address Challenge
1, SLINT introduces Structure-Guided Neigh-
borhood Enhancement (SGNE), which retrieves
Top-k, pseudo-neighbors from pretrained KG em-
beddings and fuses them via attention to con-
struct richer contextual representations for sparsely
connected entities. To mitigate Challenge 2, we
develop Dynamic Hard Contrastive Learning
(DHCL), which synthesizes interpolated hard pos-
itives and negatives based on semantic proxim-
ity and structural signals, encouraging the model
to distinguish structurally coherent answers from
misleading but semantically similar distractors.
To bridge the gap between structural representa-
tions and language generation, we further design

Gradient-Decoupled Dual Injection (GDDI),
which injects the enhanced structural representa-
tions into frozen LLMs at the token level through
prompt-based augmentation and substitution, all
without modifying model parameters. Together,
these components enable SLiNT to perform robust
link prediction under both sparse and ambiguous
KG scenarios, while maintaining generation flu-
ency and structural faithfulness. Our main contri-
butions are summarized as follows:

* We propose SLINT, the first structure-aware
generative framework that jointly integrates
pseudo-neighbor enhancement, contrastive
disambiguation, and token-level structure in-
jection into frozen LLMs for link prediction.

We introduce two novel techniques: DHCL,
for structure-aware contrastive learning, and
GDDI, a lightweight gradient-decoupled in-
jection mechanism.

* We empirically show that SLINT achieves
state-of-the-art results on two standard bench-
marks, while maintaining robustness in sparse
and ambiguous KG scenarios. Code is
publicly available at https://anonymous.
4open.science/r/SLiNT-32AF/.

2 Related Work

Prior work on knowledge graph completion (KGC)
can be broadly categorized into two paradigms:
embedding-based models, generation-based mod-
els.

Embedding-based KGC. Classical models such
as TransE (Bordes et al., 2013), DistMult (Yang
et al., 2015), and RotatE (Sun et al., 2019) encode
entities and relations into continuous vector spaces,
scoring triples based on distance or semantic com-
patibility. While efficient and interpretable, these
models depend heavily on dense local structures
and struggle with long-tail or sparsely connected
entities. Later extensions incorporate auxiliary tex-
tual (Wang et al., 2021b) or structural (Vashishth
et al., 2020) information to improve robustness, but
remain limited in handling diverse or ambiguous
semantics.

Generation-based KG Completion. Unlike
embedding-based methods that learn entity and
relation vectors, generation-based approaches for-
mulate KG completion as a text generation task.


https://anonymous.4open.science/r/SLiNT-32AF/
https://anonymous.4open.science/r/SLiNT-32AF/
https://anonymous.4open.science/r/SLiNT-32AF/

Early works such as KGT5 (Saxena et al., 2022),
GenKGC (Xie et al., 2022), and KG-S2S (Chen
et al., 2022) recast triple prediction into sequence-
to-sequence learning, enabling flexible reasoning
over natural language. Later models, including GS-
KGC (Yang et al., 2025) and FtG (Liu et al., 2025),
incorporate structural features from subgraphs to
provide auxiliary context, while KICGPT (Wei
et al., 2024) and DIFT (Liu et al., 2024) adopt
instruction tuning and in-context demonstrations to
improve generation quality. These approaches sig-
nificantly advance LLM-based KGC by leveraging
pretrained language priors. However, they typi-
cally lack mechanisms to model structural ambigu-
ity or decision boundaries, limiting performance in
sparse or confusing regions.

3 Methodology

SLiNT addresses two core challenges in knowl-
edge graph completion (KGC), structural spar-
sity and semantic ambiguity, via three synergis-
tic modules: structure-guided neighborhood en-
hancement, contrastive representation learning, and
structure-aware representation injection. As illus-
trated in Figure 2, the pipeline begins with pre-
trained KG embeddings and sequentially applies
enhancement, contrastive supervision, and injects
structure-derived signals into a frozen language
model for generation.

Problem Formulation. We formalize the task
as link prediction over a knowledge graph G =
(E,R,T), where T C & x R x & denotes a
set of factual triples. Given an incomplete query
q = (?,r,t), the objective is to identify the most
plausible head entity i € & such that (h,r,t) € T.
Following DIFT (Liu et al., 2024), we adopt a two-
stage formulation. A pretrained KG embedding
model Mp is first used to rank all candidate enti-
ties, producing a top-m list:

C(q) = Top-m(Mg(q)) = [e1, €2, ..., em), (1)

where each candidate e; is associated with an em-
bedding e; € R?, and the query is represented by
q € R%. These structural representations are used
as inputs to the subsequent SLiNT modules.

3.1 Structure-Guided Neighborhood
Enhancement (SGNE)

To address structural sparsity, SGNE enhances each
input embedding, either a query q € R? or a can-
didate entity e; € R, by aggregating its Top-k;

structural pseudo-neighbors, i.e., nearest neigh-
bors in the pretrained KG embedding space rather
than true KG neighbors. We retrieve these pseudo-
neighbors from a global entity pool £ € RV*¢
based on cosine similarity:

N (x) = Top-ks (cos(x,E)), x€{q,e}. (2)

Let ng) € R¥s*4 denote the corresponding em-
bedding matrix of pseudo-neighbors. We project
both the input and its neighbors into a shared latent
space using a learnable matrix Wi, € R¥*", fol-
lowed by a SiL.U activation (Elfwing et al., 2018):
H) = g(WaE).  (3)

n

h(x) = ¢(VVIHX) )

We concatenate the input and neighbor represen-
tations and apply multi-head attention:

7@ — MultiHead Attn (h@) I H;@) L@

The enhanced representation is obtained by ex-
tracting the first token and projecting it back to the
output dimension via Wy, € Rhxd',

%= WouZi”, %e{q 6} )

The final outputs q,e; € RY are used for
contrastive learning and token-level generation in
downstream modules.

3.2 Dynamic Hard Contrastive Learning
(DHCL)

While SGNE enhances structural representations,
it lacks supervision to distinguish structurally co-
herent entities from semantically similar but struc-
turally divergent distractors. To address this,
we propose Dynamic Hard Contrastive Learning
(DHCL), a structure-sensitive contrastive objective
that promotes fine-grained discrimination in the
structural space. Rather than comparing raw entity
pairs, DHCL interpolates between the query and
structure-derived prototypes to generate boundary-
level hard positives and negatives, simulating am-
biguous decisions near structural margins. This
encourages the model to favor structurally valid an-
swers and suppress misleading semantic lookalikes.
The full procedure is shown in Algorithm 1.
Given a query embedding q, enhanced via
SGNE as q, we randomly sample NV entities {e; }
from the global entity pool £, and compute their
cosine similarities:
a'e;

(6)
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Figure 2: Overview of the SLIiNT framework. SLiNT consists of three modules: (1) SGNE retrieves Top-k
pseudo-neighbors and fuses them via multi-head attention; (2) DHCL constructs boundary-sensitive contrastive
samples via interpolation-based augmentation; (3) GDDI injects enhanced query and entity embeddings into frozen

LLMs via token-level injection.

Algorithm 1: Dynamic Hard Contrastive
Learning (DHCL)

Input: Enhanced query q € R, entity
pool & € RV*4' sample size N,
contrastive sample size k.

Sample N entities {ej}év:l c ¢,

Compute cosine similarities:

s < cos(q, €j);

Select positives: P < Top-k."€"({s;}),

negatives: N < Top-k.'*"({s;});

Compute prototype centers: p, 1;

Interpolate hard samples: p;, n;;

Compute contrastive loss: Lcr;

return Lcp,

Hard Sample Mining. To provide contrastive su-

pervision, the Top-k. most similar and least similar

entities are selected:

P = Top-k""({s;}), N = Top-k'""({s;}),
(7)

where P = {p;} and N’ = {n;} denote the con-
trastive positive and negative entity sets, respec-
tively. The hyperparameter k. specifies the number
of hard samples used for contrastive training.

Prototype Construction. To obtain representa-
tive prototypes for contrastive learning, we com-
pute weighted centers:

o n.
jWiPi L 25 Wi ny )
- — )
i 2.5
where w;.r, w; € R™ are sampled from a uniform

distribution.

Interpolation. To generate boundary-sensitive
examples, interpolation is performed between the
query and the prototype centers:

P; = a;p + (1 — o)q,

9
n; = g;n+ (1 - 5j)q, ®

where o, 5; € [0, 1] are interpolation coefficients
sampled uniformly. These synthetic samples ap-
proximate near-boundary contrasts in the structure
space.

Contrastive Loss. We then optimize a margin-
based contrastive loss over interpolated examples:

ke

Lo = — E logo (lg—1njll2 — llg — pjll2) -
j=1
(10)



This encourages the model to align query represen-
tations with structurally consistent entities while
pushing away structurally incompatible ones, im-
proving fine-grained discrimination in structure-
aware settings.See Appendix B for a visualization
of the contrastive sample distribution.

3.3 Gradient-Decoupled Dual Injection
(GDDI)

We propose Gradient-Decoupled Dual Injection
(GDDI), a dual mechanism that incorporates
structure-enhanced representations into frozen
LLMs through prompt-level augmentation and
token-level injection. This design enables the
model to leverage KG-derived context without
modifying the LLM backbone.

Prompt Construction. For each query triple ¢ =
(h,r,7), we construct a generation prompt P(q) by
concatenating:

P(q) = [ D; N ], 1D
where Q is a natural language verbalization of the
query (e.g., “(BFCA Critics’ Choice Award for
Best Composer, nominated for, ?)”"), D provides a
brief textual description of the known entity (either
head or tail), A/ contains pseudo-neighbor triplets
retrieved by SGNE, these are constructed by map-
ping structural pseudo-neighbors (retrieved in the
embedding space) back to KG triples, and C lists
the Top-m ranked candidates from the KG embed-
ding model. An illustrative example from FB15k-
237 is provided in Figure 2.

Token-Level Injection. After constructing the
prompt, we identify the token positions of the
[QUERY] and Top-k, [ENTITY] markers. We inject
SGNE-enhanced embeddings at these locations:

Einput[pquery} = 617 Einput [pgl)my] = éiv (12)

~ o~ ! o
where q, &; € R? are structure-aware embeddings,

and pquery, pgl)tity denote the corresponding token

indices.

Training. To adapt the frozen LLM for down-
stream generation, we apply parameter-efficient
finetuning via LoRA (Hu et al., 2022). This dual
mechanism strengthens the model’s capacity to in-
tegrate structure-aware representations during gen-
eration, enabling more accurate entity disambigua-
tion in sparse and ambiguous contexts.

3.4 Training Objective

The training objective combines language model-
ing with structure-aware contrastive supervision:

Liotal = Lim + X - Le, (13)

where A € RT balances the generation loss £y
and the contrastive loss Lcr. The language model-
ing loss is defined as:

T

Liv == log P(y; | y<i, X;6),
t=1

(14)

where vy is the target token at timestep ¢, y; is the
partial output sequence, X is the structure-injected
input, and 6 denotes the LLM parameters. This
ensures that generation is conditioned not only on
textual prompts but also on injected structural sig-
nals. For theoretical analysis of retrieval complex-
ity, contrastive loss stability, and structural injec-
tion alignment, see Appendix A.1-A.3.

4 Experiments

We conduct comprehensive experiments to eval-
uate the effectiveness of SLINT on two widely
used knowledge graph completion (KGC) bench-
marks: FB15k-237 (Toutanova et al., 2015) and
WNI18RR (Dettmers et al., 2018). The statistics
of these datasets are provided in Appendix C. Our
experiments aim to answer the following research
questions:

* RQ1: Does SLiNT outperform state-of-the-
art embedding-based and generation-based
KGC methods?

¢ RQ2: What are the individual contributions
of SGNE, DHCL, and GDDI to the overall
performance?

* RQ3: How robust is SLINT under low-
resource or structurally incomplete KG sce-
narios?

4.1 Experimental Setup

Baselines. We compare SLIiNT with two cate-
gories of methods: (1) embedding-based models
such as TransE (Bordes et al., 2013), RotatE (Sun
et al., 2019), and others; and (2) generation-
based models including DIFT (Liu et al., 2024),
KICGPT (Wei et al., 2024), and others. A full list
of baselines is provided in Table 1.



Evaluation Metrics. We adopt standard evalua-
tion metrics commonly used in knowledge graph
completion tasks, including Mean Reciprocal
Rank (MRR) and Hits@K (with K = 1, 3, 10).
MRR measures the average inverse rank of the
correct entity across all test queries, providing a
fine-grained assessment of ranking performance.
Hits @K reports the proportion of test queries for
which the correct entity appears within the Top- K
ranked candidates, reflecting the model’s ability to
retrieve relevant entities. Higher MRR and Hits@K
scores indicate better predictive accuracy. These
metrics are computed under the standard filtered
setting, where corrupted triples containing valid
entities from the KG are excluded during ranking
to ensure fair evaluation.

4.2 Implementation Details

We implement SLiNT using PyTorch with mixed-
precision training on 8x64GB MetaX GPUs (per-
formance comparable to A100s). All experiments
leverage frozen LLaMA-7B ! with pre-trained KG
embeddings (TransE, SimKGC, CoLE), and em-
ploy LoRA for lightweight adaptation. Key training
hyperparameters include a batch size of 64, a learn-
ing rate of 2 x 107°, and contrastive loss weight
A = 0.5. Further configuration details are provided
in Appendix D.

4.3 Main Results (RQ1)

We evaluate SLINT on FB15k-237 and WN18RR,
comparing it against two major categories of meth-
ods: embedding-based models and generation-
based models. Results are reported in Table 1.

Overall Performance. SLiNT consistently
achieves state-of-the-art performance across
both datasets and all KG embedding backbones.
Notably, SLINT + CoLE achieves the highest
MRR on FB15k-237 (0.443) and strong results
on WNI8BRR (0.626). This demonstrates the
effectiveness of combining structural signals from
KGs with contrastive generation. Compared with
vanilla LLaMA variants, SLiNT shows substantial
MRR improvements: +0.205 (FB15k-237) and
+0.252 (WN18RR), respectively.

Comparison with Prior Methods. Embedding-
based methods such as NBFNet and SimKGC per-
form well on WN18RR but underperform on long-
tail relations in FB15k-237. Generation-based base-

1https ://huggingface.co/meta-1lama/
Llama-2-7b-chat-hf

lines like DIFT and KICGPT improve semantic
controllability, but their reliance on template-based
augmentation limits their robustness. SLiNT out-
performs all prior generation models under identi-
cal KG embeddings (e.g., CoLE), highlighting its
superior capacity to capture structure-aware seman-
tics.

SLiNT Variants. SLiNT yields consistent im-
provements across all KG embeddings, TransE,
SimKGC, and CoLE, validating its robustness and
plug-and-play compatibility with frozen LLMs.
Rather than relying on any specific encoder, SLINT
adapts flexibly to different structural priors. Case
studies in Appendix E further illustrate how it re-
solves fine-grained ambiguities through structure-
aware supervision.

4.4 Ablation Study (RQ2)

To assess the contribution of each component
in SLiNT, we conduct ablation experiments on
FB15k-237 and WN18RR using CoLE embed-
dings. Table 2 reports the results when removing
SGNE, DHCL, or GDDI.

On FB15k-237, removing SGNE leads to a no-
ticeable drop in MRR (0.443 — 0.429), highlight-
ing the value of pseudo-neighbor fusion for struc-
tural enrichment. The absence of DHCL causes
the largest decline in Hits@1 (0.368 — 0.329),
highlighting its role in differentiating close struc-
tural candidates and reinforcing fine-grained de-
cision boundaries through structure-aware con-
trastive training. Removing GDDI also degrades
performance, albeit moderately, indicating that
token-level structure injection provides comple-
mentary gains.

Similar patterns appear on WN18RR, where dis-
abling DHCL again leads to the greatest drop in
Hits@1 (0.578 — 0.546), confirming its central
role in optimizing entity-level decision boundaries.
The consistent declines when omitting SGNE or
GDDI further support the necessity of all three
components.

Overall, these results demonstrate that each mod-
ule contributes uniquely to SLiNT’s effectiveness,
and their integration is essential for accurate and
structure-aware link prediction in challenging KG
scenarios.

4.5 Robustness Analysis (RQ3)

We evaluate the robustness of SLINT under two
common forms of knowledge graph sparsity: re-
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Models FB15K-237 WN18RR
MRR Hits@1 Hits@3 Hits@1l0 MRR Hits@1l Hits@3 Hits@10
Embedding-based
TransE (Bordes et al., 2013) 0.312 0.212 0.354 0.510 0.225 0.016 0.403 0.521
RotatE (Sun et al., 2019) 0.338  0.241 0.375 0.533 0476  0.428 0.492 0.571
TuckER (Balazevic et al., 2019) 0.358  0.266 0.394 0.544 0470  0.443 0.482 0.526
Neural-LP (Yang et al., 2017) 0.237  0.173 0.259 0.361 0.381  0.368 0.386 0.408
NCRL (Cheng et al., 2023) 0.300 — — 0.473 0.670  0.563 — 0.850
CompGCN (Vashishth et al., 2020) 0.355 0.264 0.390 0.535 0479  0.443 0.494 0.546
HittER (Chen et al., 2021) 0.373  0.279 0.409 0.558 0.503  0.462 0.516 0.584
NBFNet (Zhu et al., 2021) 0415 0.321 0.454 0.599 0.551 0.497 0.573 0.666
KG-BERT (Yao et al., 2019) — — — 0.420 0.216  0.041 0.302 0.524
StAR (Wang et al., 2021a) 0.365  0.266 0.404 0.562 0.551  0.459 0.594 0.732
MEM-KGC (Choi et al., 2021) 0.346  0.253 0.381 0.531 0.557 0475 0.604 0.704
SimKGC (Wang et al., 2022) 0.338  0.252 0.364 0.511 0.671  0.595 0.719 0.802
CoLE (Liu et al., 2022) 0.389  0.294 0.429 0.572 0.593  0.538 0.616 0.701
Generation-based

GenKGC(Xie et al., 2022) — 0.192 0.355 0.439 — 0.287 0.403 0.535
KGTS5 (Saxena et al., 2022) 0.276 0.210 — 0.414 0.508 0.487 — 0.544
KG-S2S (Chen et al., 2022) 0.336  0.257 0.373 0.498 0.574  0.531 0.595 0.661
ChatGPTope_shot (OpenAl, 2023) — 0.267 — — — 0.212 — —
KICGPT (WEei et al., 2024) 0412 0327 0.448 0.581 0.564  0.478 0.612 0.677
LLaMA + TransE (Liu et al., 2024) 0.232 0.080 0.321 0.502 0.202 0.037 0.360 0.516
LLaMA + SimKGC (Liu et al., 2024) 0.236  0.074 0.335 0.503 0.391  0.065 0.695 0.798
LLaMA + CoLE (Liu et al., 2024) 0.238 0.087 0.387 0.561 0.374 0.117 0.602 0.697
DIFT + TransE (Liu et al., 2024) 0.389 0.322 0.408 0.525 0491 0.462 0.496 0.560
DIFT + SimKGC (Liu et al., 2024) 0.402 0.338 0.418 0.528 0.686 0.616 0.730 0.806
DIFT + CoLE (Liu et al., 2024) 0.439 0.364 0.468 0.586 0.617 0.569 0.638 0.708
SLINT + TransE 0.395 0.329 0.416 0.522 0.506 0.482 0.508 0.567
SLIiNT + SimKGC 0416  0.355 0.433 0.529 0.691 0.626 0.731 0.805
SLiNT + CoLE 0.443  0.368 0.472 0.591 0.626  0.578 0.646 0.718

Table 1: Link prediction results on FB15k-237 and WN18RR. Best results are in bold and second-best are underlined.
We reproduce the results of TransE, SimKGC, and CoLE using their source code and hyperparameters. The results
of other baselines are obtained from their respective original papers.

FB15k-237
H@l H@3

0.368 0.472
0.342  0.453
0.329 0.444
0.352 0.457

WN18RR
He@el H@3

0.578 0.646
0.560 0.630
0.546 0.621
0.567 0.638

Config
H@10 ‘ MRR

0.591 | 0.626
0.572 | 0.612
0.564 | 0.606
0.577 | 0.615

MRR H@10

0.718
0.707
0.705
0.708

Full
w/o SGNE
w/o DHCL
w/o GDDI

0.443
0.429
0.419
0.433

Table 2: Ablation results of SLINT on FB15k-237 and
WNI18RR using CoLE. Each module contributes to overall
performance.

duced training supervision and incomplete struc-
tural connectivity. All results in this section are
based on SLINT+CoLE. Specifically, we simulate
low-resource scenarios by (1) limiting the training
data to 80% and (2) randomly removing 10% of
the KG edges. As illustrated in Figure 3, SLINT
maintains strong MRR performance under both set-
tings across FB15k-237 and WN18RR. Although
performance shows a slight downward trend, the
degradation is marginal, demonstrating that SLINT

remains stable even when exposed to partial super-
vision or structural noise. This robustness is largely
attributed to the structure-aware enhancements in-
troduced by SGNE and the discriminative signals
enforced by DHCL, which help compensate for
missing or sparse information. These findings high-
light SLiNT’s reliability in challenging, real-world
KGC scenarios.
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Figure 3: Performance of SLiNT + CoLE under limited
supervision and structural incompleteness.
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Figure 4: comparing the performance of SLiNT
with different structural encoders on FB15k-237 and
WNI18RR.

4.6 Further Analysis

Effect of Encoder Quality. The effectiveness of
SLINT is closely tied to the expressiveness of the
underlying structural encoder. As shown in Ta-
ble 1 and Figure 4, models using more powerful
encoders such as CoLE consistently achieve higher
performance. Notably, SLINT + CoLE achieves
the best MRR on FB15k-237, while SLINT +
SimKGC performs best on WN18RR, outperform-
ing all baseline methods on their respective bench-
marks. Even when paired with a simpler encoder
like TransE, SLINT surpasses several strong mod-
els, including LLaMA + TransE and SimKGC.
These results demonstrate SLiNT’s robustness to
encoder quality and its ability to extract meaningful
knowledge even from shallow embeddings.

Effect of Top-k; Neighbors. We evaluate how
the number of structural neighbors (ks €
{1,3,5,10}) in SGNE affects performance across
different encoders. As shown in Figure 5, more ex-
pressive encoders like CoLE benefit steadily from
increasing kg, peaking at ks=5. SIimKGC shows
similar trends but remains more stable. For weaker
encoders like TransE, performance improves up to
ks=>H but drops at k;=10 due to noisy neighbors.

These findings suggest a trade-off: too few neigh-
bors fail to capture structure, while too many intro-
duce noise, especially under less robust encoders.
SGNE remains effective across settings, with k;=>5
serving as a balanced default.

Effect of Contrastive Loss Weight. To assess
the impact of contrastive supervision, we eval-
uvate SLINT under varying contrastive weights
A € {0.1,0.3,0.5,0.7} (Table 3). Results show
that the optimal A is dataset-specific: on FB15k-
237, the best MRR and Hits @k scores are achieved
at A = 0.3, while WN18RR reaches its peak at

SLiNT + TransE SLiNT + SimKGC SLINT + ColLE

FB15k-237 WN18RR

2 4 6 8 10 2 4 6 B 10
Top-ks Neighbors Top-ks Neighbors

Figure 5: MRR comparison under varying Top-k neigh-
bor sizes for SLINT with different structural encoders
on FB15k-237 and WN18RR.

N FB15k-237 WN18RR

MRR H@l H@3 H@l0 | MRR H@l H@3 H@I10
0.1 0438 0354 0462 0580 | 0.617 0571 0.639 0.709
03 0443 0365 0467 0589 | 0.619 0574 0.637 0.708
0.5 0437 0352 0459 0582 | 0.626 0.578 0.646 0.718
0.7 0421 0336 0446 0570 | 0.619 0.571 0.640 0.709

Table 3: Performance of SLINT + CoLE under varying
contrastive loss weights A on FB15k-237 and WN18RR.

A = 0.5. This discrepancy likely reflects structural
differences: WNI18RR is more relation-regular
with clearer decision boundaries, making it more
receptive to contrastive supervision; in contrast,
FB15k-237 contains more semantically overlap-
ping relations, where overly strong contrastive sig-
nals may hinder generalization. Overall, these find-
ings underscore the importance of balancing con-
trastive and generative objectives. Underweighting
reduces the benefits of contrastive learning, while
overweighting may destabilize training.

5 Conclusion

We present SLINT, a structure-aware generative
framework for knowledge graph completion that
integrates structure-derived evidence from KG
embeddings into frozen large language models.
SLiNT incorporates three complementary mod-
ules: SGNE for neighborhood-guided embedding
refinement, DHCL for dynamic contrastive super-
vision, and GDDI for injecting structure-enhanced
representations into frozen LLMs via prompt-
level augmentation and token-level injection. Ex-
periments on FB15k-237 and WN18RR demon-
strate that SLiNT achieves state-of-the-art perfor-
mance, outperforming both embedding-based and
generation-based baselines, while maintaining ro-
bustness under structural sparsity and compatibility
with frozen LLMs.



Limitations

While SLINT demonstrates strong performance
on standard KGC benchmarks, it currently fo-
cuses on structure-derived signals extracted from
pretrained KG embeddings. This limits its ap-
plicability in settings where multimodal signals
(e.g., images, temporal dynamics) play a central
role in knowledge representation. For example,
SLiNT does not handle temporal KGs with time-
stamped triples, nor does it incorporate visual
context such as entity-linked images in common-
sense or encyclopedic knowledge graphs. Fur-
thermore, our current injection mechanism uses
a fixed number of structural tokens and does not
adapt to the complexity or ambiguity of the in-
put. Future work could address these limitations
by (1) extending SGNE to integrate multimodal re-
trieval (e.g., using pretrained vision-language mod-
els) and (2) developing adaptive injection strate-
gies conditioned on input difficulty, confidence,
or graph sparsity. These extensions would enable
SLiNT to generalize more effectively to diverse
real-world knowledge sources while improving per-
formance—efficiency trade-offs.
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A Theoretical Justification

A.1 Complexity Analysis of Pseudo-Neighbor
Retrieval

In our SGNE module, we retrieve the Top-ks struc-
tural pseudo-neighbors for each query or candidate
entity by computing cosine similarity in the em-
bedding space. Let the number of total entities be
$NS, the embedding dimension be $d$, and the
number of queries be $Q$. Then, the brute-force
computation of cosine similarity has complexity:

O(N -d). (15)
for each query. Thus, the total retrieval cost be-
comes:

O(Q- N -d). (16)

To reduce this cost in large-scale knowledge graphs,
approximate nearest neighbor (ANN) methods such
as FAISS can be used, reducing complexity to ap-
proximately:

O(Q -log N - d). a7

This optimization enables scalable retrieval even
for entity sets with millions of entries, as shown in
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(Johnson et al., 2021). We further observe that the
Top-k; neighbors are precomputed and cached dur-
ing training, making the cost negligible at inference
time.

A.2 Robustness and Generalization of
Contrastive Loss

To support fine-grained structural discrimination,
our DHCL module optimizes a contrastive loss
LcL, as defined in Section 3.2. This loss directly
encodes structure-aware decision boundaries by
comparing the distances between the query and in-
terpolated hard positives/negatives in the structure
space.

Stability via Lipschitz Continuity. Let Z; =
la — nj||2 — || — Pjl|2 denote the contrastive
margin. Under unit-norm embeddings and inter-
polation sampling, we have Z; € [—2,2], and the
per-term loss ¢(Z;) = —log o(Z;) is 1-Lipschitz
and bounded:

U(Z;) € [log(1+e2), log(1+€?)] & [0.13, 2.13].

This boundedness ensures stable gradients and ro-
bustness, especially when interpolated negatives lie
close to the decision boundary.

PAC-Bayes Generalization Bound. We adopt
a PAC-Bayes analysis (McAllester, 1999; Saunshi
et al., 2019) to study generalization under structure-
sensitive contrastive training. Let the encoder
fo be parameterized by # € R?, and assume
a Gaussian prior P = N(0,021) and posterior
Q = N(6,0%I). Then the expected risk satisfies:

- 1 1
R(Q) <R(Q) + \/2N <KL(QHP) + log 5),
(18)
with KL divergence given by:
_ Lo
KL@QIP) = 55 l00%  (19)

Because the contrastive loss L¢r, is Lipschitz
and bounded, it satisfies the assumptions of the
PAC-Bayes framework. This result confirms that
contrastive training under DHCL maintains sta-
ble generalization behavior even when interpolated
negatives lie near structural decision boundaries.

A.3 Modal Alignment Theory for Structure
Injection

Our GDDI implement structure injection via token-
level injection, where the token embeddings of
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[QUERY] and Top-k, [ENTITY| markers are
replaced with structure-enhanced vectors q, €;.
These embeddings are injected into a frozen LLM,
forming the input:

Xinput = [CLS, q, ... , €., EOS].
(20)
We treat this process as a cross-modal align-
ment between graph-structured embeddings and
language model token representations. Let the

LLM be viewed as a conditional language model:

po(y[X).

The structural embedding injection aims to pre-
serve the semantic consistency between Xyct (the
injected representation) and the output y. Under
the information bottleneck (IB) principle (Tishby
and Zaslavsky, 2015), we define the learning objec-
tive as:

, €1, ...

2y

max I(Xstruct; Y) - BI(Xstrucﬁ Z)- (22)

where Z is the latent representation inside the LLM.
This objective seeks a trade-off: inject structure
such that it influences generation (high mutual
info with y), while not deviating excessively from
LLM’s internal representations.

In practice, we approximate this by replacing the
token embeddings at designated slots with q, €;,
and minimizing the KL divergence between pre-
and post-injection logits:

»Calign = KL(pLM("X)||pLM('|Xinject)~ (23)

This provides a differentiable surrogate for modal
alignment. If structure injection preserves or im-
proves generation quality, we can conclude suc-
cessful alignment.

B Contrastive Supervision Visualization

To illustrate the effectiveness of DHCL, we visu-
alize the spatial distribution of the query, positive,
and negative samples using PCA projection (Fig-
ure 6). The plot shows that positive samples cluster
closely around the query, while negative samples
are generally more dispersed. However, there exists
a partial overlap between hard positives and hard
negatives, indicating that the boundary between
them is non-trivial. This overlap underscores the
importance of fine-grained supervision and justifies
the design of DHCL, which explicitly targets these
ambiguous boundary cases to enhance the model’s
discriminative capacity.
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Figure 6: PCA projection of the contrastive sample
distribution.

Dataset #Ent. #Rel. Train Valid Test
FB15k-237 14,541 237 272,115 17,535 20,466
WNI8RR 40,943 11 86,835 3,034 3,134

Table 4: Statistics of FB15k-237 and WN18RR.

C Dataset Details

We conduct experiments on two widely used
benchmarks for link prediction: FB15k-237 and
WNI18RR. The statistics of both datasets are shown
in Table 4.

* FB15k-237 is a refined subset of the origi-
nal FB15k, extracted from Freebase. It con-
tains a broad range of entity types and re-
lation patterns (e.g., one-to-many, many-to-
one). To mitigate test leakage via inverse
relations, redundant inverse edges were re-
moved (Toutanova et al., 2015).

* WNI18RR is a cleaned version of WN18, de-
rived from the WordNet lexical database. It
captures hierarchical and lexical relationships
such as hypernymy, synonymy, and derivation.
Reversible edges were removed to ensure re-
alistic evaluation (Dettmers et al., 2018).

These benchmarks offer complementary evalu-
ation settings for the proposed SLiNT framework.
FB15k-237 emphasizes multi-relational reasoning
over densely connected facts, testing the model’s
ability to distinguish semantically similar entities.
In contrast, WN18RR features abstract lexical rela-
tions and sparse connectivity, providing a rigorous
testbed for structure-aware contrastive learning.



D Training and Implementation Details

We provide detailed configuration settings for all
components of SLiNT.

Hardware and Framework. All experiments
are conducted on 8x64GB MetaX GPUs, a do-
mestic CUDA-compatible accelerator with perfor-
mance comparable to NVIDIA A100s. Our im-
plementation is based on PyTorch with automatic
mixed-precision (AMP) training for efficiency.

Backbone Model. We use the frozen LLaMA-
2-7B model from HuggingFace? as the base lan-
guage model. Structure-aware features are injected
via prompt and token-level replacements without
updating LLM parameters. LoRA is used for effi-
cient adaptation, with rank r» = 128, scaling factor
a = 64, and dropout rate of 0.1.

KG Embeddings. We experiment with three pre-
trained KG encoders: TransE, SimKGC, and CoLE.
Each query is used to retrieve a top-m candidate
list from a pretrained KG embedding model, with
m = 20. These embeddings provide the structural
foundation for neighborhood enhancement and con-
trastive supervision.

SGNE Settings. In the SGNE module, we re-
trieve Top-ks; = 5 pseudo-neighbors for each query
or candidate entity using cosine similarity in the
KG embedding space. The query and its neighbors
are fused via multi-head attention, and the outputs
are cached for efficiency.

DHCL Settings. For contrastive training, we
sample N = 50 candidate entities per query. The
contrastive loss is computed over k. = 10 hard
positives and negatives selected based on pseudo-
neighbor overlap. The loss is weighted by a
confusion-aware scoring function. The contrastive
loss coefficient is A = 0.5.

GDDI Settings. In the GDDI module, we inject
k, = 1 structure-enhanced entity token into each
input sequence. The enhanced embeddings replace
the placeholders for [QUERY] and [ENTITY] tokens.
Injection is performed at both prompt-level (text)
and token-level (embedding) positions.

Optimization and Training. All models are
trained using the Adam optimizer with a learning
rate of 2 x 10~° and a batch size of 64. We train for

2https ://huggingface.co/meta-1lama/
Llama-2-7b-chat-hf
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3 epochs with early stopping based on validation
MRR. Random seeds are fixed for reproducibility,
and all results are averaged over three runs.

E Case Study

To demonstrate how SLiNT leverages pseudo-
neighbor injection and contrastive learning, we
present three representative cases from WN18RR
and FB15k-237. Each case includes a query, can-
didates, SGNE-retrieved pseudo-neighbors, and
model predictions. Tables 5-7 are presented along-
side their respective discussions.

E.1 Case 1: Disambiguating Musical

Components
Query (instrument, has_part, ?)
Candidates {bow, string, keyboard, bridge}
Ground Truth string
Pseudo-Neighbors violin, cello, harp, guitar, banjo
(Top-5)
LLaMA + CoLE keyboard (Top-1)
DIFT + CoLE keyboard (Top-1)
SLIiNT + CoLE string (Top-1)

Table 5: Case 1: SLiNT correctly predicts string by
leveraging structurally similar instruments.

Analysis. LLaMA and DIFT choose keyboard, a
plausible but structurally irrelevant part. SLiNT
identifies string by leveraging pseudo-neighbors
such as violin and cello, where string is a
shared component.

E.2 Case 2: Differentiating Geopolitical

Containment
Query (?, location_contains, mountain)
Candidates {Nepal, Asia, Everest, Tibet}
Ground Truth Nepal
Pseudo-Neighbors Himalaya, Kathmandu, Pokhara,
(Top-5) Lumbini, Mustang
LLaMA + CoLE Asia (Top-1)
DIFT + CoLE Nepal (Top-1)
SLIiNT + CoLE Nepal (Top-1)

Table 6: Case 2: SLINT correctly identifies Nepal by
grounding in local structural cues.

Analysis. Although all candidates are semantically
relevant to mountain, SLiNT uses structure-guided
cues, e.g., Himalaya and Kathmandu to localize the
correct geopolitical scope.


https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

E.3 Case 3: Failure Case on Long-tail

Relation
Query (person, known_for, ?)
Candidates {acting, painting, novel, photogra-
phy}
Ground Truth painting
Pseudo-Neighbors artist, sculptor, painter, curator, il-
(Top-5) lustrator
LLaMA + CoLE acting (Top-1)
DIFT + CoLE acting (Top-1)
SLINT + CoLE novel (Top-1)

Table 7: Case 3: SLiNT fails to predict painting, de-
spite partial structural grounding.

Analysis. All models fail to predict painting, re-
vealing challenges in handling long-tail relations.
SLiINT ranks novel highest, likely influenced by
relevant creative-profession neighbors, yet fails to
fully disambiguate the semantic role of the can-
didate. This failure highlights the limitations of
structure-based grounding in the absence of suffi-
cient semantic alignment.
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