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Abstract001

Link prediction in knowledge graphs (KGs) re-002
quires integrating structural information and se-003
mantic context to infer missing entities. While004
large language models (LLMs) offer strong005
generative reasoning capabilities, they often006
struggle with structural sparsity, semantic007
ambiguity, and limited exploitation of struc-008
tural signals, especially under incomplete or009
zero-shot settings. To address these chal-010
lenges, we propose SLiNT (Structure-aware011
Language model with Injection and coNtrastive012
Training), a modular framework that injects013
KG-derived structural context into frozen014
LLMs for robust link prediction. Specifically,015
Structure-Guided Neighborhood Enhance-016
ment (SGNE) retrieves pseudo-neighbors to017
enrich sparse entities and mitigate missing018
context; Dynamic Hard Contrastive Learn-019
ing (DHCL) introduces fine-grained supervi-020
sion by interpolating hard positives and neg-021
atives to resolve entity-level ambiguity; and022
Gradient-Decoupled Dual Injection (GDDI)023
performs token-level structure-aware interven-024
tion without altering the LLM backbone. Ex-025
periments on WN18RR and FB15k-237 show026
that SLiNT outperforms both embedding-based027
and generation-based baselines, demonstrating028
the effectiveness of structure-aware represen-029
tation learning for scalable knowledge graph030
completion.031

1 Introduction032

Knowledge graphs (KGs) encode real-world facts033

as structured triples (h, r, t), where h and t de-034

note the head and tail entities, respectively, and035

r is the relation connecting them. As a backbone036

for structured knowledge representation, KGs em-037

power a variety of downstream applications such038

as question answering (Saxena et al., 2020), recom-039

mendation (Wang et al., 2019), and commonsense040

reasoning (Lin et al., 2019). However, real-world041

KGs are often incomplete, which motivates the042

task of knowledge graph completion (KGC), i.e., 043

predicting missing entities or relations. 044

Traditional KGC methods such as TransE (Bor- 045

des et al., 2013), DistMult (Yang et al., 2015), and 046

RotatE (Sun et al., 2019) learn low-dimensional 047

embeddings for entities and relations, and rank 048

candidate triples based on geometric scoring func- 049

tions. While these models perform well in dense 050

regions of the KG, they often underperform on 051

long-tail entities with sparse local neighborhoods. 052

To mitigate this, some extensions incorporate tex- 053

tual features (Wang et al., 2021b) or graph-aware 054

context (Vashishth et al., 2020), but still struggle 055

with generalization and semantic discrimination. 056

Recent advances in large language models 057

(LLMs) have introduced a new paradigm for knowl- 058

edge graph completion (KGC), where pretrained 059

models leverage semantic priors to generate miss- 060

ing entities from textualized queries (Lewis et al., 061

2020; Raffel et al., 2020; Xie et al., 2022; Sax- 062

ena et al., 2022). To improve grounding, sev- 063

eral strategies incorporate KG-derived signals into 064

prompts. Instruction tuning (Liu et al., 2024) en- 065

codes relation semantics and output formats into 066

natural language templates, while structural aug- 067

mentation (Liu et al., 2025; Wei et al., 2024; Yang 068

et al., 2025) with local subgraphs or structure- 069

aware demonstrations to better align with graph 070

context. Despite these strategies have shown 071

promising improvements in generation controlla- 072

bility and KG-awareness, Persistent limitations 073

emerge when examining the link prediction query 074

(?, born_in, Salzburg), as illustrated in Figure 1: 075

• Challenge 1: Structural Sparsity — KG- 076

augmented LLMs rely on local subgraph con- 077

text for grounding, yet many entities are 078

poorly connected. In this case, sparse links 079

around the gold entity “Wolfgang Amadeus 080

Mozart” offer little structural support, caus- 081

ing the model to hallucinate plausible but un- 082
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Figure 1: Motivating example for SLiNT. Given query
(?, born_in, Salzburg), (a) LLMs hallucinate due to
sparse KG; (b) Semantic similarity overrides structural
correctness, causing misprediction; (c) SLiNT disam-
biguates candidates via contrastive reasoning and struc-
ture injection.

supported answers such as “Vienna Philhar-083

monic.” This reflects a critical failure: the gen-084

eration collapses when the KG lacks sufficient085

structural cues.086

• Challenge 2: Semantic Ambiguity — Even087

when structurally valid entities like “Wolf-088

gang Amadeus Mozart” are retrieved, models089

may mispredict by selecting semantically sim-090

ilar but incorrect alternatives such as “Joseph091

Haydn.” This confusion arises because current092

LLMs favor surface-level similarity over struc-093

tural alignment, lacking mechanisms to re-094

solve fine-grained, relation-specific conflicts095

in entity semantics.096

To tackle the aforementioned challenges, we097

propose SLiNT (Structure-aware Language model098

with Injection and coNtrastive Training), a uni-099

fied generative framework that explicitly inte-100

grates structural context and fine-grained super-101

vision into frozen LLMs. To address Challenge102

1, SLiNT introduces Structure-Guided Neigh-103

borhood Enhancement (SGNE), which retrieves104

Top-ks pseudo-neighbors from pretrained KG em-105

beddings and fuses them via attention to con-106

struct richer contextual representations for sparsely107

connected entities. To mitigate Challenge 2, we108

develop Dynamic Hard Contrastive Learning109

(DHCL), which synthesizes interpolated hard pos-110

itives and negatives based on semantic proxim-111

ity and structural signals, encouraging the model112

to distinguish structurally coherent answers from113

misleading but semantically similar distractors.114

To bridge the gap between structural representa-115

tions and language generation, we further design116

Gradient-Decoupled Dual Injection (GDDI), 117

which injects the enhanced structural representa- 118

tions into frozen LLMs at the token level through 119

prompt-based augmentation and substitution, all 120

without modifying model parameters. Together, 121

these components enable SLiNT to perform robust 122

link prediction under both sparse and ambiguous 123

KG scenarios, while maintaining generation flu- 124

ency and structural faithfulness. Our main contri- 125

butions are summarized as follows: 126

• We propose SLiNT, the first structure-aware 127

generative framework that jointly integrates 128

pseudo-neighbor enhancement, contrastive 129

disambiguation, and token-level structure in- 130

jection into frozen LLMs for link prediction. 131

• We introduce two novel techniques: DHCL, 132

for structure-aware contrastive learning, and 133

GDDI, a lightweight gradient-decoupled in- 134

jection mechanism. 135

• We empirically show that SLiNT achieves 136

state-of-the-art results on two standard bench- 137

marks, while maintaining robustness in sparse 138

and ambiguous KG scenarios. Code is 139

publicly available at https://anonymous. 140

4open.science/r/SLiNT-32AF/. 141

2 Related Work 142

Prior work on knowledge graph completion (KGC) 143

can be broadly categorized into two paradigms: 144

embedding-based models, generation-based mod- 145

els. 146

Embedding-based KGC. Classical models such 147

as TransE (Bordes et al., 2013), DistMult (Yang 148

et al., 2015), and RotatE (Sun et al., 2019) encode 149

entities and relations into continuous vector spaces, 150

scoring triples based on distance or semantic com- 151

patibility. While efficient and interpretable, these 152

models depend heavily on dense local structures 153

and struggle with long-tail or sparsely connected 154

entities. Later extensions incorporate auxiliary tex- 155

tual (Wang et al., 2021b) or structural (Vashishth 156

et al., 2020) information to improve robustness, but 157

remain limited in handling diverse or ambiguous 158

semantics. 159

Generation-based KG Completion. Unlike 160

embedding-based methods that learn entity and 161

relation vectors, generation-based approaches for- 162

mulate KG completion as a text generation task. 163
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Early works such as KGT5 (Saxena et al., 2022),164

GenKGC (Xie et al., 2022), and KG-S2S (Chen165

et al., 2022) recast triple prediction into sequence-166

to-sequence learning, enabling flexible reasoning167

over natural language. Later models, including GS-168

KGC (Yang et al., 2025) and FtG (Liu et al., 2025),169

incorporate structural features from subgraphs to170

provide auxiliary context, while KICGPT (Wei171

et al., 2024) and DIFT (Liu et al., 2024) adopt172

instruction tuning and in-context demonstrations to173

improve generation quality. These approaches sig-174

nificantly advance LLM-based KGC by leveraging175

pretrained language priors. However, they typi-176

cally lack mechanisms to model structural ambigu-177

ity or decision boundaries, limiting performance in178

sparse or confusing regions.179

3 Methodology180

SLiNT addresses two core challenges in knowl-181

edge graph completion (KGC), structural spar-182

sity and semantic ambiguity, via three synergis-183

tic modules: structure-guided neighborhood en-184

hancement, contrastive representation learning, and185

structure-aware representation injection. As illus-186

trated in Figure 2, the pipeline begins with pre-187

trained KG embeddings and sequentially applies188

enhancement, contrastive supervision, and injects189

structure-derived signals into a frozen language190

model for generation.191

Problem Formulation. We formalize the task192

as link prediction over a knowledge graph G =193

(E ,R, T ), where T ⊆ E × R × E denotes a194

set of factual triples. Given an incomplete query195

q = (?, r, t), the objective is to identify the most196

plausible head entity h ∈ E such that (h, r, t) ∈ T .197

Following DIFT (Liu et al., 2024), we adopt a two-198

stage formulation. A pretrained KG embedding199

model ME is first used to rank all candidate enti-200

ties, producing a top-m list:201

C(q) = Top-m(ME(q)) = [e1, e2, . . . , em], (1)202

where each candidate ei is associated with an em-203

bedding ei ∈ Rd, and the query is represented by204

q ∈ Rd. These structural representations are used205

as inputs to the subsequent SLiNT modules.206

3.1 Structure-Guided Neighborhood207

Enhancement (SGNE)208

To address structural sparsity, SGNE enhances each209

input embedding, either a query q ∈ Rd or a can-210

didate entity ei ∈ Rd, by aggregating its Top-ks211

structural pseudo-neighbors, i.e., nearest neigh- 212

bors in the pretrained KG embedding space rather 213

than true KG neighbors. We retrieve these pseudo- 214

neighbors from a global entity pool E ∈ RN×d 215

based on cosine similarity: 216

N (x) = Top-ks (cos(x, E)) , x ∈ {q, ei}. (2) 217

Let E(x)
n ∈ Rks×d denote the corresponding em- 218

bedding matrix of pseudo-neighbors. We project 219

both the input and its neighbors into a shared latent 220

space using a learnable matrix Win ∈ Rd×h, fol- 221

lowed by a SiLU activation (Elfwing et al., 2018): 222

h(x) = ϕ(Winx), H(x)
n = ϕ(WinE

(x)
n ). (3) 223

We concatenate the input and neighbor represen- 224

tations and apply multi-head attention: 225

Z(x) = MultiHeadAttn
(
h(x) ∥H(x)

n

)
. (4) 226

The enhanced representation is obtained by ex- 227

tracting the first token and projecting it back to the 228

output dimension via Wout ∈ Rh×d′ : 229

x̃ = WoutZ
(x)
0 , x̃ ∈ {q̃, ẽi}. (5) 230

The final outputs q̃, ẽi ∈ Rd′ are used for 231

contrastive learning and token-level generation in 232

downstream modules. 233

3.2 Dynamic Hard Contrastive Learning 234

(DHCL) 235

While SGNE enhances structural representations, 236

it lacks supervision to distinguish structurally co- 237

herent entities from semantically similar but struc- 238

turally divergent distractors. To address this, 239

we propose Dynamic Hard Contrastive Learning 240

(DHCL), a structure-sensitive contrastive objective 241

that promotes fine-grained discrimination in the 242

structural space. Rather than comparing raw entity 243

pairs, DHCL interpolates between the query and 244

structure-derived prototypes to generate boundary- 245

level hard positives and negatives, simulating am- 246

biguous decisions near structural margins. This 247

encourages the model to favor structurally valid an- 248

swers and suppress misleading semantic lookalikes. 249

The full procedure is shown in Algorithm 1. 250

Given a query embedding q, enhanced via 251

SGNE as q̃, we randomly sample N entities {ej} 252

from the global entity pool E , and compute their 253

cosine similarities: 254

sj = cos(q̃, ej) =
q̃⊤ej

∥q̃∥ · ∥ej∥
. (6) 255
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Figure 2: Overview of the SLiNT framework. SLiNT consists of three modules: (1) SGNE retrieves Top-ks
pseudo-neighbors and fuses them via multi-head attention; (2) DHCL constructs boundary-sensitive contrastive
samples via interpolation-based augmentation; (3) GDDI injects enhanced query and entity embeddings into frozen
LLMs via token-level injection.

Algorithm 1: Dynamic Hard Contrastive
Learning (DHCL)

Input: Enhanced query q̃ ∈ Rd′ , entity
pool E ∈ RN×d′ , sample size N ,
contrastive sample size kc

Sample N entities {ej}Nj=1 ⊂ E ;
Compute cosine similarities:
sj ← cos(q̃, ej);

Select positives: P ← Top-kchigh({sj}),
negatives: N ← Top-kclow({sj});

Compute prototype centers: p̂, n̂;
Interpolate hard samples: p̃j , ñj ;
Compute contrastive loss: LCL;
return LCL

Hard Sample Mining. To provide contrastive su-256

pervision, the Top-kc most similar and least similar257

entities are selected:258

P = Top-kchigh({sj}), N = Top-kclow({sj}),
(7)

259

where P = {pj} and N = {nj} denote the con-260

trastive positive and negative entity sets, respec-261

tively. The hyperparameter kc specifies the number262

of hard samples used for contrastive training.263

Prototype Construction. To obtain representa- 264

tive prototypes for contrastive learning, we com- 265

pute weighted centers: 266

p̂ =

∑
j w

+
j pj∑

j w
+
j

, n̂ =

∑
j w

−
j nj∑

j w
−
j

, (8) 267

where w+
j , w

−
j ∈ R+ are sampled from a uniform 268

distribution. 269

Interpolation. To generate boundary-sensitive 270

examples, interpolation is performed between the 271

query and the prototype centers: 272

p̃j = αjp̂+ (1− αj)q,

ñj = βjn̂+ (1− βj)q,
(9) 273

where αj , βj ∈ [0, 1] are interpolation coefficients 274

sampled uniformly. These synthetic samples ap- 275

proximate near-boundary contrasts in the structure 276

space. 277

Contrastive Loss. We then optimize a margin- 278

based contrastive loss over interpolated examples: 279

LCL = −
kc∑
j=1

log σ (∥q̃− ñj∥2 − ∥q̃− p̃j∥2) .

(10) 280
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This encourages the model to align query represen-281

tations with structurally consistent entities while282

pushing away structurally incompatible ones, im-283

proving fine-grained discrimination in structure-284

aware settings.See Appendix B for a visualization285

of the contrastive sample distribution.286

3.3 Gradient-Decoupled Dual Injection287

(GDDI)288

We propose Gradient-Decoupled Dual Injection289

(GDDI), a dual mechanism that incorporates290

structure-enhanced representations into frozen291

LLMs through prompt-level augmentation and292

token-level injection. This design enables the293

model to leverage KG-derived context without294

modifying the LLM backbone.295

Prompt Construction. For each query triple q =296

(h, r, ?), we construct a generation prompt P(q) by297

concatenating:298

P(q) = [Q;D;N ; C], (11)299

where Q is a natural language verbalization of the300

query (e.g., “(BFCA Critics’ Choice Award for301

Best Composer, nominated for, ?)”), D provides a302

brief textual description of the known entity (either303

head or tail), N contains pseudo-neighbor triplets304

retrieved by SGNE, these are constructed by map-305

ping structural pseudo-neighbors (retrieved in the306

embedding space) back to KG triples, and C lists307

the Top-m ranked candidates from the KG embed-308

ding model. An illustrative example from FB15k-309

237 is provided in Figure 2.310

Token-Level Injection. After constructing the311

prompt, we identify the token positions of the312

[QUERY] and Top-kr [ENTITY] markers. We inject313

SGNE-enhanced embeddings at these locations:314

Einput[pquery] = q̃, Einput[p
(i)
entity] = ẽi, (12)315

where q̃, ẽi ∈ Rd′ are structure-aware embeddings,316

and pquery, p
(i)
entity denote the corresponding token317

indices.318

Training. To adapt the frozen LLM for down-319

stream generation, we apply parameter-efficient320

finetuning via LoRA (Hu et al., 2022). This dual321

mechanism strengthens the model’s capacity to in-322

tegrate structure-aware representations during gen-323

eration, enabling more accurate entity disambigua-324

tion in sparse and ambiguous contexts.325

3.4 Training Objective 326

The training objective combines language model- 327

ing with structure-aware contrastive supervision: 328

Ltotal = LLM + λ · LCL, (13) 329

where λ ∈ R+ balances the generation loss LLM 330

and the contrastive loss LCL. The language model- 331

ing loss is defined as: 332

LLM = −
T∑
t=1

logP (yt | y<t, X; θ), (14) 333

where yt is the target token at timestep t, y<t is the 334

partial output sequence, X is the structure-injected 335

input, and θ denotes the LLM parameters. This 336

ensures that generation is conditioned not only on 337

textual prompts but also on injected structural sig- 338

nals. For theoretical analysis of retrieval complex- 339

ity, contrastive loss stability, and structural injec- 340

tion alignment, see Appendix A.1–A.3. 341

4 Experiments 342

We conduct comprehensive experiments to eval- 343

uate the effectiveness of SLiNT on two widely 344

used knowledge graph completion (KGC) bench- 345

marks: FB15k-237 (Toutanova et al., 2015) and 346

WN18RR (Dettmers et al., 2018). The statistics 347

of these datasets are provided in Appendix C. Our 348

experiments aim to answer the following research 349

questions: 350

• RQ1: Does SLiNT outperform state-of-the- 351

art embedding-based and generation-based 352

KGC methods? 353

• RQ2: What are the individual contributions 354

of SGNE, DHCL, and GDDI to the overall 355

performance? 356

• RQ3: How robust is SLiNT under low- 357

resource or structurally incomplete KG sce- 358

narios? 359

4.1 Experimental Setup 360

Baselines. We compare SLiNT with two cate- 361

gories of methods: (1) embedding-based models 362

such as TransE (Bordes et al., 2013), RotatE (Sun 363

et al., 2019), and others; and (2) generation- 364

based models including DIFT (Liu et al., 2024), 365

KICGPT (Wei et al., 2024), and others. A full list 366

of baselines is provided in Table 1. 367
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Evaluation Metrics. We adopt standard evalua-368

tion metrics commonly used in knowledge graph369

completion tasks, including Mean Reciprocal370

Rank (MRR) and Hits@K (with K = 1, 3, 10).371

MRR measures the average inverse rank of the372

correct entity across all test queries, providing a373

fine-grained assessment of ranking performance.374

Hits@K reports the proportion of test queries for375

which the correct entity appears within the Top-K376

ranked candidates, reflecting the model’s ability to377

retrieve relevant entities. Higher MRR and Hits@K378

scores indicate better predictive accuracy. These379

metrics are computed under the standard filtered380

setting, where corrupted triples containing valid381

entities from the KG are excluded during ranking382

to ensure fair evaluation.383

4.2 Implementation Details384

We implement SLiNT using PyTorch with mixed-385

precision training on 8×64GB MetaX GPUs (per-386

formance comparable to A100s). All experiments387

leverage frozen LLaMA-7B 1 with pre-trained KG388

embeddings (TransE, SimKGC, CoLE), and em-389

ploy LoRA for lightweight adaptation. Key training390

hyperparameters include a batch size of 64, a learn-391

ing rate of 2 × 10−5, and contrastive loss weight392

λ = 0.5. Further configuration details are provided393

in Appendix D.394

4.3 Main Results (RQ1)395

We evaluate SLiNT on FB15k-237 and WN18RR,396

comparing it against two major categories of meth-397

ods: embedding-based models and generation-398

based models. Results are reported in Table 1.399

Overall Performance. SLiNT consistently400

achieves state-of-the-art performance across401

both datasets and all KG embedding backbones.402

Notably, SLiNT + CoLE achieves the highest403

MRR on FB15k-237 (0.443) and strong results404

on WN18RR (0.626). This demonstrates the405

effectiveness of combining structural signals from406

KGs with contrastive generation. Compared with407

vanilla LLaMA variants, SLiNT shows substantial408

MRR improvements: +0.205 (FB15k-237) and409

+0.252 (WN18RR), respectively.410

Comparison with Prior Methods. Embedding-411

based methods such as NBFNet and SimKGC per-412

form well on WN18RR but underperform on long-413

tail relations in FB15k-237. Generation-based base-414

1https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

lines like DIFT and KICGPT improve semantic 415

controllability, but their reliance on template-based 416

augmentation limits their robustness. SLiNT out- 417

performs all prior generation models under identi- 418

cal KG embeddings (e.g., CoLE), highlighting its 419

superior capacity to capture structure-aware seman- 420

tics. 421

SLiNT Variants. SLiNT yields consistent im- 422

provements across all KG embeddings, TransE, 423

SimKGC, and CoLE, validating its robustness and 424

plug-and-play compatibility with frozen LLMs. 425

Rather than relying on any specific encoder, SLiNT 426

adapts flexibly to different structural priors. Case 427

studies in Appendix E further illustrate how it re- 428

solves fine-grained ambiguities through structure- 429

aware supervision. 430

4.4 Ablation Study (RQ2) 431

To assess the contribution of each component 432

in SLiNT, we conduct ablation experiments on 433

FB15k-237 and WN18RR using CoLE embed- 434

dings. Table 2 reports the results when removing 435

SGNE, DHCL, or GDDI. 436

On FB15k-237, removing SGNE leads to a no- 437

ticeable drop in MRR (0.443 → 0.429), highlight- 438

ing the value of pseudo-neighbor fusion for struc- 439

tural enrichment. The absence of DHCL causes 440

the largest decline in Hits@1 (0.368 → 0.329), 441

highlighting its role in differentiating close struc- 442

tural candidates and reinforcing fine-grained de- 443

cision boundaries through structure-aware con- 444

trastive training. Removing GDDI also degrades 445

performance, albeit moderately, indicating that 446

token-level structure injection provides comple- 447

mentary gains. 448

Similar patterns appear on WN18RR, where dis- 449

abling DHCL again leads to the greatest drop in 450

Hits@1 (0.578 → 0.546), confirming its central 451

role in optimizing entity-level decision boundaries. 452

The consistent declines when omitting SGNE or 453

GDDI further support the necessity of all three 454

components. 455

Overall, these results demonstrate that each mod- 456

ule contributes uniquely to SLiNT’s effectiveness, 457

and their integration is essential for accurate and 458

structure-aware link prediction in challenging KG 459

scenarios. 460

4.5 Robustness Analysis (RQ3) 461

We evaluate the robustness of SLiNT under two 462

common forms of knowledge graph sparsity: re- 463
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Models FB15K-237 WN18RR

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Embedding-based

TransE (Bordes et al., 2013) 0.312 0.212 0.354 0.510 0.225 0.016 0.403 0.521
RotatE (Sun et al., 2019) 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
TuckER (Balazevic et al., 2019) 0.358 0.266 0.394 0.544 0.470 0.443 0.482 0.526
Neural-LP (Yang et al., 2017) 0.237 0.173 0.259 0.361 0.381 0.368 0.386 0.408
NCRL (Cheng et al., 2023) 0.300 — — 0.473 0.670 0.563 — 0.850
CompGCN (Vashishth et al., 2020) 0.355 0.264 0.390 0.535 0.479 0.443 0.494 0.546
HittER (Chen et al., 2021) 0.373 0.279 0.409 0.558 0.503 0.462 0.516 0.584
NBFNet (Zhu et al., 2021) 0.415 0.321 0.454 0.599 0.551 0.497 0.573 0.666

KG-BERT (Yao et al., 2019) — — — 0.420 0.216 0.041 0.302 0.524
StAR (Wang et al., 2021a) 0.365 0.266 0.404 0.562 0.551 0.459 0.594 0.732
MEM-KGC (Choi et al., 2021) 0.346 0.253 0.381 0.531 0.557 0.475 0.604 0.704
SimKGC (Wang et al., 2022) 0.338 0.252 0.364 0.511 0.671 0.595 0.719 0.802
CoLE (Liu et al., 2022) 0.389 0.294 0.429 0.572 0.593 0.538 0.616 0.701

Generation-based

GenKGC(Xie et al., 2022) — 0.192 0.355 0.439 — 0.287 0.403 0.535
KGT5 (Saxena et al., 2022) 0.276 0.210 — 0.414 0.508 0.487 — 0.544
KG-S2S (Chen et al., 2022) 0.336 0.257 0.373 0.498 0.574 0.531 0.595 0.661
ChatGPTone-shot (OpenAI, 2023) — 0.267 — — — 0.212 — —
KICGPT (Wei et al., 2024) 0.412 0.327 0.448 0.581 0.564 0.478 0.612 0.677
LLaMA + TransE (Liu et al., 2024) 0.232 0.080 0.321 0.502 0.202 0.037 0.360 0.516
LLaMA + SimKGC (Liu et al., 2024) 0.236 0.074 0.335 0.503 0.391 0.065 0.695 0.798
LLaMA + CoLE (Liu et al., 2024) 0.238 0.087 0.387 0.561 0.374 0.117 0.602 0.697
DIFT + TransE (Liu et al., 2024) 0.389 0.322 0.408 0.525 0.491 0.462 0.496 0.560
DIFT + SimKGC (Liu et al., 2024) 0.402 0.338 0.418 0.528 0.686 0.616 0.730 0.806
DIFT + CoLE (Liu et al., 2024) 0.439 0.364 0.468 0.586 0.617 0.569 0.638 0.708

SLiNT + TransE 0.395 0.329 0.416 0.522 0.506 0.482 0.508 0.567
SLiNT + SimKGC 0.416 0.355 0.433 0.529 0.691 0.626 0.731 0.805
SLiNT + CoLE 0.443 0.368 0.472 0.591 0.626 0.578 0.646 0.718

Table 1: Link prediction results on FB15k-237 and WN18RR. Best results are in bold and second-best are underlined.
We reproduce the results of TransE, SimKGC, and CoLE using their source code and hyperparameters. The results
of other baselines are obtained from their respective original papers.

Config FB15k-237 WN18RR
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Full 0.443 0.368 0.472 0.591 0.626 0.578 0.646 0.718
w/o SGNE 0.429 0.342 0.453 0.572 0.612 0.560 0.630 0.707
w/o DHCL 0.419 0.329 0.444 0.564 0.606 0.546 0.621 0.705
w/o GDDI 0.433 0.352 0.457 0.577 0.615 0.567 0.638 0.708

Table 2: Ablation results of SLiNT on FB15k-237 and
WN18RR using CoLE. Each module contributes to overall
performance.

duced training supervision and incomplete struc-464

tural connectivity. All results in this section are465

based on SLiNT+CoLE. Specifically, we simulate466

low-resource scenarios by (1) limiting the training467

data to 80% and (2) randomly removing 10% of468

the KG edges. As illustrated in Figure 3, SLiNT469

maintains strong MRR performance under both set-470

tings across FB15k-237 and WN18RR. Although471

performance shows a slight downward trend, the472

degradation is marginal, demonstrating that SLiNT473

remains stable even when exposed to partial super- 474

vision or structural noise. This robustness is largely 475

attributed to the structure-aware enhancements in- 476

troduced by SGNE and the discriminative signals 477

enforced by DHCL, which help compensate for 478

missing or sparse information. These findings high- 479

light SLiNT’s reliability in challenging, real-world 480

KGC scenarios. 481

Figure 3: Performance of SLiNT + CoLE under limited
supervision and structural incompleteness.
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Figure 4: comparing the performance of SLiNT
with different structural encoders on FB15k-237 and
WN18RR.

4.6 Further Analysis482

Effect of Encoder Quality. The effectiveness of483

SLiNT is closely tied to the expressiveness of the484

underlying structural encoder. As shown in Ta-485

ble 1 and Figure 4, models using more powerful486

encoders such as CoLE consistently achieve higher487

performance. Notably, SLiNT + CoLE achieves488

the best MRR on FB15k-237, while SLiNT +489

SimKGC performs best on WN18RR, outperform-490

ing all baseline methods on their respective bench-491

marks. Even when paired with a simpler encoder492

like TransE, SLiNT surpasses several strong mod-493

els, including LLaMA + TransE and SimKGC.494

These results demonstrate SLiNT’s robustness to495

encoder quality and its ability to extract meaningful496

knowledge even from shallow embeddings.497

Effect of Top-ks Neighbors. We evaluate how498

the number of structural neighbors (ks ∈499

{1, 3, 5, 10}) in SGNE affects performance across500

different encoders. As shown in Figure 5, more ex-501

pressive encoders like CoLE benefit steadily from502

increasing ks, peaking at ks=5. SimKGC shows503

similar trends but remains more stable. For weaker504

encoders like TransE, performance improves up to505

ks=5 but drops at ks=10 due to noisy neighbors.506

These findings suggest a trade-off: too few neigh-507

bors fail to capture structure, while too many intro-508

duce noise, especially under less robust encoders.509

SGNE remains effective across settings, with ks=5510

serving as a balanced default.511

Effect of Contrastive Loss Weight. To assess512

the impact of contrastive supervision, we eval-513

uate SLiNT under varying contrastive weights514

λ ∈ {0.1, 0.3, 0.5, 0.7} (Table 3). Results show515

that the optimal λ is dataset-specific: on FB15k-516

237, the best MRR and Hits@k scores are achieved517

at λ = 0.3, while WN18RR reaches its peak at518

Figure 5: MRR comparison under varying Top-ks neigh-
bor sizes for SLiNT with different structural encoders
on FB15k-237 and WN18RR.

λ
FB15k-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

0.1 0.438 0.354 0.462 0.580 0.617 0.571 0.639 0.709
0.3 0.443 0.365 0.467 0.589 0.619 0.574 0.637 0.708
0.5 0.437 0.352 0.459 0.582 0.626 0.578 0.646 0.718
0.7 0.421 0.336 0.446 0.570 0.619 0.571 0.640 0.709

Table 3: Performance of SLiNT + CoLE under varying
contrastive loss weights λ on FB15k-237 and WN18RR.

λ = 0.5. This discrepancy likely reflects structural 519

differences: WN18RR is more relation-regular 520

with clearer decision boundaries, making it more 521

receptive to contrastive supervision; in contrast, 522

FB15k-237 contains more semantically overlap- 523

ping relations, where overly strong contrastive sig- 524

nals may hinder generalization. Overall, these find- 525

ings underscore the importance of balancing con- 526

trastive and generative objectives. Underweighting 527

reduces the benefits of contrastive learning, while 528

overweighting may destabilize training. 529

5 Conclusion 530

We present SLiNT, a structure-aware generative 531

framework for knowledge graph completion that 532

integrates structure-derived evidence from KG 533

embeddings into frozen large language models. 534

SLiNT incorporates three complementary mod- 535

ules: SGNE for neighborhood-guided embedding 536

refinement, DHCL for dynamic contrastive super- 537

vision, and GDDI for injecting structure-enhanced 538

representations into frozen LLMs via prompt- 539

level augmentation and token-level injection. Ex- 540

periments on FB15k-237 and WN18RR demon- 541

strate that SLiNT achieves state-of-the-art perfor- 542

mance, outperforming both embedding-based and 543

generation-based baselines, while maintaining ro- 544

bustness under structural sparsity and compatibility 545

with frozen LLMs. 546
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Limitations547

While SLiNT demonstrates strong performance548

on standard KGC benchmarks, it currently fo-549

cuses on structure-derived signals extracted from550

pretrained KG embeddings. This limits its ap-551

plicability in settings where multimodal signals552

(e.g., images, temporal dynamics) play a central553

role in knowledge representation. For example,554

SLiNT does not handle temporal KGs with time-555

stamped triples, nor does it incorporate visual556

context such as entity-linked images in common-557

sense or encyclopedic knowledge graphs. Fur-558

thermore, our current injection mechanism uses559

a fixed number of structural tokens and does not560

adapt to the complexity or ambiguity of the in-561

put. Future work could address these limitations562

by (1) extending SGNE to integrate multimodal re-563

trieval (e.g., using pretrained vision-language mod-564

els) and (2) developing adaptive injection strate-565

gies conditioned on input difficulty, confidence,566

or graph sparsity. These extensions would enable567

SLiNT to generalize more effectively to diverse568

real-world knowledge sources while improving per-569

formance–efficiency trade-offs.570
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A Theoretical Justification801

A.1 Complexity Analysis of Pseudo-Neighbor802

Retrieval803

In our SGNE module, we retrieve the Top-ks struc-804

tural pseudo-neighbors for each query or candidate805

entity by computing cosine similarity in the em-806

bedding space. Let the number of total entities be807

$N$, the embedding dimension be $d$, and the808

number of queries be $Q$. Then, the brute-force809

computation of cosine similarity has complexity:810

O(N · d). (15)811

for each query. Thus, the total retrieval cost be-812

comes:813

O(Q ·N · d). (16)814

To reduce this cost in large-scale knowledge graphs,815

approximate nearest neighbor (ANN) methods such816

as FAISS can be used, reducing complexity to ap-817

proximately:818

O(Q · logN · d). (17)819

This optimization enables scalable retrieval even820

for entity sets with millions of entries, as shown in821

(Johnson et al., 2021). We further observe that the 822

Top-ks neighbors are precomputed and cached dur- 823

ing training, making the cost negligible at inference 824

time. 825

A.2 Robustness and Generalization of 826

Contrastive Loss 827

To support fine-grained structural discrimination, 828

our DHCL module optimizes a contrastive loss 829

LCL, as defined in Section 3.2. This loss directly 830

encodes structure-aware decision boundaries by 831

comparing the distances between the query and in- 832

terpolated hard positives/negatives in the structure 833

space. 834

Stability via Lipschitz Continuity. Let Zj = 835

∥q̃ − ñj∥2 − ∥q̃ − p̃j∥2 denote the contrastive 836

margin. Under unit-norm embeddings and inter- 837

polation sampling, we have Zj ∈ [−2, 2], and the 838

per-term loss ℓ(Zj) = − log σ(Zj) is 1-Lipschitz 839

and bounded: 840

ℓ(Zj) ∈ [log(1+e−2), log(1+e2)] ≈ [0.13, 2.13]. 841

This boundedness ensures stable gradients and ro- 842

bustness, especially when interpolated negatives lie 843

close to the decision boundary. 844

PAC-Bayes Generalization Bound. We adopt 845

a PAC-Bayes analysis (McAllester, 1999; Saunshi 846

et al., 2019) to study generalization under structure- 847

sensitive contrastive training. Let the encoder 848

fθ be parameterized by θ ∈ Rd′ , and assume 849

a Gaussian prior P = N (0, σ2I) and posterior 850

Q = N (θ, σ2I). Then the expected risk satisfies: 851

R(Q) ≤ R̂(Q) +

√
1

2N

(
KL(Q∥P ) + log

1

δ

)
,

(18) 852

with KL divergence given by: 853

KL(Q∥P ) =
1

2σ2
∥θ∥2. (19) 854

Because the contrastive loss LCL is Lipschitz 855

and bounded, it satisfies the assumptions of the 856

PAC-Bayes framework. This result confirms that 857

contrastive training under DHCL maintains sta- 858

ble generalization behavior even when interpolated 859

negatives lie near structural decision boundaries. 860

A.3 Modal Alignment Theory for Structure 861

Injection 862

Our GDDI implement structure injection via token- 863

level injection, where the token embeddings of 864
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[QUERY] and Top-kr [ENTITY] markers are865

replaced with structure-enhanced vectors q̃, ẽi.866

These embeddings are injected into a frozen LLM,867

forming the input:868

Xinput = [CLS, q̃, . . . , ẽ1, . . . , ẽkr , EOS].
(20)869

We treat this process as a cross-modal align-870

ment between graph-structured embeddings and871

language model token representations. Let the872

LLM be viewed as a conditional language model:873

pθ(y|X). (21)874

The structural embedding injection aims to pre-875

serve the semantic consistency between Xstruct (the876

injected representation) and the output y. Under877

the information bottleneck (IB) principle (Tishby878

and Zaslavsky, 2015), we define the learning objec-879

tive as:880

max I(Xstruct;y)− βI(Xstruct;Z). (22)881

where Z is the latent representation inside the LLM.882

This objective seeks a trade-off: inject structure883

such that it influences generation (high mutual884

info with y), while not deviating excessively from885

LLM’s internal representations.886

In practice, we approximate this by replacing the887

token embeddings at designated slots with q̃, ẽi,888

and minimizing the KL divergence between pre-889

and post-injection logits:890

Lalign = KL(pLM(·|X)∥pLM(·|Xinject). (23)891

This provides a differentiable surrogate for modal892

alignment. If structure injection preserves or im-893

proves generation quality, we can conclude suc-894

cessful alignment.895

B Contrastive Supervision Visualization896

To illustrate the effectiveness of DHCL, we visu-897

alize the spatial distribution of the query, positive,898

and negative samples using PCA projection (Fig-899

ure 6). The plot shows that positive samples cluster900

closely around the query, while negative samples901

are generally more dispersed. However, there exists902

a partial overlap between hard positives and hard903

negatives, indicating that the boundary between904

them is non-trivial. This overlap underscores the905

importance of fine-grained supervision and justifies906

the design of DHCL, which explicitly targets these907

ambiguous boundary cases to enhance the model’s908

discriminative capacity.909

Figure 6: PCA projection of the contrastive sample
distribution.

Dataset #Ent. #Rel. Train Valid Test

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 4: Statistics of FB15k-237 and WN18RR.

C Dataset Details 910

We conduct experiments on two widely used 911

benchmarks for link prediction: FB15k-237 and 912

WN18RR. The statistics of both datasets are shown 913

in Table 4. 914

• FB15k-237 is a refined subset of the origi- 915

nal FB15k, extracted from Freebase. It con- 916

tains a broad range of entity types and re- 917

lation patterns (e.g., one-to-many, many-to- 918

one). To mitigate test leakage via inverse 919

relations, redundant inverse edges were re- 920

moved (Toutanova et al., 2015). 921

• WN18RR is a cleaned version of WN18, de- 922

rived from the WordNet lexical database. It 923

captures hierarchical and lexical relationships 924

such as hypernymy, synonymy, and derivation. 925

Reversible edges were removed to ensure re- 926

alistic evaluation (Dettmers et al., 2018). 927

These benchmarks offer complementary evalu- 928

ation settings for the proposed SLiNT framework. 929

FB15k-237 emphasizes multi-relational reasoning 930

over densely connected facts, testing the model’s 931

ability to distinguish semantically similar entities. 932

In contrast, WN18RR features abstract lexical rela- 933

tions and sparse connectivity, providing a rigorous 934

testbed for structure-aware contrastive learning. 935
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D Training and Implementation Details936

We provide detailed configuration settings for all937

components of SLiNT.938

Hardware and Framework. All experiments939

are conducted on 8×64GB MetaX GPUs, a do-940

mestic CUDA-compatible accelerator with perfor-941

mance comparable to NVIDIA A100s. Our im-942

plementation is based on PyTorch with automatic943

mixed-precision (AMP) training for efficiency.944

Backbone Model. We use the frozen LLaMA-945

2-7B model from HuggingFace2 as the base lan-946

guage model. Structure-aware features are injected947

via prompt and token-level replacements without948

updating LLM parameters. LoRA is used for effi-949

cient adaptation, with rank r = 128, scaling factor950

α = 64, and dropout rate of 0.1.951

KG Embeddings. We experiment with three pre-952

trained KG encoders: TransE, SimKGC, and CoLE.953

Each query is used to retrieve a top-m candidate954

list from a pretrained KG embedding model, with955

m = 20. These embeddings provide the structural956

foundation for neighborhood enhancement and con-957

trastive supervision.958

SGNE Settings. In the SGNE module, we re-959

trieve Top-ks = 5 pseudo-neighbors for each query960

or candidate entity using cosine similarity in the961

KG embedding space. The query and its neighbors962

are fused via multi-head attention, and the outputs963

are cached for efficiency.964

DHCL Settings. For contrastive training, we965

sample N = 50 candidate entities per query. The966

contrastive loss is computed over kc = 10 hard967

positives and negatives selected based on pseudo-968

neighbor overlap. The loss is weighted by a969

confusion-aware scoring function. The contrastive970

loss coefficient is λ = 0.5.971

GDDI Settings. In the GDDI module, we inject972

kr = 1 structure-enhanced entity token into each973

input sequence. The enhanced embeddings replace974

the placeholders for [QUERY] and [ENTITY] tokens.975

Injection is performed at both prompt-level (text)976

and token-level (embedding) positions.977

Optimization and Training. All models are978

trained using the Adam optimizer with a learning979

rate of 2×10−5 and a batch size of 64. We train for980

2https://huggingface.co/meta-llama/
Llama-2-7b-chat-hf

3 epochs with early stopping based on validation 981

MRR. Random seeds are fixed for reproducibility, 982

and all results are averaged over three runs. 983

E Case Study 984

To demonstrate how SLiNT leverages pseudo- 985

neighbor injection and contrastive learning, we 986

present three representative cases from WN18RR 987

and FB15k-237. Each case includes a query, can- 988

didates, SGNE-retrieved pseudo-neighbors, and 989

model predictions. Tables 5–7 are presented along- 990

side their respective discussions. 991

E.1 Case 1: Disambiguating Musical 992

Components 993

Query (instrument, has_part, ?)
Candidates {bow, string, keyboard, bridge}
Ground Truth string
Pseudo-Neighbors
(Top-5)

violin, cello, harp, guitar, banjo

LLaMA + CoLE keyboard (Top-1)
DIFT + CoLE keyboard (Top-1)
SLiNT + CoLE string (Top-1)

Table 5: Case 1: SLiNT correctly predicts string by
leveraging structurally similar instruments.

Analysis. LLaMA and DIFT choose keyboard, a 994

plausible but structurally irrelevant part. SLiNT 995

identifies string by leveraging pseudo-neighbors 996

such as violin and cello, where string is a 997

shared component. 998

E.2 Case 2: Differentiating Geopolitical 999

Containment 1000

Query (?, location_contains, mountain)
Candidates {Nepal, Asia, Everest, Tibet}
Ground Truth Nepal
Pseudo-Neighbors
(Top-5)

Himalaya, Kathmandu, Pokhara,
Lumbini, Mustang

LLaMA + CoLE Asia (Top-1)
DIFT + CoLE Nepal (Top-1)
SLiNT + CoLE Nepal (Top-1)

Table 6: Case 2: SLiNT correctly identifies Nepal by
grounding in local structural cues.

Analysis. Although all candidates are semantically 1001

relevant to mountain, SLiNT uses structure-guided 1002

cues, e.g., Himalaya and Kathmandu to localize the 1003

correct geopolitical scope. 1004
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E.3 Case 3: Failure Case on Long-tail1005

Relation1006

Query (person, known_for, ?)
Candidates {acting, painting, novel, photogra-

phy}
Ground Truth painting
Pseudo-Neighbors
(Top-5)

artist, sculptor, painter, curator, il-
lustrator

LLaMA + CoLE acting (Top-1)
DIFT + CoLE acting (Top-1)
SLiNT + CoLE novel (Top-1)

Table 7: Case 3: SLiNT fails to predict painting, de-
spite partial structural grounding.

Analysis. All models fail to predict painting, re-1007

vealing challenges in handling long-tail relations.1008

SLiNT ranks novel highest, likely influenced by1009

relevant creative-profession neighbors, yet fails to1010

fully disambiguate the semantic role of the can-1011

didate. This failure highlights the limitations of1012

structure-based grounding in the absence of suffi-1013

cient semantic alignment.1014
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