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A ADDITIONAL EXPERIMENTS

A.1 VISUALIZATION OF CARROLL’S NETWORK

In Figure[T} we display a subgraph of high-degree nodes of Raymond Carroll’s personalized coau-

thorship network (figure borrowed with permission from Ji et al.| (2022)). On the right of Figure[T]is
shown the small community extracted by SCORE, and this cluster of size 17 is labeled by author

names.
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Figure 1: Left: Carroll’s personalized network, figure taken from (2022)). Right: A small
community of 17 authors extracted by SCORE and whose SgnQ p-value is 0.6818.

A.2 SGNQ VS. SCAN

In this section we demonstrate evidence of a statistical-computational gap by means of numerical
experiments.

We consider a SBM null and alternative model (as in Example 2 with § = 1) with

b
ne(ae) n=(Y)

where alN 4+ b(n — N) = «. For this simple testing problem, we compare the power of SgnQ and
the scan test. In our experiments, we set o = 0.2 and allow the parameter a to vary from a = « to
@ = amax = an/N. Once a and « are fixed, the parameters b and ¢ are determined by
aN? + an? — 2anN
(n— N)2 ’
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nc—(a+c)N
n—2N

In particular, a,,x is the largest value of a such that b > 0.

b:

Since the scan test ¢, we defined is extremely computationally expensive, we study the power of an
‘oracle’ scan test ¢5. which knows the location of the true planted subset C;. The power of the oracle
scan test is computed as follows. Let « denote the desired level.

1. Using M., repetitions under the null, we calculate the (non-oracle) scan statistic
2?, e ¢>§ﬂ4w1) for each repetition. We set the threshold 7 to be the empirical 1 — &
quantile of ¢§?, e qsgi”wl).
2. Given a sample from the alternative model, we compute the power using M,,,,, repetitions,
where we reject if

qgsc = 1C1 (A - ﬁﬁ/)lcl > 7.
In our experiments, we set M.q; = 75 and Mo, = 200.

Note that since ¢y, < ¢sc, the procedure above gives an underestimate of the power of the scan

test (provide the threshold is correctly calibrated), which is helpful since this can be used to show
evidence of a statistical-computational gap.

In our plots we also indicate the statistical (information-theoretic) and computational thresholds in
addition to the power. Inspired by the sharp characterization of the statistical threshold in (Arias{
Castro & Verzelen, 2014, Equation (10)) for planted dense subgraph, in all plots we draw a black
vertical dashed line at the first value of a such that

(1/2)V'N(a —¢)//e(1 —¢) > 1.

‘We draw a blue vertical dashed line at the first value of a such that

N(a—c)/v/ne>1.

A.3  x2 VS. SGNQ

We also show additional experiments demonstrating the effect of degree-matching on the power of
the x? test. We compute the power with respect to the following alternative models (as in Example 2

with = 1) with
P(l) _ a b P(g) _ a c
b ¢’ c c

where b = %’ ¢ is fixed, and a ranges from c to al,,, = ¢(n — N)/N for the experiments
with P, Similar to before, al .« 18 the largest value of @ such that b > 0. See Figurefor further
details.

B PROOF OF LEMMA 2. 1| (IDENTIFIABILITY)

To prove identifiability, we make use of the following result from (Jin et al., 2021, Lemma 3.1), which
is in line with Sinkhorn’s work [Sinkhorn| (1974)) on matrix scaling.

Lemma B.1 (Jin et al. (2021)). Given a matrix A € R¥K with strictly positive diagonal entries
and non-negative off-diagonal entries, and a strictly positive vector h € RX, there exists a unique
diagonal matrix D = diag(dy, ds, ..., dk) such that DADh = 1 and d, > 0,1 < k < K.

We apply Lemma with h = (hy,...,hg) and A = P to construct a diagonal matrix D =
diag(dy, ..., dx) satisfying DADh = 1. Note that P has positive diagonal entries since §2 does.
Define P* = DPD and D* = diag(d5,...,d}) € R™ where

r'n

di=dy  ificC
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Power of oracle scan vs. SgnQ: n=30,N=4 Power of oracle scan vs. SgnQ: n=40,N =4

—

——sgna

Figure 2: The power of SgnQ (blue curve) and oracle scan (black curve) forn = 30, N € {4,6,7}
(left) and n = 40, N € {4,6, 7} (right). The black dashed line indicates the theoretical statistical
threshold, and the blue dashed line indicates the theoretical computational threshold.

Observe that
np—! = (p*)~ I

Define ©* = ©(D*)~!, and let #* = diag(©*). Next, let © = o 9% let § = diag(©), and let
P= ”971;2”% - P*. Note that |0, = n and Ph o 1.
Using the previous definitions and observations, we have

Q=0ID 'DPDD~'II'6 = ©* P II'0* = OIIPI'O®

which justifies existence.

To justify uniqueness, suppose that
O =00nptire® = eAnpAmTe®,
where 0() = diag(©®) satisfy || ||; = n fori = 1,2 and
P(l)hoclK, P(Q)ho<1K.
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Power of chi2 vs. SgnQ, ic SBM: n = 500, N = 22, c= 0.05 , Power of chi2 vs. SgnQ, ic SBM: n = 500, N = 22, c=0.05
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Power of chi2 vs. SgnQ, ic SBM: n = 500, N = 22, c= 0.20 | Power of chi2 vs. SgnQ, ic SBM: n = 500, N = 22, c=0.20
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Figure 3: Power comparison of SgnQ and x? (n = 500, N = 22, 50 repetitions). We consider a
2-community SBM with Py = a, Po = ¢, Pz = ¢ (left) and Pro = =N (roht plot, the
case of degree matching) where ¢ = 0.05 (top row) and ¢ = 0.20 (bottom row).

Observe that
nr®Irs, =a®n-1,, nrPAr, =a®n-1,.

for positive constants o(¥), i € {1,2}. Since € has nonnegative entries and positive diagonal elements,
by Lemma [B.T] there exists a unique diagonal matrix D such that

DOD1, =1,.
We see that taking D = \/O}T)n(@(i))_l satisfies this equation for ¢ = 1,2, and therefore by
uniqueness,
1 1

CRs

2
3

a@n

Since |0, = ||6®]|; = n, further we have a") = a(?), and hence
o) — g®,
It follows that
PO = 1IPA1r,
which, since we assume h; > 0 for¢ = 1,..., K, further implies that P = p®@), O

C PROOF OF THEOREM [2.1] (LIMITING NULL OF THE SGNQ STATISTIC)

Consider a null DCBM with @ = 6*(6*)’. Note that this is a different choice of parameterization than
the one we study in the main paper. In (Jin et al., 2021, Theorem 2.1) it is shown that the asymptotic
distribution of 1), the standardized version of SgnQ, is standard normal provided that

167]] = 00, 00 — 0, and (0711167 [|1)/log([|6]IF) — O. (.1

max
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We verify that, in a DCBM with Q = a6’ and ||f||; = n, these conditions are implied by the
assumptions in (2.3)), restated below:

no — 0o, and af? . log(n’a) — 0 (C2)
In the parameterization of Jin et al. (2021), we have 0* = \/af. First, ||[0*||* — oo because by (C-2),
1
10%]1> = = - [|6"[]] = an — .
n

Next, 6, — 0 because by (C.2),

’ Ymax

amax = \/agmax — 0.

To show the last part of (C.I)), note that
* * * 1
(167112 /167 [11)1/10g(10]17) < Vabmax/log(van) = 7

by (C2). Thus (C-I)) holds, and 4, is asymptotically standard normal under the null. O

Vb maxy/log(an?) — 0

D PROOF OF LEMMA (PROPERTIES OF (2)
Lemma. The rank and trace of the matrix Q are (K — 1) and ||6||2diag(P)'g, respectively. When
K =2, \; = trace(Q) = ||0]|*(ac — b*)(d2g1 + d2g0)/(ad? + 2bdody + cd3).
Proof of Lemma[2.2] By basic algebra,
Q= OIIPII'®,  where P = (P — (d'Pd)~*Pdd'P).

Itis seen Pd = Pd — (d'Pd)~*Pdd'Pd = 0, so rank(P) < K — 1. At the same time, since for any
matrix A and B of the same size, rank(A + B) < rank(A) + rank(B), it follows P > (K — 1), as
rank(P) = K and rank(Pdd’' P) < 1. This proves that rank(P) = K — 1.

At the same time, since for any matrices A and B, trace(AB) = trace(BA),
trace(€) = trace(PII'©O2II) = ||0]*trace(PG) = ||0||*diag(P)’g.
This proves the second item of the lemma.

Last, when K = 2, Q) is rank 1, and its eigenvalue is the same as its trace. First

~ (ad1 + bd0)2 2 d%
P)i=a- = (ac—b
Pl == o hdedy e~ ) e T 2bdods + o
~ 2 2
(P22 =c¢ (ber + cdo) = (ac — b°) 4

 ad? + 2bdyd, + cd? ad? + 2bdody + cd?’

Thus
d(Qng + d%go
ad% + 2bdod; + cdg

This proves the last item and completes the proof of the lemma.

A1 = 0] diag(P)'g = [|6]]*(ac — ) -

O

E  PROOF OF THEOREM [2.2] (POWER OF THE SGNQ TEST) AND COROLLARY

2.1

E.1 SETUP AND RESULTS

Notation: Given sequences of real numbers A = A,, and B = B,,, we write A < B to signify that
A= 0(B), A=< Btosignify that A < Band B < A, and A ~ B to signify that A/B = 1 + o(1).
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Throughout this section, we consider a DCBM with parameters (0, P) where P € R?*? has unit
diagonals, and we analyze the behavior of SgnQ under the alternative. At the end of this subsection
we explain how Theorem 2.2]and Corollary 2.1] follow from the results described next. Our results
hinge on

A=A =1tr(Q).

Given a subset U C [n], let fy € RIVI denote the restriction of @ to the coordinates of U. For
notational convenience, we let S = {i : m;(1) = 1}, which was previously written as C; in the main

paper.
In a DCBM where P has unit diagonals, our main results hold under the following conditions.

Qij S 91‘9j (El)
[19lloc = O(1), and (E.2)
1013 — oc. (E.3)

(1913/11011:) v/ 1og([l6]]1) — . (E.4)

First we justify that these assumptions are satisfied by an equivalent DCBM with the same 2
represented with the parameterization (2.1)) and satisfying (2.7). Thus all results proved in this section
transfer immediately to the main paper.

Lemma E.1. Consider a DCBM with parameters (©*, P*) satisfying 2.1) and satisfying @2.7).
Define © = diag(0) where
0, — {\/&Gf ifieS
L eor ifi e 8¢

1 b
P:(b \/fic>
Vac

Q= OIPIe = O TP II'e*

and

Then

and (EI)—(E-) are satisfied.

Proof. The statement regarding €2 follows by basic algebra. (E-I) follows if we can show that

b
— < 1. E.5
Since
b_cnf(a+c)]\7_ n—N N
N n—2N T n TN T Yo

we have a > ¢ 2 b, so follows.
Next, (E2) follows directly from a7, ; < 1since cf2,, o = o(1) by 7).
For (EJ3),
1613 > - 612 > en — oo
by 7).

For the last part, note that
n—N N
. —_ a .
n—2N n— 2N

b=c >0=ac<c

Thus,
1013 _  allogl3 +cllos:l3 . a(N/n)||0% I3 + cll0]I3

18~ Vallozll + Vel oz ~ VelOzTh
cltslB . - 1 1
~ Camax,ozo ) = 0\ TYF——=
g = Jiosiomn

S T ),
Vel
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which implies (E-4). Above we use that a > ¢ and g1 < d; < N/n, by assumption. Precisely, in the
first line, we used

all05l3 = a- (1~ N/n)’l%llechlli < cfl05e113,
and in the second line we used
1011 > Vell5ell = Vel = N/n) Y6l < ven.
O

With Lemma in hand, we restrict in the remainder of this section to the setting where P has unit
diagonals and —(E-) are satisfied.

Define vy = 1'Q1, and let n* = (1/,/00)Q1. Recall Q = Q — *n*T, and A = tr(Q). Our main
result concerning the alternative is the following.

Theorem E.1 (Limiting behavior of SgnQ test statistic). Suppose that the previous assumptions
hold and that |\|//A1 — co. Then under the null hypothesis, as n — oo, E[Q] ~ 2[|0]|3,
Var(Q) ~ 8|05, and (Q — EQ)/+/Var(Q) — N(0,1) in law. Under the alternative hypothesis,
asn — oo, BQ ~ X* and Var(Q) < |6 + [A2A3 = o(A8).

Following Jin et al|(2021)), we introduce some notation:
1

Q=0 (0" h * = 01, =101,
UBIUNE where 7 g s vo = 1,Q1,;
1 1
8ij = mi(ny — 75) +ni(ni — i), where 7 = %(EA)ln» n= \ﬁAlm v=1,(EA)1,;

(%

rig = (ing —ming) = (0 = ) (n; = 03) + (1 = 37)7i7,  where V= 1;,AL,.

The ideal and proxy SgnQ statistics, respectively, are defined as follows:

Qn=">_  (Qj+ W) Qs + W) (e + Wie) (i + Wei) (E.6)
0.5k £(dist)
Q= Z (ﬁw + Wij + 51’]')(?2# + Wik + 5jk)(§k£ + Wie + 5kz)(f~2£i + Wei + 0¢;).
0.5k 0(dist)
(E.7)

Moreover, we can express the original or real SgnQ as

Qn=Y, |:(§ij + Wi =+ 8 + 743) (e + Wik + 8 + 1)
i3,k L(dist)

(ﬁu + Whie + 6pe + ka)(ﬁfi + Wei + 00 +74:) | -

The next theorems handle the behavior of these statistics. Together the results imply Theorem [E.T}
Again, the analysis of the null carries over directly from Jin et al.[|(2021), so we only need to study
the alternative. The claims regarding the alternative follow from Lemmas[E.7HE-12] below.
Theorem E.2 (Ideal SgnQ test statistic). Suppose that the previous assumptions hold and that
IAl/V/AL = co. Then under the null hypothesis, as n. — oo, E[Q] = 0 and Var(Q) = 8]|0]|5 -
[1 4 o(1)]. Furthermore, under the alternative hypothesis, as n — oo, E[Q] ~ A* and Var(Q) <
M A6 = 0(2®).

Theorem E.3 (Proxy SgnQ test statistic). Suppose that the previous assumptions hold and that
IAl/v/A1 = co. Then under the null hypothesis, as n — oo, |E[Q — Q*]| = o(||0||3) and Var(Q —
Q*) = 0(||0)|3). Furthermore, under the alternative hypothesis, as n — oo, [E[Q —Q*]] < |2\ =
o(A%) and Var(Q — Q*) < |A2PA3 + A6 = o(A®).
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Theorem E.4 (Real SgnQ test statistic). Suppose that the previous assumptions hold and that
IAl/v/AL = oo. Then under the null hypothesis, as n — oo, |E[Q — Q]| = o(]|0]|3) and Var(Q —
Q) = 0(||0||3). Furthermore, under the alternative hypothesis, as n — oo, [E[Q — Q*]] < |A2A =
o(AY) and Var(Q — Q*) < |AI2A3 = o(A®).

The previous work Jin et al.| (2021)) establishes that under the assumptions above, if ||0g]1/]|0]1 =< 1,
then SgnQ distinguishes the null and alternative provided that |A2|/+/A1 — oo. To compare with

the results above, note that Ay = X if ||fg||1/[|0]1 = 1 (c.f. Lemma E.5 of Jin et al. (2021)).
Thus when K = 2, our main result extends the upper bound of Jin et al.| (2021) to the case when

0s/1/110]l1 = o(1). We note that || > |Xo| in general (see Lemmaand Corollary.
The theorems above apply to the symmetric SBM. Recall that in this model,

a ifi,jes
b= W otherwise.

where N = |S] and a, b, ¢ € (0, 1). To obtain this model from our DCBM, set

(1 b
and
0= \/als + \/E]_Sc. (E.9)

The assumption (E.1) implies that b < /ac, which is automatically satisfied since we assume a > c.

In SBM, it holds that Ay = X (see Lemma . Furthermore, explicit calculations in Section
reveal that

A1 ~ ne, and (E.10)
)\2:5\NN(CL—C).

In addition, with P, a, ?)7 c as above, if we have

Tl ifigs
for p > 0 with pupin = Pmax in the DCBM setting, a very similar calculation, which we omit, reveals
that

A1 < ne, and (E.11)
A= N(a—c).

With the previous results of this subsection in hand (which are proved in the remaining subsections)
we justify Theorem [2.2]and Corollary [2.1]

Proof of Theorem[2.2] The SgnQ test has level x by Theorem[2.1] so it remains to study the type II
error. Using Theorem [E.T|and Lemma[E.T] the fact that the type II error tends to 0 directly follows
from Chebyshev’s inequality and the fact that ||7]|2 — 1 = ||#||2 with high probability. In particular,
note that since |A| > /A1, the expectation of SgnQ under the alternative is much larger than its
standard deviation, under the null or alternative. We omit the details as they are very similar to the

proof of Theorem 2.6 in (Jin et al.} 2021, Supplement,pgs. 5-6). O
Proof of Corollary2.1] This result follows immediately from (E.IT) and Theorem [2.2] O
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E.2 PRELIMINARY BOUNDS

Define vg = 17Q1, and let n* = 1/\/vo - Q1. For the analysis of SgnQ, it is important is to
understand Q = Q — n*n*T. The next lemma establishes that ) is rank one and has a simple

expression when K = 2.
Lemma E.2. Let f = (||0s¢||1, —|0s|/1)" It holds that

G 1=¥)

-enffre.
o

Proof. Let pg = ||0s||1 and p; = ||0s<]|1. Note that

Hi(po + bpl) ifieS
01);, =6,y 0;n] Pr; =
(1) =9 Zj: 3T £ {Gi(bpo—l-pl) ifi ¢ 8.

Hence
Vg = ].TQ]. = p(2) + 2bp0p1 + p%
Ifi,j € S, then

v v 0 e} vo
Similarly if i € Sand j ¢ S,
0. — 0:0, (b — (po + bp1)(bpo +p1)) _ 00, (1=0*)pop1
] aeV) V0 A 0
and
- 2 _p2) 2
Oy = 0,0;(1 — (bpo + 1) ) = 0,6, (1—-0*)p
Vo Vo

if ¢, j € S¢. The claim follows.

Let
w = OILf = Og|0sc|[1 — Os<||0s]l1 = p10s — pobse
Using the previous lemma, we have the rank one eigendecomposition
Q= NET,
where we define
p10s — pobse p10s — poBse

= = :
0205 = pobsllz ~ \/iR163[3 + p3l10s- 13

(1-10%)
Vo

(03110513 + pEllOse]|3).

(E.12)

(E.13)

(E.14)

Lemma E.5 of Jin et al./(2021) implies that if ||6s||1/||0||1 = 1,then Ao =< A1 . If ||0s]|1/|0]/1 = o(1),
then this guarantee may not hold. Below, in the case K = 2, we express A in terms of the eigenvalues
and eigenvectors of 2. This allows us to compare Ao with A more generally, as in Corollary

Lemma E.3. Let () have eigenvalues \1, Ao and eigenvectors €1, Ea. Let \ denote the eigenvalue of

Q. Then

M2 ((€1,1)% + (£, 1)?)
A6, 1)2 + Ao (62, 1)2

5\:

10

(E.15)
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Proof. By explicit computation,

Q -0 — n*n*T
2 2
=M (1- 7)\1@;’ J )ar&l + Ao (1 — Aoltn 1) )éa3 — Mot D 1) (G166 +¢])
0 Vo V0
A1A
= 52 (@06 + (6. 08) - (916 + (6 1)8)
From (E:13) and (E:T4), it follows that
= (&, )& + (&4, 1)&
VI(€,1)2 + (62, 1)?
5\ _ )\1)\2 (<§17 1>2 + <£2, 1>2>
Vo
O
Corollary E.1. It holds that
Aa| SN S Ar (E.16)
If Ay > 0, then
Ao <A< N\ (E.17)

Proof. Suppose that Ao > 0. Then
A2 ((&1, 1) 4 (£,1)%) < M(&, 1)+ A, 1)? = vp < A\ ((&1,1)% + (£2,1)7),
implies (E17).
Suppose that Ao < 0. Note that
A ((6 1) 4 (€2,1)%) = A&, 1)% + Mo (&2, 1)* = v > 0,
which combined with (E-I3) implies that |X| > |\a].
Next,
da SETOE= A+ (€ "),
which implies that
A< Pal+ G < d+ 0713 S M+ 1017 S A,
where the last inequality follows from Lemma [E3] O

The next results are frequently used in our analyis of SgnQ.
Lemma E4. Letv =17(Q — diag(Q))1 and vy = 1TQ1. Then

vo ~ v~ [10]f3 (E.18)

Proof. By EZ). 613 = o(|6]11). By (E3). 6]l1 — oc. Hence
v = 17(2 — diag(2))1 = 0113 — [6]3 ~ ]2 ~ vo = 1701.

O
The next result is a direct corollary of Lemmas[E.2]and [E-4]
Corollary E.2. Define 5 € R™ by
107
B=y—— (Isllils +[l6s]11s:) (E.19)
Then
1Qis1 < B:6:6;6;. (E20)

11
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Lemma E.5. Let \| denote the largest eigenvalue of §). Then
M 2013 (E:21)

Proof. Using the universal inequality a® + b? > %(a + b)?, we have

6700 1 1 2,2 242
AL > ||9H2 2 ”9H2 'ZGZHJ'QU > He” ’ ( Z 91'9]' + Z eiej)
2 2

2
1,3 2 jes i,j¢S
9 4 9 c 4
> Wosll tlPseld 2 oy
1612
O
Lemma E.6. Define n = ﬁ(Q — diag(Q))1. Then
UISE/NY (E.22)
Proof. The left-hand side is immediate, so we prove that 7 < 6,. We have
(1), = {9¢(||9s1 +b[0sell) ifieS
F G0N0 + [10se 1) ifi ¢ S
Since Q;; = 62,
0;(|0sl1 + bl|fse|l1) — 67 ifie S
Vo - i = o
Vo {ei(b||95|1+||95c1)—0i2 ifi ¢ S.
Since b = O(1), 0; = O(1), and vg 2 [|0]|? (c.f. Lemma[E.4),
0;]|0
ms 20,
VIOl
as desired. O
We use the bounds (E-I8) — (E.22)) throughout. We also use repeatedly that
1015 < 110112, ifp > q, (E.23)
which holds by (E.2), and
180015 = Al
1Bil S 1
18061 < 180 0la010]2 S 613, (E.24)

where the second line holds by Cauchy—Schwarz.

E.3 MEAN AND VARIANCE OF SGNQ

The previous work Jin et al.[(2021) decomposes @ and ) — @™ into a finite number of terms. For
each term an exact expression for its mean and variance is derived inJin et al.| (2021) that depends
on 0, n, v, and Q. These expression are then bounded using the inequalities (E.2)), (E.3), (E.I3),
(E2T)—(E-23), as well as an inequality of the form

|Q”‘ 5 a9i9j.

In our case, an inequality of this form is still valid, but it does not attain sharp results because it does
not properly capture the signal |A| from the smaller community. Instead, we use the inequality (E.20)),
followed by the bounds in (E.24) to handle terms involving €2.

Therefore, for terms of Q and Q — Q* that do not depend on €, the bounds in Jin et al.| (2021) carry
over immediately. In particular, their analysis of the null hypothesis carries over directly. Hence we
can focus solely on the alternative hypothesis.

Furthermore, any terms with zero mean inJin et al.|(2021) also have zero mean in our setting : for
every term that is mean zero, it is simply the sum of mean zero subterms, and each mean zero subterm
is a product of independent, centered random variables (eg, X; below).

12
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E.3.1 IDEAL SGNQ

The previous work Jin et al.|(2021) shows that Q =X +4Xo +4X3 +2X, +4X5 + Xg, where
X1,...,Xg are defined in their Section G.1. For convenience, we state explicitly the definitions of
these terms.

X1 = Z Wi Wit WieeWes, Xo = Z ﬁijokaeWha

4.4,k E(dist) i,k E(dist)

X3 = Z ﬁijﬁjkazWu, Xy = Z ﬁijokﬁkKWZia
4.4,k E(dist) i.4.k,(dist)

X5 = Z ﬁijﬁjkﬁuwm X6 = Z ﬁijﬁjkﬁklﬁli-
4.4,k E(dist) 4.4,k E(dist)

Since X does not depend on €, the bounds for X; below are directly quoted from Lemma G.3 of
Jin et al.|(2021). Also note that Xg is a non-stochastic term.

Lemma E.7. Under the alternative hypothesis, we have

E[Xi] =0for1 <k <5,
Var(X1) S [10]3 S At
Var(Xz) S (|80 0]3 1015 < [A*AT
Var(X3) S 80 0]3 1015 < IM*M
Var(X4) S B0 0]3 < [A*
Var(Xs) S (|80 6]5> S [N, and
E[Xe] = X¢ ~ |X|

Since we assume |\|/v/A; — oo under the alternative hypothesis, it holds that
Var(Q) < A + A%
Theoremfollows directly from this bound and that EXg = EQ ~ A,

E.3.2 PROXY SGNQ
The previous work Jin et al.| (2021)) shows that

Q-Q" =Us+ U+ U,
where

U, =4Y1 +8Y5 +4Y35 + 8Y, + 4Y5 + 4Y5
Uy,=471 + 275+ 875+ 474 + 475 + 274
U.=4T + 415> + F.

These terms are defined in Section G.2 of Jin et al|(2021), and for convenience, we define them
explicitly below. The previous equations are obtained by expanding carefully ¢ and Q* as defined in
(E-6) and (E-7). Thus, the terms on the right-hand-side above are referred as post-expansion terms,
and we can analyze each one individually. Now we proceed to their definitions.

First Y7, ..., Y are defined as follows.

Vi= > 6 WikWeWe, Ya= > 050 WuWa,
i3,k 0(dist) i.4.k,0(dist)

Y; = Z 5ijokﬁk£W£i7 Yy = Z 6ij§jk§klwlia
i3k, 0(dist) i.4.k,0(dist)

13
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Vo= > 050 WieQui, Yo= > 0502

.5k, E(dist) 5.k, E(dist)
Next, Z1, ..., Zg are defined as follows.

Zi=" > 00 WieWa, Zy= > 0i;WikbkWa,
i k. E(dist) g,k (dist)

Zy= Y 60 Wa, Zi= Y 650k Wai,
i k. E(dist) iyjsk (dist)

Zs= Y 00, Ze= Y 00k
i3,k 0(dist) i,k 0(dist)

Last, we have the definitions of T, 75, and F'.

Ti= Y 6i0k0keWa, 1 > 6100k,
ik, 0(dist) .5k, 0(dist)

F= Z 0ij010k000;.
i.5,k,0(dist)

The following post-expansion terms below appear in Lemma G.5 of Jin et al.| (2021). The term Y3
does not depend on 2, so we may directly quote the result.

Lemma E.8. Under the alternative hypothesis, it holds that

IEY1| =0, Var(Y1) < 911110115 S A
IEY>| =0, Var(Yz) S 180 0[5 11015 S (AN
[EYs| =0, Var(Ys) S [[800)2110]12 S [A*AT
0)1$ 1|6 .
YAl £ 180 0121015 5 137, Var(vi) 5 LTI < 5o
05110114 _ <.
EYs| =0, var(vs) £ I < s,
1
2
EYi| = 0. Var(re) 5 122 AR < 5
1
As a result,
IEU,| < [APA1 = o(AY). (E.25)
Also using Corollaryand that |A|/v/A1 — oo, we have
Var(Uy) < AT+ [APAE 4 |A°. (E.26)

The terms below appear in Lemma G.7 of Jin et al.|(2021). The bounds on Z; and Z, are quoted
directly from Jin et al.|(2021).

Lemma E.9. Under the alternative hypothesis, it holds that

B2 5 0] < 2, Var(22) < 1613 1915
0316
EZ| <613 < X, Var<Z>s—” B0 <
1
EZ:| =0 Vax(Z3) 5 118 011 1015 < IAPA]
lgolR a2 < 5 18021015 _ 510,
EZi| < 18013 1613 < Ahr,  Var(Z) € oRY

1611

14



Published as a conference paper at ICLR 2023

Bod|s]o
241 S 1800121013 € hs, Var(ze) 5 L220BIOE < 3,
o056 o056
2y < WO NI < 5y IBOOIBION 1
16117 1617
Using Corollary and the fact that |5\| /v/A1 — oo under the alternative hypothesis, we have
[EU| < AN, (E27)
and
Var(Uy) < [A?A3. (E.28)

The terms below appear in Lemma G.9 of Jin et al.| (2021). The bounds on T3 and F' are quoted
directly fromJin et al.|(2021) since they do not depend on Omega.
Lemma E.10. Under the alternative hypothesis, it holds that

16115 16115 116113
|ETy| < BE < Mg, Var(T1) < e~ <A
o0 0 o6 0
‘ETQ‘ < ||B ||9||||22| ||2 < |)\|’ Var(Tg) < ||6 0”22” ||2 < |)\|2)\§
0
EF| < 6] < X, var(r) < 10 <
1

Using Corollaryand the fact that |;\| /v/A1 — oo under the alternative hypothesis, we have
[EU| < A%, (E.29)
and
Var(U,) < [A?A2. (E.30)

Using Corolla.ry and that | \|/v/A] — oo, the inequalities (E-23)—(E-30) imply Theorem

E.3.3 REAL SGNQ

Our first lemma regarding real SgnQ plays the part of Lemma G.11 from Jin et al.[(2021).
Lemma E.11. Under the previous assumptions, as n — oo,

[Q* — Q°1| = o(|l6]|3) and Var(Q* — Q) = o||6]|3)-

* Under the alternative hypothesis, if IN/VAL — oo, then |E[Q* — Q*]| < |A2A\; and
Var(Q* — Q%) < [AAL.

The following lemma plays the part of Lemma G.12 from Jin et al|(2021).
Lemma E.12. Under the previous assumptions, as n. — 0,

E[Q — Q"] = o([|83) and Var(Q — Q) = o(||4]3).

* Under the alternative hypothesis, if IA/VAL — oo, then [E[Q — Q]| < A2 + |A]® and
Var(@ - ) < AL

E.4 PROOFS OF LEMMAS [E.7HE. 12
E.4.1 PROOF STRATEGY

First we describe our method of proof for Lemmas [E.7HE.T0} We borrow the following strategy from
Jin et al (2021). Let T' denote a term appearing in one of the Lemmas which takes the

general form
T = z Cilv---yimGilr--ainL

i1, ,im ER
where

15
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* m=0(1),

* R is asubset of [n]™,

= [lis.6nen Ffzf,/) is a nonstochastic coefficient where A C [m] X [m] and
65 e {Q,n*17, 717,117}, and

e G = I1(s.6ye5 Wi. i, Where B C [m] x [m].

D1yeenybm

Since we are studying signed quadrilateral, one can simply take m = 4 above, though we wish to
state the lemma in a general way.

Define a canonical upper bound I‘Esf/? (up to constant factor) on ngf /) as follows:

Bi,0:.Bi,. 0., if D) = Q)

FE:,)Z,/) = eis if I‘(S,s/) c {7]*11—,7711-} (E31)
1 otherwise.
Define
G = [ T (E.32)
(s,8")€A

By Corollary [E.T|and Lemmal[E.6]

ICioim | S Cir ooy

In|Jin et al.[(2021), each term T is decomposed into a sum of L = O(1) terms:

L L
T=YTH=3"" > ¢ 0.Girin: (E.33)
/=1

=1 i1, i €RO

In our analysis below and that of Jin et al. (2021), an upper bound ET on |[ET| is obtained by

L L
ET| <> [ETO1 <> Y ey

: |EGi17~'~>im
=1 (=1 i1, yim €R®)
L
<> Y G [EGi.
£=1 iy, i €RM
= ET (E.34)
Also an upper bound VarT on VarT is obtained by
L
VaI'T S L E Var(T(é))
(=1
L
= LZ Z [Citension €t it |- |COV(Gi1,-..,im,Gz"l,...,iin)|
=1 i1 ...,imER(E)
il 5eenin, RO
L
< LZ Z Ciy,..im " Cit . ’COV(G21 ’’’’’ im Gir it )’
=1 7;1)“-77;77LER(£)
illa“-vi:neR(Z)
=: VarT. E£35)

In Lemmas [E.7HE. 10} all stated upper bounds are obtained in this manner and are therefore upper
bounds on [ET" and VarT'.

16
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Note that the definition of ET and VarT depends on the specific decomposition (E-33) of T given in
Jin et al.| (2021)). Refer to the proofs below for details including the explicit decomposition. Again we
remark that the difference between our setting and Jin et al.|(2021)) is that the canonical upper bound
on |€2;;| used inJin et al.| (2021) is of the form a6;0; rather than the inequality 3;6;5,60; which is
required for our purposes.

The formalism above immediately yields the following useful fact that allows us to transfer bounds
between terms that have similar structures.

Lemma E.13. Suppose that
T = Z Cila--<7inLGi17---;i7n7

i1y 0imER
T - C“ ..... szll ----- Tm )

i1,..,imER

where
*

|6117 71m| ~ Cil,..“zm

Then
|ET| < E[T]

and

VarT < VarT*.

In the second part of our analysis, we show that Lemmas [E.T1] and [E:12] follow from Lemmas

[E-7THE10] and repeated applications of Lemma[E13]

E.4.2 PROOF OF LEMMA[ET]|
The bounds for X; follow immediately from Jin et al.[(2021)).
In (Jin et al.,|2021}, Supplement, pg.37) it is shown that EXs = 0, and

Var(Xg) =2 Z ij -Var(ijWkgng).
i,5,k,0(dist.)

Thus by (E.1I)) and (E.2),
Var(Xp) S Y Q- Var(WipWieWa) S Y 81078707 - Q0 Qui
1,4,k 0(dist.) .4,k
S Y BROBI07 - 0;07070, = 1|82 0311015
2,7,k

In (Jin et al.,|2021}, Supplement, pg. 38) it is shown that EX3 = 0 and

VaI‘(Xg) g Z ( Z Qij()jk)Q . Var(Wkgng).
i,k 0(dist) j¢{i,k,0}

By (E20) and (E23),
N
( Z Qiijk) < B267 Br6% |18 0 0]l3
J¢{i k. L}

Thus by (EI)) and (E2),

Var(Xs) S 8767 6707 1180013 - Qe <> 5707 8703 1B00)13-07 S [1800[5 116113
ik, L ik, 0

In (Jin et al.,[2021] Supplement, pg. 38) it is shown that EX, = 0 and

Var(Xa) S Y Q%08 Var(W;.Wi).
i,5,k,(dist.)

17
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By (ET) and (E20),

Var(Xy) $ Y 7078703 5R078767 - 0;61000: < |18 0 03,
i,5,k,0

In (Jin et al., [2021} Supplement, pg. 39) it is shown that EX5 = 0 and
S~ (2
Var(X5) = 22 ( Z Qiijkag) -Var(ng).
i<l jke{il}
Gk

We have

| Z Qi Qi Qie| S BibillB 0 0]|3B¢0e.-

Ji.kg{i,e}

J#k
Thus by and (E-2),
2
Var(X5) S D (8|8 0 0l[38:60)” - 0:0: S (180 015>,
i 0

Zi

Note that X is a nonstochastic term. Mimicking (Jin et al.,[2021, Supplement, pg. 39), we have by

E24),

(Xs =M< Y. BOIBIBR0ES10; < Y BROISI05 50k S 1180 0l13 < AP
i,5,k,€(not dist.) i,5.k
This completes the proof. O

E.4.3 PROOF OF LEMMAI[E.S

The bounds on Y7 carry over directly from (Jin et al.| 2021, Lemma G.5).

In (Jin et all 2021} Supplement, pg. 43) it is shown that EY> = 0. To study Var(Y3), we write
Y = Y5, + Yop + Yo, where as in (Jin et al.} 2021, Supplement, pg. 43), we define

1 _
Y, = 7 Z i Wi s Wie W,

i,4,k,0(dist)
s£j

S#]
*\% Z ( Z njﬁjk)szWke

ik 0(dist) j¢{ik.0}
1

G Z ( Z njﬂjk)WiSWkZWIZi
ik 0(dist) j@{ik,0}
s¢{i 0}
Y4 + Yop + Yo (E.36)

There it is shown that

1 . . . o
Var(Ya,) < 5 Z 0 + 0 + neSi + meQi|” - Var(W; s WieWe;).
ijkls

We have by (E.22)
|76k + 0iQak + My + MeQsi| < 05810, 801 + 0: 80580k + 0130, 8:0; + 01850 5:6:.
Hence by (E.I)), (E.2), and (E.Ig),

1
Var(Y2,) S " Z (05830, 810k + 0:8:05 810k + 013,60, 8:0; + ak/@sesﬁioi)Q - 0,050,070

ijkls
_ 180 ollels
= 8l

18
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Next, in (Jin et al.} 2021}, Supplement, pg. 43), it is shown that

1
Var(}/Qb) S ; Z |aikgOli/k/£/| . E[Wféwkéy WiQIK/Wk;/Z/]
ike(dist)
iK' ¢ (dist)
where aire = 301, 1.0y 1525 By (E29),
|ctine| S 118 0 0|2110]|2 O

By , , the inequalities above, and the casework in (Jin et al.; 2021} Supplement, pg.44) on
E[WiZWkg’ Wi’e’Wk'Z’]’

1
Var(Yao) S = S 1180 61316130400 EIWAWe, W2 Wie!
U iki(dist)
i'k'0' (dist)
011311013
< M(Z 0:0307 + 3 003030, + > 626707)
ikt ikei! ikt
<182 0311615.

Next, in (Jin et al., 2021, Supplement, pg.44) it is shown that

1
Var(Yae) S = Y B Var(Wis Wi W)

~

v

iké(dist)
s¢{i,f}
where o, is defined the same as with Y5;,. Thus
! LR H I
Var(Va) S 5 S0 180013160136 - 0,020, '9':'“”
iké(dist) 1
s¢{i, 0}

Combining the results for Ya,, Yo, Ya. gives the claim for Var(Y3).
In (Jin et al.; 2021} Supplement, pg.45) it is shown that EY3 = 0 and the decomposition

2 ~ 2 ~
Y3 = BNV > Wi W — 7 > W W W
0,7,k 0(dist) i,5,k,0(dist)
s¢{j.k}
= Y30 + Ya, (E.37)

is introduced. There it is shown that

4 ~
Var(Ys,) = 5 Z (0 Qi e ) - BIWE W W W],
i4 ke 0(dist)
i’ 5’ k' € (dist)

Using (E-I)), (E2) (E:24) and the casework in (Jin et al., 2021] Supplement, pg.45),
1
Var(Ya) S ( > [BRB7 + BiB;BrBOTOT07607 + Y Bkﬁ?ﬁkﬂ?@j@i@?@y@i)
ijke ijkej' k!

- 1826130013

S0 + 1B o0l3ll0l; < 1180 0l5llel3
1

Similar to the study of Y5, we have

1
Var(Ys) S 5 Z (0:810x 800 + 008101 Bi0; + 0:58:0B:0, + GeﬁsesﬂiHi)z - Var(Wg; Wi, We;)
ijkls
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1
S 5 Z (0:81k0kBebe + 0050k Bi0; + 0:8:05 8000 + 0(5593/61‘91')2 - 0,070,006,
ijkls
< IBo 9\|3||9||§_
~o el

Combining the bounds on Var(Y3,) and Var(Y3;) yields the desired bound on Var(Y3).
Following (Jin et al.,[2021}, Supplement, pg.46) we obtain the decomposition

Yy = \/> Z ui ijk:Z) stWZ'L - \/» Z ( Z nj ijkl) WisWe;
i,5,0(dist) ke¢{i,j,0} i,0(dist) j,k¢{i, 0}
s;éj s#£i
=Yy, + Y.

First we study Y4,, which is shown in Jin et al.| (2021) to have zero mean and satisfy the following:

1
Var(Y4a)§5 > af Var(W;We:)
ij€(dist)

s

where ;¢ = Zkg{i 50 mfljkflkg. Simlar to previous arguments, we have

Var(Yaa) £ 15 H2292 B,0;)(B:02)° |18 0 6|3 - 6:6,6,6

ijls
< 1Bo o113
R (]t

Next we study Yy, using the decomposition

Yzlb Z 6zZW& Z ﬁMWuW& = }/4b + Y4b
\/> 3,4(dist) \/> 1,4(dist)
s¢{i, 0}

from (Jin et al.,[2021, Supplement,pg.47). There it is shown that only EYj, is nonzero and

~ 1
il

where ai e = 375 o1 01 1525 2ke. In our case, we derive from (E.24),

|vie| < Bebell B 0 0311912

Using similar arguments from before,

[EYap| < ZBMHBO 0131011z - 0:0¢ < 118 o 012119113.

||9H

Now we study Var(Yy;). Using the bound above on || and direct calculations,

> 2 B0 0|5]6]12
Var(Yy) = = > af - Var(Wy) 25202”5 9)18]10]2 - 99£N””9||2‘1”||2,

i, 0(dist) ‘ il

ool 2.9 < 1820131013
Var(Yg) < = 3 afy- Var(WisWei) < HQHQZmnﬁoelbnewb 07000, < T
1,0(dist) i4,s 1
s¢{i.0}

Combining the results above yields the required bounds on EY};, and Var(Yy,).
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In (Jin et al., [2021] Supplement, pg.48) it is shown that EY5; = 0 and

1
Var(Ys) S = > ady - Var(W Wie)
4.k, (dist)

s#j

where
Qjke = Z mﬁjkﬁh‘-

i {5,k 0}

We have using (E20), (E:24) and the triangle inequality,
lejel S 11013(8;6;) (Brb) (Bebe).-

Thus, by similar arguments to before,
614118 0 015

Var ||0H2 Z H9|| ﬂ] ﬁkek) (659()2)9_j959k945 Honl

Next, in (Jin et al., 2021}, Supplement, pg.49) it is shown that EY; = 0 and

— o~ 2
Var(Ys) = Z ( > mijleQei) - Var(Wjs).
,s(dist) ik, £(dist)¢{j}

We have using (E20), (E:24) and the triangle inequality,

| Z 7)i§jk§k£(~2£z‘| Sﬁﬂjllﬁo@\\illf)llz
ik, (dist)¢ {5}

Thus

202 10 2 ||509||%2||9H%
Var(Ys) < |0”2 Z 9j|\5°‘9||2 H9||2)9j98 S W

This completes the proof. O

E.4.4 PROOF OF LEMMA[E.O|

The bounds on Z1 and Zs carry over directly from (Jin et al.,|2021, Lemma G.7) since neither term
depends on 2.

We consider Z3. In (Jin et al., 2021} Supplement, pg.61), the decomposition

Zs =" iy — ii)mi (e — i) Qe Wei + Y milny — 7)1 Qe Wes

1,5,k,¢ i,9,k,C
(dist) (dist)
+ > (= (e — i) Qe Wes + Y (05 = i) (my — 71 ) ke W
i,5,k,¢ i,7,k,€
(dist) (dist)
= Z3a + Z3b + Z3c + Z34- (E.38)

is introduced. We study each term separately.

In (Jin et al., 2021} Supplement, pg.61) it is shown that EZ3, = 0 and the decomposition

1 1
Zsa = > Wi W + 5 > ikt Wis Wit Wei
i,k 0(dist) i3,k E(dist)
s#Jt#k, (s,0)#(k,J)
= Zga —|— Zéka.
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is introduced, where o, = niankz. Then

Var(Zga) 5 Z |aijkg\|ai1k/j/4/\ |COV kWez, Wj%k/WZ’i’H-
ijke(dist)
i’ j' k"0 (dist)

Using the casework in (Jin et al, 2021} Supplement, pg.62), (EI), (E:2), and (E:24), we obtain
Var(Zs,) S -5 267 B,10:030767 28,0 0302020302 0>
ar(Zza) S UQ(Z[ﬁkﬁe + BrBeBi3510; 05050, + Z BrB7 Br 07 02636767.67,)

ijke ijkej k!

S 7(HB 01210115 + 113 © 0112116112 + 118 2 OlI210113) <

< 11820151013
~ 1ol '

19113
Similarly,

Var(23,) < ( S RE6066%6.6, + Y mwj+mmw%e§-’ezegezet)

ijklst ijklst

EREE

180 0|1311011311611 + 118 0 8]131161ISN161l1) < B
1

||9||4(
It follows that
Var(Zsa) < |18 0 0]3.

Next, in (Jin et al.|[2021} Supplement, pg.63), it is shown that EZ3;] = 0 and the decomposition

1 1 ~ .
Z3p = v Z BijeW:We; + - Z BigeWisWiiWei = Zsy + Zy,.
i,5,0(dist) i,5,6(dist)
s#j s,t(dist) ¢ {5}

is given. Using (Jin et al.} 2021}, Supplement, pg.63) we have
Var(Zs,) < Z \Oéij4||0fi'j'e'||COV(W325Wei7W}?sWe'i')l-

where

Qije = Z ninkﬁké-
kg {i.j,0}

Using (E-24), (E-T8), and similar arguments to before,
laijel < 0:(Bebe)]16]]3.
By the casework in (Jin et al} 2021] Supplement, pg.63), (E-I), and (E-2)),

= 1
Var<ng>sw(262n9%efejez?m > ﬂfuenéeieje?eseyesf+Zﬂeﬁj||9|39?9?9?93)

ijls ijlsj’s’ ijls
B o030
S (18 < O1BI01S10l -+ 18 < OB1013101 + 15 < oigleng) 5 L22Z1OIE,
By a similar argument,
8
Var(zsy < 122 OIBIOIE.
1011
Hence by (E-2),
o 021108
Var(Zs) < WW'h” < 180 0131101
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For Zs., in (Jin et al., 2021, Supplement, pg.64), it is shown that EZ3. = 0 and the decomposition

1 > *
Zye=—~ Y OémeWeWkt-i-* > Wi WiiWei = Zse + Z3,.

v
i,k,L(dist) i,k,L(dist)
t4k s¢{i, 0}tk

is given. We have
kel =1 Y 13l S (Brbi)(Bebo)|0]]3-
i¢{i.k.L}
By the casework in (Jin et al., 2021, Supplement, pg.65)
Var(ch) S Z Z |aik£ai’k’€’||EW2‘24WktW1‘2/f/Wk’t’|

ik(dist) i’k (dist)
s¢{i, 0} t#£k s’ ¢ {i' 0}t £k

16
~ |:9”2 Z [5k5@9 03070, + BEBeBi0703070, + BrBE 501070307
L iket

+ BrBeBiBi02070707 + B3 BuBi07020370, + By 7 B10:0370307 + ﬁ%ﬁ%eﬁi@?et}

+ > [ﬂzﬂmoﬂz@,%etewe%+ﬁkmwﬁeioioﬁﬂfwﬂ
iklti’ 0’

We have by (E-2) and (E:24) that

S | 02002650+ R0uB026L030, + 5, 5.01RO0% + P R0,
iklt

+ BEBuBiOF 03070 + BrBi Bi0:070507 + BEB70,05050,
S 1B 0311011F + (18 0 0[3110113010111 + 118 0 0113116113 + (|8 0 0l|3]10113

and

> {Bﬁﬂeﬂwﬂi@?@tﬂﬂi + BubBeBe Bi0:070:070::07 | < 118 © O1Z1011211611F + 115 © 01121112 ]1011F
iklti’ ¢!

Thus
Var(Zac) 5 JoLE 1< 0181017 + 16 < 01810181012 + 1 = onginghone)  L2=pIEIE
To study Z3, in (Jin et al.l 2021} Supplement, pg.65) the decomposition
Zi, = 1 Mﬂzdist) Qe W2EWei + % i7kﬂzdist) QikeWisWiiWei = Zzo 1 + Z3..0

s¢{i, L}, t#k,(s,t)F#(k,3)

is used, where recall oi;pp = > .4y 2Qs. Using a similar argument as before, we have
g {ikey

0
Var(Z3.1) < ” ”2(26135?9?(9293+ Z[ﬂkﬂk/ﬂf+ﬂk5k/ﬂiﬂe]9§'9i9§’92/>

~ 2
161l ikt ikek!
e 18  0]3116]13
H(,”i(Ilﬁ Ol2110115 + 1012113 © 013116113 + 115  B1I2116112) < T
1
We omit the argument for Z3 , as it is similar and simply state the bound:
05110
PP LLL L
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Combining the results for ch and Z3., we have

< 11820151013

Var(ch) N He”l

S 1B00131015.

Next we study Zsg4, which is defined as

Zsa =Y (o) — i) (e — ) Wer = Y e Wis Wit W
i,5,k,¢ ik, £(dist)
(dist) s#i,t#k

where o, = ng{i o,0} kT Qj¢. We see that EZ34 = 0. To study the variance, we use a similar
decomposition to that of Z3.. Write

1 1 ~
Tgg =~ it WEWi + = it WisWiaiWei = Zag + Z2,.
3d = Z Qike WieWhkt + = Z Qike ke Ve 3d + 434

i,k C(dist) i,k,L(dist)
t#k s@{i,0} t#k
Mimicking the arguments for Zs, and Z3, we obtain

- 1806131615

Var(ng) = s
16111
and
18 0 0l516]15°
Var(Z3,) < ——=——.
5 10]]1
Hence
~ (16l
Combining the results for Zs,, ..., Zsq, we have

EZ; =0, Var(Zs) < |80 0||]l6]3.

We proceed to study Z,4. In (Jin et al.| 2021} Supplement,pg.67) the following decomposition is given:

Zy=2 > il — i) (ne — i) Wei
4.,k E(dist)
+ ) il — ) k(e — )W
i,k 0(dist)
+ D = )k (ne — i) Wes
4.7,k £(dist)
= Zya + Ly + Zse. (E.39)

There it is shown that EZ,, = 0. To study Var(Z4,), we note that Z,, and Z3. have similar structure.
In particular we have the decomposition

1 1 = "
Z4a = — Z OéikEWiQeWkt + 5 Z OéikZWikutWZi = Z4a + Z4a~

v
ik, 0(dist) i,k,0(dist)
t£k s@{i, 0} t£k

where ok = Zﬁ{i,k’e} njngﬂkg. Mimicking the argument for ch we have

~ 011211012
Var(Zaa) < m:li”"? (Z [82(0,02020, + 6262626,) + BuBu0.020267 + B Bu62626262
1

iklt
+ BRO70R070, + BiBi00R0707) + > [Br6:07676,0::07 + 6k/3tei9,%039?0i/03/])
iklti’ ¢!
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<H509||§||9||§ 2 2 2 4 2 4 3
2= (180 0151101131101 + 118 6113118121161 + (15 © 0113 1101|2 116117+

~o el
011311011
I8 oiglendnony) < L2222l
19111
For Z}, we adapt the decomposition used for ZJ,:
Zi, = - Z Qine WA Wy + - Z Qi WisWitWei = Zjo 1 + Zig o
ik, £(dist) ik, £(dist)

s@{i,L},t#k,(s,t)F#(k,i)

Mimicking the argument for Z3, ; and Z3,. ,, we have

4119118
Var(Z4a1) ||6 O||90||4||9||2 ZﬁkGQerg + Z ﬁkﬁk’929k9€9k/) 5 ||ﬁo|f€|24||9||27
ikok! 1
and
H509||||9H2 212022 272920 p2 21209202 2
Var(Zj,0) < el Z [BR070760700: + Br:07 6076507 + 513507 6,07 6567 |
iklst
_ lolgo1s
S 1013

It follows that

1806112119113

Var(Z4a) S
16111

Next we study

Ly = E ni(nj — ﬁj)ﬁjk(nk — e )NeWoei = g ijre(n; —15) (M — k) Wi
i,5,k,¢ i,5,k,0
(dist) (dist)

1
=3 E e Wis Wit W,
4,4,k 0(dist)
s#jt#£k

where a0 = nmgﬁjk. Mimicking the study of Z3,, we have the decomposition
1 1
Tap = — Z ijreW; 2 We; + - Z e Wis Wit Wi
1,5,k 0(dist) i,4,k,L(dist)
s#jt#k,(s,t)#(k,j)
= Z4b + ZZI)'

Further we have, using (E-I), (E:2), (E20), and (E:24), we have
1
Var(Zu) S o (Z (1838} + BiBrBeBOSOI020F ] + > Bi BBy Brr07 0307056767

ijkl ijklj'k’

Bod30]5
(I8 o dllllellz + 118 < ollllel3) < ”W|4””~

N————

~ ‘

01

Similarly,

1
Var(Zy,) < TalE ( Z [3?5k92929k946 0 + ﬁkﬁgﬁjmei‘aei’)eee?et + @ﬂkﬁémesek@e?et)
ijklst

R
ST
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It follows that

< 1B l5lI61I5

Var(Z4b) N
16113

We study Z,4. using the decomposition

1 2 1
Z c = — 4 W3 - 4 is 7 - 4 is )
s UVZ Bie MZ BuWisWi + Z BieWis Wt Wy
i,0(dist) i,4(dist) i,4(dist)
s¢{i,l} s@{i, 0} t¢{4,i}
=Zye+ Zi+ Z),.
from (Jin et al., 2021, Supplement, pg.68). Only
~ 1
Lye = ; Z aiZWZ‘
i,4(dist)
has nonzero mean, where oy = Zj,k(dist)e{z‘,e} njnkﬁjk. By (E20)
|eviel S 118 01I5116115-

Hence

~ 1
|EZsc| < e > 1180 613101136:0. < 118 © 61131101]3.
I e

Except for when (7, /) = (£,4), the summands of Z,, are uncorrelated. Thus

~ 4 4
Var(Zuc) 5 o S 180 01316136100 < 122 TAlC.
1 e 1

Applying the casework from (Jin et al.,|2021, Supplement, pg.68),

Var(Zi) S Y Y laieci |Cov(Wis Wi, Wine Wi
i,0(dist) i’ ¢’ (dist)
sg{il} s'¢ (i’ '}

1
S Ty (2218 < GSIOI67000, + 3 118 < BlISOI316113676.0.00 )
T ies ilst!

< 18001510113
~o el

Next, in (Jin et al., 2021, Supplement, pg.69) it is shown that

ERIE:
(0131015 + 1013101%) < ===

1
Var(Z},) < > al - Var(Wi,We We)

=
i,4(dist)
s¢{i, 0}t {,i}
Thus
011411018
Var(Zl,) < 16 0 0]410]1462620.0, < W
1

ils
Combining the results for 240, i Z lc, we have

< I8oeslens

[EZse| S 1800|2103, Var(Za) < 9l

Combining the results for Z4,, Z41, and Z4., we have

- 1826130615

[EZi| S 1180 81311813, Var(Za) § T—p2
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To study Z5, we use the decomposition

Z5 =2 Z 77i(77j - ﬁj)nj (77k - ﬁk)QkEQEi + Z 77i(’l7]‘ — ﬁj)anngQgi
i,5,k,(dist) i,5,k,£(dist)
+ Z (i — 1) (ke — 77k ) e e
i,4,k, L (dist)
= Zsa + Zsp + Zse-

(E.40)

from (Jin et al.| 2021} Supplement, pg. 70). We further decompose Z5, as in (Jin et al., 2021}

Supplement, pg.70):
2

Lsq = ; Z OzjkW 2 —|— - Z aJkWJSWkt Z5a =+ ZSa
J,k(dist) J,k(dist)
s#£j,t#k,
(s,t)#(k,5)

where ol = 37, y(aist) ¢ (k) 1:7; ke Note that by (E-20) and (E24),

el S D (Bubi) (Be8e)* (8:6:) < 6;(Br0n) 15 © 031162
it
Only Zs,, has nonzero mean. By (E.I) and (E-2),

[ERYIHIE

~ 1
[EZs5q| = [EZsq| < e Z%(ﬁk‘%)“ﬁ 0 0131162 - ;0 < 10]12
1 jk 1

Now we study the variance of Z5,. In (Jin et al.,|2021, Supplement, pg.70) it is shown that

Var(zsa)gv— Z a?kVar(Wij)
j,k(dist)
1
Var(Zga)Svj Z oy, Var (Wi Wiy).
j,k(dist)
s#jt#£k,
(s,t)#(k,7)
Thus by (E-2)) and (E-24),
> 1606l15 ||9H2 3 223 H5049||§||9H§
Var(Zsa) < 03p203) < 12227l
(Boo) S g (204 E
|WC"9||2||9H12l 2 p22 ||509||§||9||g
Var(zz,) < W22 212 (N~ g2 202 g g g 6,) < 122 121002
o) S g (2P0 00000 S gpe
We conclude that
18 0 0115116115
Var(Zs,) < ——5—=.
1013

Next we study Zs; using the decomposition

1 1 ~ i

Zsb =~ ‘ Z a; Wi+ 5 Z ajWisWie = Zsy + Zs,,.
j.s(dist) J

s,t(dist)¢{j}

from (Jin et al., 2021, Supplement, pg.71), where o;; = > . Udist) {5} nmkﬁkgﬁgi. Note that by

(E2) and (E20),
o] S 0:0k(Brb) (Be00)?(B:6:) S 118 © 0II3116]3.

ik{
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Only Z5;, above has nonzero mean, and we have

182 6115110113

[BZsn] = [BZas| § T—rer—= D_ 030 S 18 2 0ll2l011.
! dys

Similarly for the variances,

- 015]|6 0516
Vax(Zay) < 1820131 ||229 9. < L3030l

19111 10]]2
Var(Zi) < ||609H4||9II2 S 426,0, < 1220181015
(/PR 1011
and it follows that
Var(Zsp) < ||50”99|§2||9|g
1

Next we study

Zse =Y (n; — i)} (m — i) Qe ey = > (07 e5) (0 — 1) (M — k)

i,5,k,€ i,9,k,¢

(dist) (dist)

1 o~ 1

= Z (05 et Qe )W s Wiy = - Z i Wis Wiy
,5,k,0(dist) j,k(dist)
s#£j,t#£k s#£j,t#£k
where i = > ; o(dist) nfﬁkgﬁgj. Note that by (E:20) and (EI8) ,
i,0¢{5,k}
il S 07 (Bk0k) (Be8e)* (8;6;) S (B;6;)(Br0x) 10113118 © 0]]5-
it

We further decompose

Z5c - Z a]k k + - Z a]kW]SWkt Z5(' + Z5(~
],k(dist)
(dzst) s,tg{j,k}

Only the first term has nonzero mean. It follows that

ms 10113115 © 6]13 ||5°9||121||‘9||A21
|EZsc| = [EZ5.| < E (B30;)(Brbk) - 0,0 S ——75——
c|l = c i .

ool SR

3,k,s,t

(E41)

Note that Z5. and Zs, have the same form, but with a different setting of the coefficient «y.

Mimicking the variance bounds for Z5, we obtain the bound
0115110/
Var(zo,) < 182018191
1017
Combining the previous bounds we obtain

18061121915

[EZs| S 180 0l3ll013, Var(Zs) < TE
1

Next we study Zg = Zgq + Zep as defined in (Jin et al., 2021} Supplement, pg.72), where

~ o~ B B 1 a
Zoa =Y (nimeeua)(nj — i) (0 — k) = = 045-2 "W Wit

v
i,5,k,L j,k(dist)
(dist) s#7,t#£k
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Zop =2y (nmeQue:) (ny — ;) (i — ) Z ol Wis Wi
1,5,k,L ],k(dzst)
(dist) s#j,t#£k

and

6a ~ ~
gk ) = Z meijm
i,0(dist)
i,0¢{j,k}

O‘ﬁb): Z 0310y
1,4(dist)
B¢ {j,k}

Thus Zg,, and Zg, take the same form as Zs., but with a different setting of «j;. Note that by (E.24)
and similar arguments from before,

b
max(Ja$3” [, [aS5”]) < (8;6;) (B0 191131158 © 0113,

which is the same as the upper bound on || associated to Zs. given in (E4T). It follows that

0 4 0 4 2] 8 2] 4
[EZs| < W, Var(Zs) < W.
16117 16]12
We have proved all claims in Lemma[E.9] -

E.4.5 PROOF OF LEMMA [E. 10|

The terms T3 and F' do not depend on Q, and thus the claimed bounds transfer directly from (Jin et al.|
2021, Lemma G.9). Thus we focus on T5. We use the decomposition 7o = 2(Ts, + Top + Toc + Toq)
from (Jin et al.,[2021, Supplement, pg.73) where

Toa= D DinMisia [0y — i) Wi — i) Wiy — 7i5)] + Qi
11,402,134 (dist)

T, = Z 771'2771‘23 [(7711 - ’F]il )(n’té - ﬁiz)(n“ - fh4)] ’ Qi‘lil’
i1,i2,i3,i4(dist)

Ty = Z Niy MigMiy [(niz - 771‘2)2(77;‘3 - 7%3)] ’ Qi4i1’
’Ll,iQ,i3,’i4(diSt)

Trq = Z iy 771‘23 [(niz - ﬁiz)g(nu - ﬁi4)] : Qiﬂl'

11,12,13,%4 (dist)
We study each term separately.

For T, in (Jin et al.,[2021} Supplement, pg.89), we have the decomposition 15, = X471 + X42 +
X3 + X where

1
Xa1 = T 32 Z Z ni277i37714W1112W13]3911i4a

i1,i2,i3,i4(dist) ja#is

1
Xa2 = _m Z Z 77i277i37714W11¢3W12]2911i4a

i1,i2,i3,i4(dist) ja7iz

1
Xa3 = _W Z Z nig”/]i3n24Wz213W11j1Q’L1i47

i1,02,13,i4(dist) j17i1

Xp = T 3/2 Z Z Nio Mg Mia Wis s Wiz s Wigja i iy -
il,iz,ig,i4(di8t) jl 7j21j3
Jr#ie.k,0=1,2,3
There it is shown that ET5, = 0. Further it is argued that

Var(X,;) = EX2,

29



Published as a conference paper at ICLR 2023

— 2 2 O O
=3 E E 77i277i377i477¢'27]7:'377¢’4E[Wil12WisjsWi'li;Wigjg]QhuQi’lig
i1,i2,i3,i4(dist) J3.J3
i1,05,15,04 (dist) jsztis, jh#il

(E.42)
= VA + VB + VCa

where the terms V4, Vg, Vo correspond to the contributions from cases A, B, C, respectively, de-
scribed in (Jin et all, 2021} Supplement, pg.89). Concretely, the nonzero terms of (E.42) fall into
three cases:

Case A. {i1,ia} = {5, j5} and {is, js} = {#1, 1%}
Case B. {is,js} = {i%, j5} and {i1,i2} = {i},%%}
Case C. {is,js} = {i%, j5} and {i1, 92} # {i}, 45}

Here V4, Vg, and V¢ are defined to be the contributions from each case.

Applying (E.2), (E22), and (E20),

(90 s M ity Mity Mit, Qiia Qg | S 03y 03504, 0i1, 031,051 (Biy 03, ) (Bi,0i,) (Bir 031, ) (B, 0,
< 0:,05,0,0i, 0.0, (B, 0:, ) (Biy 0:, )0y (Bir, i) (E43)
Note that using the last inequality reduces the required casework while still yielding a good enough
bound. Mimicking the casework in Case A of (Jin et al., 2021, Supplement, pg.90) and applying

(E:24)), we have
1 2+b1 p2+b2 93 92 92 P2
VASW ST BB B 0702202 02 02 0%
bi,b

i1,%2,13 s
ia,iy,5s (b14+b2=1)

18 2 015116112

1
< s (18 0 0131013 10131015 + 118 0 011310113 161310115) < 1o[°
1

~ o1
Similarly, applying (E-43) along with (E22), (E20), and (E:24) yields
< 1800131613

1 3 03 p2+ci pltesn2 2
VBSJW Z Z Biy Bin B 07, 07,071 0,707,051 <

91,%2,13 C1,C2 ”0”?
i,iy,gs (c1Fe2=1)
and
18 2 0]|3116]13°
Vo ’S Z Z /Bilﬂi‘lﬂiﬁﬂigai 01’2201'2;01 931:62012491'1 912/291221 S W
i1,12,13,14 C1,C2 1
it il it s (c1tea=1)
Thus

Var(Xa1) S 1180 0]l2.

The arguments for X,o and X3 are similar, and the corresponding V4, Vp, V¢ satisfy the same
inequalities above. We simply state the bounds:

EX,, =EX.,3 =0, Var(Xa) < ||Bo0]3, Var(X.s) <8003
Next we consider X}, as defined in (Jin et al.l 2021, Supplement, pg.89). We have EX;, = 0 and focus
on the variance. In (Jin et al., 2021, Supplement, pg.91) it is shown that
Var(X;) = E[X7]
=0 ) > Wi i i iy i M BIWa, 5y Wi, Wi, Wi it W s Wi 110 5, Qi

i1,d0,05,04(dist)  ja,jh
-/ -/ -/ -/ . . . . .
1,15 13,44 (dist) ja7is,jhsiy

Note that
E[Wi,js Wisjs Wigjs Wis js Wiy js Wi 1] # 0

’
2J2 " " t3]3
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if and only if the two sets of random variables {W;, j,, Wi, j,, Wiy, } and {Wy 5o, Wy 5, Wiy 1 } are

L5
identical. Applying (E:22)) and (E.20), o
\771‘27%377@771"27]@‘;,7714szﬂz;zg| < 91’291‘39‘ 9'/ 9*/ 91'21 (ﬁh i1)(6i4 i4) i (ﬂzg ifl)
< Bil 6i4 52491+a1 %2 91+a3 §aa 91+ao §as 6.2 92

J1 2 J2 "3 J3 T4ty
if B[W;, j, Wiy g, Wig js Wi 1 Wiy s Win ] # 0, where a; € {0,1} and >S9 | a; = 3. Thus by (E-I),
ED). and €38,

Var(Xb) max Z ﬂil Bi4ﬂz4€2+a1 01+a292+a391+a492+a5 91—0—&692 92

H9||6 — . e
11712713,14
i4,71,42,73
1
IS H9||6 Z Bil/Bi461491219]1101226;291236;3912495
Ly in,ig,ia
i43,71,42,73
< 182 013110131101I211611F ~ 11800113 ||9||2 < Bo0I2]0
1

Combining the results for X, X,2, X435 and X3, we conclude that
ETy, =0,  Var(Ta) < |50 0[|3]6]]2-

The argument for T5;, is similar to the one for 75,, so we simply state the results:

ETy =0,  Var(Tw) < |80 0]3]0]|2.

Next we study 75, providing full details for completeness. Using the definition of 75, in (Jin et al.
2021}, Supplement, pg.92), we have the following decomposition by careful casework.

1
Yo = _m Z M1 Mizg iy W1213 sz»

i1,42,i3,i4(dist)

1
Yo = _W Z Z Niq 771'37714W1232W1313911i4a

i1,i2,13,14(dist) (i2,52)#(Js,is)
J2Fi2,j3Fi3

1
Yio = — 372 E E i1 771‘37714W2223 lefQthu
i1,92,13,54(dist) La¢{is,i2}
1
Yi3 = 7,03/2 E E 771‘177i37714W1213Wz212911z‘4a
i1,92,13,14(dist) j2¢{iz,i2}
1
Ye=-— v3/2 § E Niy Nig iy Wizjz Wizfz WZg]s Ql1i4'
i1,i2,i3,i4(dist) J2,€2,73

JoFiz,laFiz,j3F s
J2#L2,(i2,52)#(d3,13), (i2,02) #(j3,13)

Note that, by the change of variables /2 — jo, it holds that Y2 = Y33.
The only term with nonzero mean is Y. We have by (E.18), m (E.22), and (E.24) that
1

|]EY | ~ ||9||3 Z 9119i3914(ﬂi19i1)(61’401'4) |IE 1213 N ||9H3 Z 521/82492 9120?39124
11,12,13,%4 11,12,13,%4
_ 1o i35
R

For the variance, by independence of {W;; };~;, (E2), (E:20), and @), we have

2
Var N ||6||6 Z 2011 Z4 le 11)(/Bi40i4)) 13 N ||9||6 Z ||600|| ||9||40 02

92,13 11,74 12,13
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< 180131015
~ ek

For Y31, Yi2, Y3 we make note of the identity
W2 = (1= 2904;)Wi; + Qi (1 — Q) = A ;Wi + Bij. (E.44)
Write
1 ~
Yoo =-7573 > > Wi Ay Wi js Wi s Qi

i1,12,13,14(dist) (i2,52)#(Js,i3)
JoF#i2,J3F13

1 ~
~ > > Wi Bisgs WisssQiviy = Yor,4 + Yor b

i1,i2,13,14(dist) (i2,52)7#(d3,i3)
JoFi2,J3713

By similar arguments from before, and noting that |4, ;,| < 1

1 2
Var(}/bl,A) ,S He”ﬁ Z < z MNiyMizMiy (Bilgh)(ﬂh;@u)) |]EWZ‘2J'2W¢3]'3|
(i2,52)#(J3,93)  t1,%4
JeFi2,j3Fis

—

1 2
5 W Z ( Z Niy MigMis (ﬁll 9i1 )(ﬁiz; 9i4)) ’ eiz 9j29i3 9j3
12,J2,43,J3 11,04
180112110113
S 6 Z HﬁoGH‘éIIGH%@ 9329339% ~ TQ
191% ,, 5 ., 1011
Similarly, using |B;;| < 5 < 6,6,
2
1
Var(YE?LB) S HGHG Z Z nilni3ni49i29j2 (Bileil)(ﬁuau)) ’ |EWi3,j3|
ig,j3(dist) i1,92,%4,52
B o836
< e S 18 o A a0I6% 6, < 1720l
T P E
It follows that
180 0]301013
Var(Yp) S ——5—=
16113
To control Var(Y}2), again we invoke the identity (E-44) to write
1
Yo = _m Z Z 77i177i37714A1213W1213W2i29z1z’4
il,ig,ig,i4(dist) 62¢{i3,i2}
1
- m Z Z 771'1771‘3772431213W25291114 - }/232 A + }/272 B-

i1,i2,13,14(dist) L2 ¢ {iz,i2}

Using similar arguments from before, we have

2
Z (2011 14 521 11)(6i49i4)> 91'2291'3952

Var(

~ 6
He” 101302 1114
18 0 0113110113
H9||6 Z ||509H ||9||§91229?3952 ~ W
121362

Furthermore,

2
Var(}/bQ,B) Z ( Z 911 14 /Btl 11)(/814 t4) ) 91‘20@2

Lisly Nivig,ia
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1 - o114119||10
< LS B oontlenses o, < 120l
||9||1 io,lo H9||1

Since Yps = Yj3, we have

16 0 0l013°

Var(Vy2) = Var(Yes) < o
1

Next we study the variance of Ys.. For notational brevity, let

Riy in,is = {(j27f2,j3)

Jo # i, lo # ia, j3 # i3j2 # Lo, (iz, j2) # (j3,13), (i2, €2) # (]5‘@3)}-

We have
Var(Ye)
1

=3 E E Ty M Mis v ia Mg M, Mt it i B[ Wy 5y Wiy 0, Wi s Wi s Wg or Wi i |
i1,42,i3,i4(dist) (j2,02,53)ERiy ig,ig
Ay Ay A . . .
i1,15,15,14 (dist) (jé7zl27jé)e7?'i’1,i'2,i’3
(E.45)

Note that Wi, j, Wi, e, Wi, j, and Wiy ;e Wyr o Wir i1 above are uncorrelated unless

373 22]2

{tiacda) i o} G} | = {0230, 5. 51, €683 .

In particular, i € {is, ja, {2, i3, j3} When the above holds. Hence for some choice of a; € {0,1}
with 30 a; =1,

1
Var(Ye) S 75 > 00520200050 - 0:,6:,0:, (Bi, 0i,) (B8, 0,04, 0, (Bir 031) (Bi, 0, - 67,05,00,0,,05,
11,22,13,%4
i1,84,52,02,43
1
S =3 Z Biy Bir Biy B, 07, ‘91‘2;(“‘9?:@49@2491'391'239};@29%;&39]1‘:(15
i1,84,52,€2,53
2 92 p2 p2 2 91 pl pl ||609||§1||9||§
Z 6i16i/16i46iﬁ19i10i29i30i40i10iﬁ10j20520]'3 < W’
iyinsdssia 1
111245J27527]3

A
|

where in the last line we apply (E.2) followed by (E.24). Combining our results above we have

180 0113110113 < 1B 8l]I61l5

|ETQC| ,S ) ~
16113 16113

Var(Tz.)

The argument for 754 is omitted since it is similar to the one for 75, (note that the two terms have
similar structure). The results are stated below.

o 0113116113

4 8
7l 5 12212100, < 1o oltel;
1

Var(Tsq) S -
’ 19117

Combining the results for T5,, . .., 154 yields

< 118013110113

< 11Bo01I5]10]3
19117 ~

|ET2| ’
16]1%

Var(T3)

as desired. ]
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E.4.6 PROOF OF LEMMA [E.T11]

As before, we only need to analyze the alternative hypothesis. In (Jin et al., 2021, Supplement,pg.103)
it is shown that Q* — @Q* is a sum of O(1) terms of the form

v\ V7
Y = (V) S aibircredu, (E.46)
i.4.k,(dist)

where a, b, c,d € {ﬁ, W, 8, —(f—n)(7—n) "}, and N; denotes the number of a, b, ¢, d that are equal
to —(77 =) (i —n)".
Similarly, let Ny denote the number of a, b, ¢, d that are equal to W, and Ng and N are similarly
defined. Write
v m
Y = (V) X, where X= Z‘ aijbincredes. (E.47)
,5,k,0(dist)

Note that for this proof, we do not need the explicit decomposition: we only will use the fact that

Q* — Q" isasumof O(1) terms. At times, we refer to these terms of the form Y composing Q* -Q*
as post-expansion sums.

InJin et al.|(2021) it is shown that 4 > Nz > 1 for every post-expansion sum (note that the upper
bound of 4 is trivial). It turns out that this is the only constraint on the post-expansion sums; so we
need to analyze every single possible combination of nonnegative integers (Ng, Ny, Ns, Ni) where
their sum is 4 and N; > 1 and then arrange a, b, ¢, d € {Q, W, 8, — (77 — 1)(77 — 1) 7} in all possible
ways according to (E.46). This leads to a total of 34 possibilities, all of which are shown in Table/I]
reproduced from Jin et al.| (2021)).

In (Jin et al., [2021] Supplement,pg.103) it is shown that
[E[Y — X]| < o[l6]l3*)vE[X?] + o(1), and
Var(Y) < 2Var(X) + o(||0]l3 )E[X?] + o(1). (E.48)
The proof of inlJin et al] (2021) only requires the heterogeneity assumptions (E.2)—(E-4) and
the following two conditions. First, we must have the tail inequality
2exp(—55t2), whenx,[|0]: <t < [0)3,
o1y

E.49
2exp(—Cat), when t > ||0]|2. (E49)

Mww>ﬂ§{

Second, it must hold that |Y — X| is dominated by a polynomial in V. See (Jin et al., 2021, Lemma
G.10 and G.11) for further details. Both conditions are satisfied in our setting, so indeed (E.48)
applies.

Let Ny and Ns denote the number of a, b, ¢, d that are equal to W and J, respectively. As in|Jin et al.
(2021)), we define

Ny, = Nw + Ns + 2N; (E.50)

and divide our analysis into parts based on this parameter.

Analysis of terms with Ny, <4 For convenience, we reproduce Table G.5 from Jin et al.| (2021)
in Table 2] The left column of Table 2|lists all of the terms with Ny}, < 4, where note that factors of

(%)N 7 are removed. In the right column terms are listed that have similar structure to those on the
left. Precisely, a term in the left column has the form

X = Z Ciyoroyiog Gl i
i1yeresim €R
and its adjacent term on the right column has the form

* *
X' = E Cil,‘..,i,,LGn,..-,zm7

i1, tm €ER
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Table 1: Note: This table and caption reproduced from Table G.4 of Jin et al.| (2021). The 34 types of
the 175 post-expansion sums for (Q — Q7).

n

Notation # Nz (Ns, Ng, Nw) Examples Ny
i 41 0.0,3) Digkedist) Tis WikWeeWer 5
Ry 8 1 0, 1,2 D g kb (dist) P QWieWe 4
Rs 4 D ik e(dist) Tis WikQueWe 4
Ry 8 1 (0,2, 1) S kiaist) i QW 3
Rs 4 D ij ke b(dist) fijﬁjkazfﬁei 3
Re 4 1 03,00 Suspoan kel 2
L 8 1 (1,0,2) 2, ok, (dist) 7505 WieWei 5
Rg 4 ik b (dist) Tid WikOreWes 5
Ro 8 1 (L1, 1) S ikecaist) Tid Ok e Wi 4
Fao 8 i ik dist) T3k Wiedes 4
Ry 8 Digk(dist) Tig WkOkees 4
Ry 8 1 (1,2,0) D ik (dist) I’:ijéjkﬁkeﬁzi 3
B 4 2, Jk.e(dist) Tig Jk‘SMQh 3
Raa 8 1 (2,0,1) D .k, 0(dist) 750k 0keWei 5
Ras 4 ik t(dist) Ti705k WieOei 5
R 8 1 21,0 Di ik t(dist) fig5]k5kesz 4
Far 4 2 g5k L (dist) szfsijkéfsfz 4
ng 4 1 (3, 0, 0) ZZ gk L(dist) 7””(5];@516/521 5
o 2 0.0, oy etassn Ttk WeWer 6
Rao 2 irgkse(dist) Tis WikThe Wi 6
Ry 4 2 0, 2,0) Z”kz(dwt) fijfjkﬁk[ﬁh 4
R 2 D i gk t(dist) Tid Qe Qs 4
Fas 42 (2.0,0) ik E(dist) Tid TjkOkeOti 6
Raa 2 0,5,k E(dist) rl]‘sjkrkiééz 6
Ras 8 2 0,1, 1) Zz,g,kx(dzst) TL]r]kalW& 5
Ras 4 D ik (dist) Tis Qjiire W 5
Rar L (1, 1,0 Dok t(dist) fijfjkfskzﬁu 5
Ras 4 D ik J(dist) rwéjkrklfgﬁ 5
Fao 8 2 (1,0, 1) D i gk t(dist) TidTikOkeWei 6
30 4 i.j.k.0(dist) FigOkTreWei 6
R 43 0,0.1) i.g.kb(dist) TiTikTReWes 7
Rso 43 ©.1,0) D i gk, t(dist) Fig ik re Qi 6
UED 4 3 (1,0,0) Dig(dist) TisTikTkeOk 7
Raa 1 4 0.,0.0) ik b(dist) TisTRTRET L 8

analogous to 7" and 7 from Lemma[E.T3] By inspection, we see that for each term in the left column,

the canonical upper bounds ¢;;; "and ¢i,  ; on the coefficients ¢;,, . ;,, and ¢j, ;= satisfy

.....

T S €]

Stmoo~o Yig,..., m
Recall that these canonical upper bounds were defined in Section Thus the conclusion of
Lemma [E-T3]applies, and we have for each term X in the left column of Table 2]

[EX| S EX™, Var(X) < Var(X*).

As discussed in Section[E.4.1] the upper bounds on the means and variances in Lemmas [E7HE-T0|

are in fact upper bounds on EX* and Var(X*). By (E-48) and Lemmas , for every post-
expansion sum Y with Ny, < 4 we have

Y| < [EX] + o(|l6ll,*)VEXT = [EX]| + o([6];) VEX] + Var(X)
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Table 2: For clarity, this table and caption are borrowed from Table G.5 of Jin et al.|(2021)).The 14
types of post-expansion sums with N3, < 4. The right column displays the post-expansion sums
defined before which have similar forms as the post-expansion sums in the left column. For some
terms in the right column, we permute (i, j, k, £) in the original definition for ease of comparison
with the left column. (In all expressions, the subscript “i, j, k, £(dist)" is omitted.)

Expression Expression
Ry 2 (1 = i) (75— 1)k Wie Wi Zp 27 = mi)n; (15 — 0;)mWikeWei
R (1 = ) (i = 1) Wik Qe Wos Z2a 22 ne(75 = ) Wik (i — ni) Wie
Ry (i = ) (i — 1)k e W Z3d 22 (i = mi)n; (5 — 03 ) ee W
Rs (1 = ) (i — 1)k WS Zap > Qi (75 — 1) Whene (i — 15)
Rs 2 = 1) (75— 1)k 20 e Zsa > mi(7y — n5) Qe Qeene (i — mi)
Ry (715 — i) (7l — 1) 20k W Tia 2 ey — 1720 (i — ni) Wie
S = ) (i — 1) (ke — ) e W Tia o me(7l = 1)n; (e — )k (T — 1:)Wie
Ry (i — i) (75 — W])Q]kWMW T S (715 = 0) e Wene (T — 1) %15
S0 = i) (7 — 1) Wike (e — me)mi Tia (0 = i)W (e — ne)ni (i — ni)ng
Ry (i = ) (i = ) Wikni (e — 1e) Qi Tia 2 (i = i)W (715 — 13)ne (e — 1e)ns
(1 — 7h)( 7b) Wi (k= mi)me Qi T 221 (1 — i) Wiy (7 — )7 (7 — )
Ryz > — 772)(77 — 03) 2k ke Qs T S 0i (7 = 03) s Qe (i — i)
> (i = ma) (7 — 7)])71]( ik — 1k ) Qe Qe Tsa 22157 = 1) (e — 1) Qiene (i — 10:)
Ris S = ) (i = 1)k (T — 1) e Ty i = n) Qe (e — i)z (7 — i)
Rie 2o = mi) (75 — nj)an(nk = k)8 F, 22 0i (7 = ;) 0k (e — ) (7 — i)
S0 = i) (i — 1) 07 (e — 10) Qs By iy — 1) (e — e nz(m )
S =) (g — n)nj (e — ) *neQes | Fy iy —n)ni (e — i) >0 (7 — m)
D200 = ma) (7 — 1) (e — ) w (e — 0e)Qei | Fao o 22 mi(0y — 03)n; (e — nw ) (e — ne)ne (7 — i)
Ruz (0 —n3) (75 — n)n; (e — 0e) e (e — ne)ni | Faoo 22mi(iy — 1) (e — )k (e — ne)ne (7l — n5)
(7 = 1i) (75— 7)1 ke (e — me)ms Fy (i — 1) mi (e — me)ne(i — ;)
22 = i) (5 — 1) Qe _ Fe > ne(i = mi) 0 (7 — 1) ne
Roy S0 =) (5 = 15)? (T — ) Qe | Fy Somiy — n3) 0k (T — i )ng (7 — i)
Ragy 320 — ) (75 — i) n (e — ) (e — 0e) i | Fa 35 mi(05 = 13)m; (e — 0w) e (e — me)ne (i — 1)

SN +o([10]52) - \/X4A§ + A+ NG+ A2)03
SN+ A2+ 23 A2 = o3
by the assumption that |A|/v/A; — oc. Similarly,
Var(Y) < Var(X) + o(||6]; )E[X?] = Var(X) + o([|0]|5*) (E[X]* + Var(X))
ST SN2+ o([|0]51) - (AN AT+ A5+ A2)3) S o(A8).

Analysis of terms with Nyj;, > 4 Recall that

1 1
— — _(EA)1,, = ——=Al,, v=1,(EA
7 ﬁ( JLns 7 7 v=1,(EA)
Define
Gi =10 — i (E.51)

Among the post-expansion sums in Table (T)) satisfying Ny;, = 5, only R7, Rg, and Ra5—Rog depend
on (2. Each of these terms falls into one of the types

= > Qr(GiG;GkG W),
i,j,k,£(dist)

o= u(GiGIGWi)
i,5,k,(dist)
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Jo= Y. mQu(GiGIGLGy)

1,5,k £(dist)
J10 = Z nzﬁzZ(GiG?G%)
i,5,k,£(dist)
See (Jin et al., 2021, Supplement, Section G.4.10.2) for more details.

To handle J} and .Jg, we compare them to

Ts= Y. nmk(GiGGrGW)
1,4,k £(dist)
Jo= > mm(GiGGWe),
1,5,k 0(dist)
both of which are co~nsidered in (Jin et al.} 2021, Supplement, Section G.4.10.2). Note thgt neither J5
nor J5 depends on 2. Setting 7" = J and T* = J5 in Lemma and noting that Q| < 065
by (E.24)), we see that the hypotheses of Lemma[E.13|are satisfied. In (Jin et al., 2021, Supplement,
Section G.4.10.2), it is shown that

2
E[J5] < E[Js]" + Var(J5) = o([[0]|3)-
Applying Lemma [E.T3] we conclude that

E[J:%] = o(||6]13).

Similarly, it is shown in (Jin et al., 2021} Supplement, Section G.4.10.2) that

E[J2] < E[Js] + Var(Js) = o(||6]13).

Setting T' = J§ and T* = Jg, the hypotheses of Lemma are satisfied because \QM\ < 610, We
conclude that " .
E[Js"] = o([10]]2)-

The terms Jg and J;( can be analyzed explicitly using the strategy described in Section[E.4.1] We
omit the full details and instead give a simplified proof in the case where ||| > [log(n)]>/2. The

event
E=nN,E, where  E; = {\/v|G;| < Co/0;]0]|1 log(n)}. (E.52)

is introduced in (Jin et al.| 2021}, Supplement,pg.110). By applying Bernstein’s inequality and the
union bound, it is shown that E holds with probability at least 1 — n~=0/2:01 Applying the crude
bound |G;| < n and triangle inequality, we see that |Jo| < n? with high probability, and thus for Cy
sufficiently large,

E[lJo|* - 1] = o(1).
Under the event E, we have by (E20),

|Jo| < k|| GGG Gy
j

i,7,k,
0,02010,/03 log ()]
< Z(emeﬂ -
i,5,k,C Vs

ogin 5/2 3/2 3/2 3/2
. g/(”g)]? (ZH / )(Za )(Zk ek/ ><Ze 9/ )
og(n)]*/? Z 3/2

5U\g/(ne”% <z- ")
og(n 5/2 9 3/2 3/2

st \g/(ne”% @i 7 (Zi ")
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< log(n)]>/2]|6]*.
It follows that

E[J5] = Var(Jo) + E[Jo]* = o([|0]3)-

We give a similar, simplified argument for .J;¢ assuming that [|0]|o > [log(n)]®/2. Under the event
FE, we have

[Tl < D7 1060 Gi GG

ivj.k 0
00302110113 [log(n)]°
137k 1
< D (6:87) v -
gkl v

LS (5 ) (S 05) (S0 ()

< “"j(w (61v/T8T) el 61

< llog(n)]*/2)16]%;

Hence

E[Jfo] = Var(Jio) + E[J10]* = o([|0]3)-

Next we consider the terms with /Ny, = 6. The only term that depends on Q is Ry, which has the
form

K= > QuGiGIGiGE.
i,5,k,0(dist)

The variance of K can be analyzed explicitly using the strategy described in Section To save

space, we give a simplified argument when ||0||2 > [log(n)]?/2. Again let E denote the event (E-52).
Under this event we have

0,626,,62|(6]3 log(n))?
K5 S (0:00)
4,5k, L

<R () () (S (Se)
< L o )l

< [log(n)P*[10]1%,
Above we apply (E:20) and (E:24) as well as Cauchy—Schwarz. It follows that

V3

E[K?] = Var(K4) + E[K5]* = o(||6]5).

Finally, all terms with [Ny, > 7 have no dependence on €, and thus the bounds carry over immediately
(see (Jin et al., 2021, Supplement, Section G.4.10.4) for details). This completes the proof of the
lemma. O

E.4.7 PROOF OF LEMMA [E.12|

Define

(D @ _

(% 3 v
€j = m 77] =N, €y - V)ninja 65]-) =—(1- V)(Sij-
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Note that 65]1-) is a nonstochastic term. As shown in (Jin et al.,|2021, Supplement, pg. 119), we have

[16]]oo
) < 0,05,
R [ P

which implies that

1

1

] < o - 030 (E.53)
10113

by (E.2).

As discussed in (Jin et al., 2021}, Supplement, Section G.3), Q — Q* is a finite sum of terms of the
form
> aibjrckede,  where a,b,c,d € {Q,W,8,7 eV, (E.54)
i,5,k,0(dist)

Let Y denote an arbitrary term of the form above, and given X € {(NZ, W, 0,7, e, ) 3 } let Nx
denote the total number of a, b, ¢, d that are equal to X. It holds that

@) NG
v N'F' N(S) v Ne +Ne _
Y = ()" ()N (1- V) X, X= 3 agbucwds
i,4,k,0(dist)
where _
a/7 b’ c7 d e {Q’ W 67 (V//U)f7 6(1)7 T]nT}7
number of 7;7; in the product is N5(2),
number of d;; in the product is N5 + Ne(g),
number of any other term in the product is same as before.

(E.55)

Let x,, denote a sequence of real numbers such that +/log(]|6]]1) < x, < [|0||1. Mimicking the
argument in (Jin et al.| 2021}, Supplement,pg.121), it holds that

22 \NO+ND
<||9||?)

By (E), there exists a sequence log(||6]]1) < z,, < [|0]|1/]|0]|3. Hence,

E[Y? <

~

-E[X?] +o(1),

E[Y?) <

"E[X?] + o(1), (E.56)

1 \NP+N®
( 16113 )

Thus we focus on controlling E[X?2].

Consider a new random variable X * defined to be

* * 7% * *
X = E aijbjkckedm
i,4,k,0(dist)

where
W 067 ifa =l
a* =007 ifa e {Q,mm"}
a otherwise
W 007 ifb=e®
2 ~
b* =4 607 ifbe {Q,mm"}
b otherwise
- if c = e
i1z -
=007 ifce {Q,mn"}
c otherwise
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d 00T ifd =D

lens -
d* = <007 if € {Q,mm"}
d otherwise .
Also define _ ~ ~
X = Z a;ijbjrCrede;
ijke(dist)
where
G 007 ifa e {eM Q,nn"}
" a otherwise
P 007 ifb e {eV, Q,nm"}
)b otherwise
. 007 ifce {eM Q,mm"}
e otherwise
- (667 ifde {eV,Q,n"}
d= ;
d otherwise .
. - .
Note that X* = (14=)" X and ,,,d € {667, W, 4, (V/v)}. Later we show that
2

E[X?] S E[X*] (E.57)

First we bound E[)N(Q] in the case when Ny + Ngs + Nz = 0. Note that for all such terms in () — Q*,
we have Ngl) + Néz) + NE(S) + Ng = 4 and Ng < 4. In particular, X and X* are nonstochastic. If

N¢, = 3, then by (E22) and (E-24),

~ S~ o~ 1
KI=| > QuQantudit] S T > B026705006,67 <116 < 01310113
ijke(dist) 2 ijke
If Ng = 2, there are two cases. First,
IXI=1] D QuQubi0:0:0:] S 5i0:57635167070; < 118 0 0]13161]3,
ijké(dist) ijkt
and second
1X| = Z Q004 Qpebe0;| < Zﬁﬂfﬁjejzﬂkeiﬁe@? S B 0l31101l
ijké(dist) ijkt
Finally if N, = 1,
Xl=| > 90,0203, <> 5:076,020202 < 150 0]3]01S-
ijké(dist) ijkt
Note that when Ny + N5 + Nz =0
X[ < 1X7
by (E-22), (E.20), and (E.33). By the bounds above, we conclude that
1 \NOINO NS 2(4—k 3
Y15 () X max [Bo63 615" SN (ES8)
2 <k<

Next we bound E[X?] in the case when Ny + Ns + N; > 0. By Lemma|E.2|and the definition
of f € R? there, we have Q;; = o;0;0;0; where a = I1f. Observe that in Lemmas , we
bound the mean and variance of all terms of the form
Z= > aygbjkcreds,  where a,b,c,d € {Q,W,5,(V/v)i}.
i,5,k0(dist)
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As a result, the proofs of Lemmas [E.7HE.TT| produce a function " such that
]E[Zz] S F(976a Nfla NW7 N57 NF)?
where recall that |o;| < ;.

Note that in what follows, we use ’ to denote a new variable rather than the transpose. As a direct
corollary to the proofs of Lemmas , if we define a new matrix Q' = a;a}0;0; where o/ is a
vector with a coordinate-wise bound of the form |a;| < [3{ then

7 = Z a;jbjkcrede;, where a,b,c,d € {Q, W, 5, (V/v)F}
i,5,k,£(dist)
satisfies
E[Z] < F (8,8’ Ny, Ny, Nj, N7),

where, for example, Nj counts the number of appearances of § in Z’. This can be verified by

tracing each calculation in Lemmas line by line, replacing all occurences of Q with €/, and
replacing every usage of the bound |«;| < 3; with |aj| < f! instead. In other words, our proofs make
no use of the specific value of o = IIf.

In particular, if « = 1, thG~Il Q) = 007 . In this case we may set 3 = 1. Observe that X has the form
of Z' with this choice of . Hence,

E[X?] < F(0,1; Ny, Nw, No, N7). (E59)
By careful inspection of the bounds in Lemmas[E-7HE.TT] we see that
F(0,1; Ny, N, N5, Ni) 5 [16]15°. (E.60)

In (Jin et al.| 2021} Supplement, Section G.3) it is shown that all terms in the decomposition of
Q — Q* satisfy Ns(l) + Nﬁ(z) + Ne(s) > 0. Using this fact along with (E.36)), (E.57), (E.39) and
(E.60).

1 \NP+ND 1 oM
BV S () ()
HE (7o)

Observe that (E-38) and (E-61)) recover the bounds in Lemma [E.12]under the alternative hypothesis,
and the bounds under the null hypothesis transfer directly from (Jin et al.l 2021, Lemma G.12). Thus
it only remains to justify (E:37) when Ny + N5 + N7 > 0. Let us write

E[X?] +o(1) < [l6]l3- (E.61)

T15eeslm
in the form described in Section |E.4.1) where now

* Cirpsim = H(s.517ea I‘z(::/) is a nonstochastic term where A C [m] x [m] and

TG e (@, 17,17, 117, D Ty

i = H(s,5m7€a Fl(:f//) is a nonstochastic term where A C [m] x [m] and
T e (1T, 17,117,007 /|10]13, 00"}

e G = H(s,s')eB Wi, i, where B C [m] x [m].

11,0 tm

I T(5) € {907,007 /||0]|2}, we simply let [(s:s") = T'(*:") and define

* _ (s,8")
Civ i — ” Fiﬁ,is,

(s,8")€A
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as in Section We also define the canonical upper bound EX* on |[EX*| and the canonical
upper bound Var(X*) on Var(X™*) similarly to Section By the discussion above and (E.59),

*] — 1 Ne(l) N7 N7 N7 N7
EIXT = (1) VF(6,1: Ny, N, Ky, Ny),
and
Ve = (L 2N VAR VA A
Var(X) = ()™ F0,1: Ny, N, N, Vo).

Next observe that

< |e* < |e*
ey A
N| 1seenytm | o~ 1Y 00

|c7417~~~a747n ml

By a mild extension of Lemma [E.T3]it follows that
EX| <EX*

Var(X) < Var(X*),
which verifies (E.57) and completes the proof. O

E.5 CALCULATIONS IN THE SBM SETTING

We compute the order of \; and 5\1 = )2 in the SBM setting (which are the two nonzero eigenvalues
of 2). By basic algebra, A1, A2 are also the two nonzero eigenvalues of the following matrix

3 0] 5 ] s AT

where b is given by (H.I)). By direct calculations and pluging the definitions of b,

_aN+(n—N)c+ V/(aN — (n — N)c)2 + 4N (n — N)b2

A1 >
aN + (n—N)c+|(n— N)c—aN| 55
= 5 .
Recall that
po CT N(a+c)
N n—2N

It is required that b > 0. Therefore,

nc—(a+c)N >0, and so (n—N)c>aN. (E.62)

By direct calculations, it follows that

A — (n — N)2c — aN? _ (n_N)C((n_N)_(ngi]Xf)c )N (n—N)c(n— N) e

n—2N n—2N n—2N

where in the last two =<, we have used (n — N)c > aN and N = o(n). Similarly,

N aN + (n— N)c— /(aN —2(n—N)c)2 +4N(n - N)»? _ (a—Tcl)J_V;ZLV— N) N(a—e).

F  PROOF OF THEOREM [2.3| (POWERLESSNESS OF X2 TEST)
We compare the SgnQ test with the x? test. Recall we assume 6; = 1,,. The x? test statistic is defined
to be
1 " 2 1
Xpn="7——"7—"- Al,); — an)", here 6 = —— Y A;;.
n d(l—d)(n—l)z(( )i —an) where o n(n—l)z J

i=1 i#£]
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We also define an idealized x? test statistic by

. 1 - 2 1
X, = S ((ALy)i — an)?, herea = ———— S0,
a(l —a)(n—1) & ((ALn)i = an) e = Lt —1) ; J
The 2 test is defined to be i .
2 _q | X — ”‘
Xn = W > Zy/2|,
where z., is such that P[|N(0,1)| > z.,] = ~. Similarly, the idealized x? test is defined by
<2 -|Xn —n ]
Xn =1 W > Zyj2|s

In certain degree-homogeneous settings, the x? test is known to have full power |Arias-Castro &
Verzelen| (2014)); (Cammarata & Kel (2022).

We prove the following, which directly implies Theorem [2.3]

Theorem F.1. Suppose that @2.1) holds and that |\|/v/A1 — oo, and recall that under these
conditions, the power of the SgnQ test goes to 1. Next suppose that the following regularity conditions
hold under the null and alternative:

(i) 0=1,
(ii) o — 0
(iii) a®n — oo
(iv) 325;(Qij — @)? = o(an®?).

Then the power of both the x>-test and idealized x*-test goes to ~y (which is the prescribed level of
the test).

Note that the previous theorem implies Theorem [2.3] By Theorem [2.2] SgnQ has full power even
without the extra regularity conditions (i)—(iv). On the other hand, for any fixed alternative DCBM
satisfying (i)—(iv), Theoremimplies that 2 has power x.

Proof of Theorem[F'I} Theorem [2.2]confirms that SgnQ has full power provided that (2.7) holds and
that [A|/v/A; — oo. It remains to justify the powerlessness of the x? test.

Consider an SBM in the alternative such that 21 = (an)1 and |A|/v/AL =< N(a—c)/y/nc = oc. To
cn—(a+c)N

n—2N
The remaining regularity conditions are satisfied if ¢ — 0 and cn < N(a — ¢)? < en®/2. We show

that both X, and X,, are asymptotically normal under the specified alternative, which is enough to
imply Theorem

In/Cammarata & Kel(2022) it is shown that

do this we select an integer N > 0 to be the size of the smaller community and set b =

T, =[n-1)a(l-a))(Xn—n)= Y (Aw—&)(Aj—a). (E.1)

1,7,k (dist.)

We introduce an idealized version 7T, of Tn, which is

T,= > (Aw—a)(4—a),

i,7,k (dist.)

Following |(Cammarata & Ke|(2022), we have

n—1

Xn—n_(n—Q

1/2
UnViZn. F.2
- ) F2)
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where
7 _Tn
v, = 2oll =), V=L, 7, = Teul=a
Oén(]. — an) T, 2n(n—2)

(n—1)

Since the terms of & are bounded, the law of large numbers implies that U,, 51 Furthermore, since
an — oo by assumption that a®n — oo, a straightforward application of the Berry-Esseen theorem
implies that
nn—1) &, —a,
2 an(l—ap)

= N(u,1).

With the previous fact, mimicking the argument in (Cammarata & Ke} 2022, pg.32), it also follows
that
v, 51,

provided we can show that Z,, = N(0,1). We omit the details since the argument is very similar.

Thus it suffices to study Z,,. We first analyze T,, which we decompose as

To= > (A=) A — Qi) +2 Y (i — a)(Aj — Qi)

4.k (dist) ijk(dist)
+ Z (sz - O‘)(ij‘ - a) =T + Tho +Ths.
ijk(dist)

Observe that 7,3 is non-stochastic. The second and third term are negligible compared to T5,1. Define
Q = Q — «11’. By direct calculations,

ET,2 = 0,
and
Var(Too) =8 > (D0 Q) (- ) =8 > (e + Q) "1 — Q) S an.
j<k(dist) i¢{j,k} j<k(dist)
Next,

|Tn3| = |Z§ikﬁjk - Z ﬁikﬁjk’ = | Z ﬁikﬁjk|

ijk ijk(not dist.) ijk(not dist.)
< ’ Zﬁuﬁﬂ| + ’ Zﬁfﬂ + | Zﬁi‘ =0+ 0(0m3/2) +n= 0(04713/2)7
ij ik i

where we apply the third regularity condition.

Now we focus on T,,;. By direct calculations

ETnl = Ou
and
VarT,; =2 Z Qir(1 - Qik)ij(l - ij)
i,4,k(dist)
=23 Qup(l - Q)1 — Q) =2 > Qa1 — Q) (1 — Q)
i,7,k i,j,k(not dist.)
=21'0%1-2 Z Qi (1 — Qi) Q5 (1 — Q)
i,j,k(not dist.)
Note that

21'0%1 ~ 2n(n — 1)(n — 2)a?
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since o — 0. Moreover, with some simple casework we can show
Z Qi (1 — Qi) Qe (1 — Qi) S an’® = o(a®n?),
i,4,k(not dist.)
where we use that an — oo (because a>n — o). Hence
Var Ty, ~ 2n(n — 1)(n — 2)a?(1 — a)? ~ 2n(n — 1)(n — 2)a*(1 — a)?.

To study T),; we apply the martingale central limit theorem using a similar argument to/Cammarata
& Ke (2022)) Define Wij = Aij — Qij and

Tom= >, WaWjp,  ad  To0=0,
(4,5,k)ELm

n—1 Thm
T = ’ , d  Zn,o=0.
™=\ 2n(n = 2) (n — Dan(1 — an) an -0

Ly, = {(i,j,k) € [m]® s.t. i, j, k are distinct},
and m < n. Define a filtration {F,, ,,,} where F,, ., = o{W;, (i, ) € [m]*} for all m € [n], and
let F,, o be the trivial o-field. It is straightforward to verify that T}, ,,, and Z,, ,,, are martingales with
respect to this filtration. We further define a martingale difference sequence

Xn,m = Zn,m - Zn,mfl

where

for all m € [n].

If we can show that the following conditions hold

@ > E[X2, [ Fomoa] & 1, (E3)
m=1
(b) Ve > 0, Y BXZ , 1{| X > €[} Fm1] =0, (F4)
m=1

then the Martingale Central Limit Theorem implies that Z,, = N(0,1).
Our argument follows closely (Cammarata & Ke| (2022)). First consider (F.3)). It suffices to show that

E ZE[XZ,mIfn,m_ﬂ] 2, (E5)
m=1
and
n
Var (Z E[Xi,mlfn,m_1]> 225 0. (F.6)
m=1
For notational brevity, define
2n(n —2)
n ‘= -1 n 1-— n —_—
Co = (n = a1 = e[

Mimicking the argument in (Cammarata & Kel} 2022} pgs.33-34) shows the following. Note that all
sums below are indexed up to m — 1.
E[C2X] | Fom-1]=4 > WiaWiE [WpcWmil +4 Y WikE Wi Wi Winn]
k#j; i#l k#j; il
+ > E (Wi Wi Wi W] - (F7)
i#£j; k#l
Continuing, we have
E[CELXfLﬂn“Fn-,m—l] = 42 Z Wi]Wdez(l - sz) +2 Z sz(l - sz)Q]m(l — Qjm)
i gl i, (dist)
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ijl(dist) i,5(dist)
+2 ) Qi (1= Qi) Qo (1 = Q). (F.8)
i,j(dist)
Computing expectations,
EHEHCQ)(innLFﬁ7n—1H
=4 > Q1= )i = Qi) +2 D Qi (L= Qi) Qo (1 = Qi)
4,5 (dist) 4,5 (dist)

Summing over m and a simple combinatorial argument yields

CRE[ D EIX2 [ Famal] =2 D Qur(l— Qup)Q(1— Q) ~ C2.
m=1

i,5,k(dist)

Using the identity

ij = (1—2Q;;)W;; + Qi (1 — Qy5),
we have

[CQX?L m|-7:n m— 1 =4 Z W’L]WllQT)’LL(l - sz + 4 Z mz(l - sz)
ij€(dist) i,7(dist)
=24 ) Wi WaQmi(1 = Qi) +8 ) Wi (1= 2045)Qpni(1 — Qpy)
i<j<l i<j
+ 429” = Q)i (1 = Qi)

1<J

Thus

iE[CZXZ,mIfn,m-ﬂ =243 () Qi1 = Q) ) Wi Wi
m=1

i<j<f m>max(i,5,£)

+ 82 ( Z Qmi(l - Qmi) )(1 - QQij)Wij-

1<j  m>max(i,j,£)

All terms above are uncorrelated. Hence,

ar (i E[C?LX,%,mfn}mﬂ) = 247 Z ( Z Qi (1 = Qs) )292‘]‘(1 = Q) Qi (1 — Qir)

1<j<f m>max(i,j,0)

+643° (YT Qi1 = Q) ) (1 204)%0Q55(1 - Q)

i<j m>max(i,5,0)
2 2
Sn®-Cx,
whence,

n ) n2 n2
ar Z E[Xn,m|]:"am—1] 5 @ = CVQTLS —0
m=1 n
since a?n — co. Thus we have shown (F3) and (F.6), which together prove (F3).

Next we prove , again following the argument in {(Cammarata & Kef(2022). In (Cammarata & Ke,
2022, pg.36) it is shown that it suffices to prove

zn: E[X 170 0. (E9)

m=1
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Further in (Cammarata & Ke} 2022} pg.37), it is shown that

E[CiX? ] =16 [Z EWS JE[(Ws; + W)
+3 3 EWZE[(Wy + Win ) EIW2 ) E[(Was + Wam)?)

1<j,u<v
1#U,jFV
+3 Y EWEW I E(Wij + Win)* (Wi + Win)?]
i<j,v
J

+3 Z E[(Wij + Wim)Q] E[(Wuj + Wum)Q] E[Wj4m] :
1,u<lj
iFu

Going through term by term, we have for n sufficiently large

S CEWLIE(Wij 4 Wim) '] S Qi (Qij + Qim) S @®n?

i<j 4,J
Next
> EWLE[(Wiy + Win) T EWS E(Wij + Win)l S (i + Qo) Quom (Quw + Qum)
1<J,u<v 1Jjuv
iFU,jFEV

= U Qo Qs + D i QomQum + Y 22, Qi Qo
1Juv 1juv 1Juv
+ )0 L Qum
UV
< atnt + on?
With a similar argument, we also have, for n sufficiently large,
> EWIEWS I E[(Wij + Wim)® (Wi + Win)?] S on® + o®n®
1<J,v
Pl
> E[(Wij + Wim)? E[(Waj + Wam)?EW;, ]| S a0 + a?n?.

5u<g

Thus
n 4.5 4,5
4 a*n®  a'n
Z E[Xn,m] S.; C4 ~ W - O’
m=1 n
which verifies (F.9). Since (F9) implies (F4), this completes the proof. O

G PROOF OF THEOREM [2.4] (STATISTICAL LOWER BOUND)

Let fo(A) be the density under the null hypothesis. Let x(IT) be the density of II, and let f; (A|IT)
be the conditional density of A given II. The L, distance between two hypotheses is
L1
" = SBacg[Eneu (AT = 1], L(A,T) = f1(A[D)/ fo(A).
Define
M = {II : I is an eligible membership matrix and }_, 7;(1) < 2ne}. (G.1)

Write LM (A, TI) = L(A,TI) - 1{IT € M} and define LM" (A, IT) similarly. By direct calculations,
we have

1 ;
=K Amfo|Erep LM (A TT) = 14 B LM (A, TD)|
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1 1 c

FEA~ o [ Entey LM (AT = 1] + SEac p, Erie L (A1)

1 1

= -/ —{. G.2

glo 540 (G.2)
Note that Ea~ f,Erre, LM (AT = [ic e ALAMDp(IDdIdA = [0 p(IDdIT = (M),
We bound the probability of u € M¢. Note that 7;(1) are independent Bernoulli variables with
mean €, where € < n~'N. It follows by Bernstein inequality that if ¢ = 100,/N log N, the we have
conservatively,

P(‘Xi:m(l)—N‘n)gzexp( LI gy UNIBNIZ) ¢ e

IN

(G.3)

for some ¢ > 0. It follows that
b = p(M°) = o(1). (G.4)
By Cauchy-Schwarz inequality,

03 < Eango|Erimp L —1f

)" —2Ea~fEnepuL M(ATI) + 1

))? = 2[1 = Ean g, Ero, LM (A, ID)] +1
))? =1+ o(1),

A,TI) = 1 and the last line is from (G.4). We plug it into

)

2

)

= Ean~fo (Brop L

)

M(A
= Ea~fo (Enou LM(A
(A
< Eang, (B, LY(A

where the third line is from E 5z, Err~

(G.2) to get

1)
I1
I
I
L(
0 < \ly — 14 0(1), where 0o = Eany, (Ene, LA D)2 (G.5)
It suffices to prove that 5 < 1+ o(1).
Below, we study /5. Let II be an independent copy of II. Define
S(A,IL1TI) = L(A,II) - L(II, A).
It is easy to see that
by =B g it [S(A LI - 1{IT € M, I € M}]. (G.6)
Denote by p;; and g¢;;(II) the values of €2;; under the null and the alternative, respectively. Write
6ij (H) = (Qij (H) — p”)/p” By definition,
¢ij (11)gi; (IT)
p?j

1—Aqj

s =]

1<J

Aij ~
l(l — i (ID)(1 — g;5(10)

(1—pij)?

Write for short qij (H) = Gij> Gij (ﬁ) = q~ij» 6z‘j (H) = (Sij and 52J(ﬁ) = Sij. By straightforward
calculations, we have the following claims:
=~ Piidij0ij
Eavso[S(AILID] = [ (14 B2, G.7)
i<j L =pi

and

I S(A.ILTD) = 3~ Ay ln [( - (ifa”;g pi )]

pLJ

+ ln[<1 - ﬁi;,,‘sij) (1 - fi;ij &j)} (G.8)

1

The expression (G.8) may be useful for the case of N¢ — 0. In the current case of N¢ — oo, we use

(G.7). 1t follows from (G.6) that

tr=Eng., {H(l + M) {ITe M,TT € M}]

i<j 1= pij
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o (S 20)) e i v

1<]J 1 _p”

IN

~ 0704
Ep oy {exp(X) -H{II e M, 11 EM}}, with Xzzpljij_‘]. (G.9)

icy = P
where the last line is from the universal inequality of In(1 +¢) < ¢

We further work out the explicit expressions of p;;, d;; and ;. Let b = (¢,1 — €)', and recall that
ap = ae + b(1 — €). The condition of b in (H.I) guarantees that

Ph:aolg, aO:ae—i—b(l—e).
By direct calculations,
c(1—€)? — ae?

o (G.10)

Qg =
It follows that

P = apl15 + M, where M— E=(1—¢—¢). (G.11)

Write z; = m; — h. Since Ph = a1z and z/15 = 0, we have
Qij =0;0;(h+ 2z)' P(h+ z)
=0,0;(W Ph + z,Pz;)
=0;0;(cvo + 2;Pzj)
=0;0;(co + 2, Mz;)

= 0,0, {040 + %(5/%)(5/%‘) :

Let ¢; be the indicator that node ¢ belongs to the first community and write u; = t; — % Then,
m = (t;,1 —t;) and 2z; = u;(1, —1)". It follows that £’z; = u;. Therefore,

Qij = 0i6; [ao + © e wig,  where w; ¥ Bernoulli(e) — e. (G.12)

Consequently,
a—c
Pij = 05091'9]', 6ij (H) = muzu]
We plug it into (G.9) to obtain
2

(a—c¢) _
X = Z - a09 7, — 2% wi il (G.13)

Below, we use (G13) to bound ¢2. Since b2, = O(ch2,..) = o(1), by Taylor expansion of
(1 — aph;0;)", we have

(a—c Lo
X = = 204022 oy 0707wty

i<j s=1

Letb; = 0,0-1 < 1. We re-write X as

max

X = viwsXS7
s=1

where
02, (a—c)?
max 1— 92 1925 2 dX b
7= (1 - aogmux)(l — 26)20407 Ws ( o max) max an Z§<J: u UJ’LL uJ

(G.14)
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Let E be the conditional expectation by conditioning on the event of {II € M, Il e M} Tt follows

from (G.9) that

ly =P(Il € M,TT € M) - E[exp(X)]

=P(le M,Ile M) E [eXP( Z“’é )]

P(Il e M,Il € M)- ZwsE[exp(va)]

s=1

Z Elexp(yX,) - 1{Il € M, T € M}]. (G.15)

The third line follows using Jensen’s inequality and that ) -, ws = 1.

It suffices to bound the term in (G.13)) for each s > 1. Note that

X, <Y2 Yo = biugi. (G.16)
We recall that u; = t; — ¢, where ¢; = m;(1) € {0, 1}. The event {II € M, II € M} translates to
max{) ., t;, ».;ti} < 2ne. Note that

(1-— 6)2, when t; + 2?1 =2,
uiti; = —e(1 —¢), whent; +t; =1,
62, where t; + ¢; = 0.

It follows that |w;ii;| < (t; +1;)/2 + €2. Note that e = O(N/n). Therefore, on this event,

IVl <> [(t: +1:)/2 + €] < 2ne + ne* < 3N.
We immediately have

Elexp(yX;) - 1{Il € M, Tl € M}] < E|exp(7Y2) - 1{|Yi]| < 3N}|. (G.17)

The following lemma is useful.
Lemma G.1. Let Z be a random variable satisfying that
P(|Z] > t) < 2exp(—fi), forall t > 0.
0%+ bt
Then, for any v > 0 and B > 0 such that v(o? + bB) < 1/2, we have
4~(0* + bB)

E[exp('yZ2)1{|Z\ <B}| <1+ =202+ bB)’

Note that Y, = >, b7u,4; is a sum of independent, mean-zero variables, where |bJu;%;| < 2 and
>, Var(bfu;ii;) < Y, b292€? < 2ne?. It follows from Bernstein’s inequality that

P(Y,| > f) < t'/2 forall ¢t > 0
f <exp| —=—=— |, ora )
P\ T one2 r 2t

To apply Lemma|[G.1] we set
b=2, 0% =2ne? < 2n"IN?, Z=Y,, B = 3N,

and y as in (]G_Trﬂl) The choice of B is in light of (G.17). Furthermore, by (G-10), we have oy = c.
Also we have 62 . «ay — 0. Hence,

92

max

1—0[09

max

(a—c)? Orax(a — )

( max

)(1 — 2¢€)2ayg = c )

T

max
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Thus by the hyp0thes1s M

Applying Lemma[G.I] we obtain

Elexp(yX) - 1{Il € M, Il € M}] <1+ C(v(c® +bB))
02 ( —6)2

— 0, it holds that v(0? + bB) < 1/2 for n sufficiently large.

< 1 C . max
<140 -( . )
We further plug it into (G.13) to get
> 62, .N(a—c)? 62, .N(a—c)?
é < s |:1 C . max :| < 1 max ,

S e | R
where we use that > ws = 1.
It follows immediately that

N(a —
t<1to(l), i emax‘ﬁiafcc) 0

This proves the claim. O

G.1 PROOF OF LEMMAI[G.T]

Let X denote a nonnegative random variable, and define F(z) = Px[X > z]. For any positive
number 3 > 0, we have

B
Elexp(vX)1{X < 8}] :/0 e dPx (x)

B

B
= —e"F(z) —l—/ ve " F(x)dx
0

0

_ B _
=1-ePF(p) +/ ~e"* F(z)dx

0
B _
< 1+/ ~ve"* F(z)dx.
0

We apply itto X = Z2 and 8 = B? to get

BZ
Blep(022)1(12) < BY) < 1+ | yexp(ra)B(2] > Va)da

B2
<1+2
< ¥ /O exp(vyz) eXp{ 20710 f)}
B2
<1+ 27/0 exp(vyz) eXp{ —H)B
%0 1 - 27(0? +bB)
<1+2 -~
<1+ 7/0 exp{ 2(0® + b) x}dx

2
<14 4v(o® + bB) '
1—2y(02 + bB)

This proves the claim. O

H PROOF OF THEOREM [2.5] (TIGHTNESS OF THE STATISTICAL LOWER BOUND)

Let p € R™. We consider the global testing problem in the DCBM model where

wre (i)
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B) b=1b/+/ac,

C) 0, = piJaforie S,

D) 0; = p;\/cfori ¢ S, and

E) aNy+b(n — Ny) = bNy + ¢(n — Ny),
Recall that b = (Ny/n,1 — No/n)T, and Ny is the size of the smaller community in the alternative.
Observe that the null model K = 1 is parameterized by settinga = c=b = 1.
Recall that e = N/n. We define

alNy + l;(n — Np)

Qo =
n
Note that by Assumption (E]),
= nc—(a+c)Ny
b= ———————— H.1
ae = O(c), and (H.2)
c~bn~ ay. (H.3)

Our assumptions in this section are the following:

a) There exists an absolute constant C, > 0 such that ppax < C)p pmin

2
b) Pmaxon

“Viegn X
¢) Aninteger N is known such that Ny = N[1 4 o(1)].

Note that since we tolerate a small error in the clique size by Assumption (d)), our setting indeed
matches that of the statistical lower bound, by (G.3).

Define the signed scan statistic

e = 1 (A —d7")1p. HA4
b= mnax  1p(A =i )1p (H4)

For notational brevity, define n® = (72’) Let
.1 A
V= A
i,j

The estimator 7 provides a constant factor approximation of the edge density of the least-favorable
null model. See Lemma [H.I] for further details.

Next let
h(u) = (14 u)log(l 4+ u) — u, (H.5)
and note that this function is strictly increasing on R>. Define a random threshold 7 to be
C*N log(%
= C"yN2p! ( B(x )) (H.6)
AN

Let C* > 0 denote a sufficiently large constant, to be determined, that depends only on C, from
Assumption (g). Finally define the scan test to be

Pse = 1[|¢sc| > 71]
Note that, if we assume a > ¢, as in the main text, then b < 1. In this case, we can simply take

Psc = ]-I:QSSC > ,ﬂa

and the same guarantees hold. On the other hand, if b > 1, then the scan test skews negative, as our
proof shows.
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Theorem H.1. If

105131 —b°| log 3%
h = H.7
< p?rlaxaoNg > pIQnaXOéO—ZVO7 ( )

then the type 1 and 2 error of s, tend to 0 as n — oo.

We interpret the previous result in the following concrete settings.
Corollary H.1. If
2
ag N
pn'llaX 7?6 0 -0,
og No

then @4 has type 1 and 2 errors tending to 0 as n — oo, provided that

p?naxNO (a‘ — C)

> 1.
ne
10g No
If
ol
og No

then pg. has type 1 and 2 errors tending to 0 as n — oo, provided that
p?naxNO (CL — C)

> 1.
\/P?naxNoOéo log 1%

Proof. Note that

1851111 — 6% = pRax NG (a — B/ V/€) ~ proascNG (a = ©).

h(nesn%u—b%)»h( log 3 IE log 3

2 2 2 ~ 2 :
pmaanNO pmaxaoNO pmaanNO

In the first case,

We use the fact that A(u) = u foru > 1.

In the second case,

165121 — 52| No - /PR Noato log - log 2 log 22
p(EEHE 1) s . 2 _h > |
pmaxOZONO pmaXOé()NO oo Ny pmaXQONO

2
Pmax

O

The upper bounds in the second part of Corollary is the best possible up to logarithmic factors.
For example, suppose that 0,2 < Omin in Theorem Then the upper bound for the second case
of Corollary [H.Tmatches the lower bound of Theorem [2.4]up to logarithmic factors.

To prove Theorem 2.5] first we establish concentration of 4.
Lemma H.1. Recall

~ 1
i,j(dist)
There exists an absolute constant C' > 0 such that for all 6 > 0, it holds that

C'\/ PhiaxColog(1/6)
n

15 —E4l <

with probability at least 1 — §.
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Proof. As a preliminary, we claim that
(Ql)7 = prznaxaon'
To see this, note that if ¢ € S, then by (E)
(Q1); = iy = (1051 + bl10s¢ 1)

J

b
= pmax\/a : (\/&Npmax + ﬁ ' \/Epmax) = anaxaow

The claim for ¢ ¢ .S follows by a similar argument applying (E). It follows that

T 2 2
vp = 1" Q1 X p; 20N
The expectation is

R 1
E’Y:W Z Qija
i,j(dist)

and the variance is

. 1
Var) = oo D Qull—0u).
i, (dist)
By Bernstein’s inequality,
IP[n(Q) ¥ —Eq| > t] < 2exp (— Ct2>
- Zi,j(dist) Qij +t)

By Assumptions (d) and (5},

Z Qij = pfnaxaonz >n.
4,5 (dist)

Setting

t=1=Cv\/p2a.c0on?log(1/9)
for a large enough absolute constant C' > 0, (H.9) implies that

2
|:Y*E"S/| < T pmaxaolog(l/d)

—n? n

with probability at least 1 — 4.
Next we control the error arising from the plug-in effect of approximating n* by 7.
Lemma H.2. Given D C [n], define

Lp =15y — i7" )1p.

Then under the null and alternative hypothesis,

ne

s L] 5 \[Ngfuecn loz(57)
0

|D|=N

-1

with probability at least 1 — (17\1,) — 2u, °, for an absolute constant ¢1 > 0.

Proof. In this proof, ¢ > 0 is an absolute constant that may vary from line to line.

Given D C [n], let

Lp =1L — i )1p = 150" (" —9)"1p + 15(n* —#)7 1p
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Our first goal is to control

11537 — )]

Define Q = Q — diag(£2). Note that

., A1 o Al A1 A1 Q1 Q1 M
e W  m W e w) e
We study each term of (H.IT)). First note that
(01); = ()i — Qii = phaxon + O(1),
and thus
vo=» (Q1); ~ Y (01); = v, and
lup —v| < 1 (H.12)

Next note that
Var(1(A1-01)) £ Y Qi S [Dlphaco

i€[n],j€D
i#]
By Bernstein’s inequality,
P15 (A1 —Q1)| > ¢] < 2exp N (H.13)
N - |D|p1?naxa0n—’_tL

for all £ > 0. Setting

t=1=/4/c: \/ID|phaconlog(1/0),

we have
1 _ D Tog(1/0
ﬁ\lg(A1—Q1)| <V %( /9) = /(ID|/n) - 1og(1/9) (H.14)

with probability at least 1 — 4.
Next, it is shown in (Jin et al.,[2021, Supplement, pg.100) that for y/log ||0]|1 < @ < |01,

21011

P[|v—v|>xn||91}_1p[|f Vol > =G

} < 2exp(—cx?).
Hence

P|IVF - Vil > 2| < e,
Note that by (H.2) and (H.3),

||9||1 - NOpmax\/& + (n — No)pmax\ﬁ

= = 1.
\/5 Pmaxy/ 0T

By (H:12), we have
IP’[|\/‘7— Vol > x””\/?h] < 2exp(—cz?). (H.15)

Hence with probability at least 1 — 2 exp(—cz2),
\% > Vo-
It follows that

W_\/TT) VeV Vevg — wov

} < 2exp(—cz?).
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Hence with probability at least 1 — § — 2 exp(—cz?),

A1 AL | a0 (IDlpRaaon + /Dl Phaaon 1og(1/5))

1] <
( f r) _— UO
- (|D|pmaxa0n + \/|D|pmaxa0n log(l/é))
A pmmxa0n2
For the last term of (H.TT)),

a1 o1 _ ZiED Qii - prznaxa’|DmS| +p12naxC|DmSC|
Vi Vil Ve VPrax0n?
S pmaxae/\/% S pmax\/E S, 1.

Next we control 15,7. By (H:13) and (H.13),

15AL| _ |D|ppaxon + /[ D]phaxconlog(1/9)
Vo T Vo — €Ty,

with probability at least 1 — § — 2 exp(—ca2). It also holds that

15| =

1501 |Dp;
1T K| | D _ max® D Pmax
1| = S = e Dl B

Next we set z,, = +/log ||0||1 =< +/logvy. Then from and (H:13),

Al Al Vv IOg’UO ! (‘D|p12naxa0n + \/|D|p12naxa0n10g(1/6))

1T ( ) = 2 2
\/V \/’UT) Pmax 0T

(DI To5(1/%)
log o (DIm) + *2EFEEEE),

and

| < |D|p12naxa0n + \/|D|p%naxa0n log(l/d)
~ \/’lTO
_ |Dlpaxcon + v/1D]pfaxconlog(1/0)
pmax\/ aon
= |D|pmaxy/a@0 + /(ID]/n) - log(1/5)
with probability at least 1 — § — 2v; .

By (FLT2). (AT, (FLT9), (H20), and (FL2T)
|Lp| < [1pn*(n* = 9)"1p| + [1p(n* —9)7" 1p|

1157

(H.16)

(H.17)

(H.18)

(H.19)

(H.20)

(H21)

< (IDlpmas/a0 + v/ (IDI/n) - 10g(1/9)) - (v/log vo(ID|/n) + v/(IDI/n) log(1/8) +1).

_Cl

with probability at least 1 — 6 — 2v,

It follows that, setting § = 1/ (1’\’,) above and applying the union bound,

‘gl‘ax |LD|<(NpmaX\/7+,/Ne log ) (\/logvo—i—,/Ne log ) )

with probability at least 1 — () - 2v, “* — 1. Note that

nlog %7 nlog 57

logvg ~ log(p2,., con?)

21=
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N2 ne N
71 g ﬁ 2 = 10g(l)12nax040”2) =

Ne - log ) 2 ev/log vg.

Further, since (N/n) log %¢ < 1 and p2,,con — oo by Assumption (B},

Nlog ﬁ < pfnaxaonQ =
N
; 1Og % 5 V Nplgnaxao =

Nelog % hS \/N3p§naxoz0 log %.

Hence

i (Lol S |/ Npeantog() + Nelog(50) € | [N%68 o)

with probability at least 1 — (]’\L,) " — 205", Recalling that N = Ny[1 + o(1)] yields the statement
of the lemma.

O

Next we study an ideal version of ¢..
Lemma H.3. Define the ideal scan statistic
ésc - |gl|i)1{\’ 1-[[-) (A - 77*77*T)1D,
and corresponding test
@sc =1 |:(£sc > 7::|7
where B
- CN log(%%)
F=CAN?*h | — 22
= o (CV )
and C > 0 is a sufficiently large absolute constant that depends only on C, from Assumption (d).
Then under the null hypothesis,

IP’[|¢~SSC| > %] <nT +exp ( — Nlog %)

and under the alternative hypothesis,

- N
Pllgecl < 7] <7+ ()"

for n sufficiently large, where cq is an absolute constant.

Proof. In this proof, ¢ > 0 is an absolute constant that may vary form line to line.
Define the ideal scan statistic
Qgsc - |g1|ax ]-D(A 77* *T)lD-

Also define
ZD = Z (Aij — Qij)

i,jeD(dist)

First consider the type 1 error. Under the null hypothesis, we have n* = 6 = p and oy = 1. Observe
that

oh =Var(Zp) =Var( Y (A —0:0;)) S 100]17 < phaxN? ~ phas NG
i,5€D(dist)
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By the Bennett inequality, (Vershyninl 2018| Theorem 2.9.2),
t
P[ Z (Ajj — 0;0;) > t] <exp ( — o3 h(2>>, (H.22)
i,jeD 9D
where h(u) = (1 4+ u)log(1l + u) — u.
Next, by Lemma[H1]

with probability n~“0. Also recall that

Vlogn

n

R 1
Ey="% D Qi = Prax®0 = P >
i,j(dist)

by Assumptions (g and (B). It follows that there exist absolute constants g, ¢, C-, > 0 such that
C3Pmax <7 < Cshmas (H.23)
with probability n~. Let £ denote this event. Under £, we have that for C sufficiently large,
- CN log(%e 2N log 2¢
C&NQh_l( og(N)> > U%h_1< og )

AN2 %

It follows from this, the union bound, and the Bennett inequality,

P||bsc| > CANZRT! (C%g(%)ﬂ <P+ P[Iésc > CAN2p! (CNlOg(?V)> 5}

N7 N7
. CN log(2e
<4 Y IP’[|ZD| > CAN?h~! (]\%N)ﬂ
|D|=N "
2N log %¢
<n ot Y IP’{|ZD| > a%h_l((;gN)]
|D|=N 9D
e ne\ N ne
<n 4+ (W) exp(fQNlogN).
This shows that the type 1 error for the ideal scan statistic is o(1).
Next consider the type 2 error. We have by Lemma (E-2),
*, % ) Ose ?
Ay s = Y (A~ 0y) + 15015 = Zs + JosIR0 - ) - 12
i,j€S(dist) 0
Note that by (H:12)
0 2 1*1)2 ||05L||% 0 2 1*1)2
10515 ( ) - —— ~0slli( )-
Vo
Next,
Var(Zs) = > Q{1 = Qi) S 105} = phaxNa ~ phaxNoa

1,j€S(dist)

By Bernstein’s inequality,

1Zs| < /11051 log(1/6) v log(1/0) < |01 log(1/0)

with probability at least 1 — 4. Setting § = (2£)1°, we have

n

ne
1Zs| < ||93H110g(ﬁ)
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with probability at least 1 — (2L)10,

Next we show that

ne
10s11]1 = | 2 log = (H.24)
using (H.7), which we rewrite as
log ne ]()g ne
05?11 — b?| > yN2h T (NO) ~yN2p1 <N) (H.25)
s 1311 =% > 38 (=5 St
where v = p2,. . Recall that ap = 1 under the null, and oy ~ ¢ under the alternative. Let
_ log &7
YN

Consider two cases: (i) u < 0.01, and (ii) « > 0.01. For v’ < h=1(0.01), we have h(u’) < (u’)?,
and therefore h ! (u) < u? for u < 0.01. In this case (H.23) implies

log %% ne
||9s|%|1—b2|>>7N2\/F= YN log -

“05”1 = N\/apmaxv

vN log 5
10s]l1(1 = b%) > 1/7]\’ 2 log
aprnax

since u < 0.01 and ap? ,, < 1. Thus in case (i), (F.24) is satisfied for n sufficiently large.

In addition,

so that

Now consider case (i) where u > 0.01. Note that 2(u) < (u + 1) log(u + 1), and thus

1
5(u +1) <u < h H(u+ 1) log(u + 1)).
Let p = (u + 1) log(u 4 1) > u and observe that
¥ P
+1= > .
“ log(u+1) ~ logp
Hence ) ( 1) Tog( 3
_ U+ oglu +
R ((u+ 1) log(u + 1 = .
(1) log )=z 2 log [(u+1)log(u+1)]
Applying (H.25),
log 7 og N
— + 1) log +
||95||§|1_b2‘>>’7N2' ( TCJ)\;M ) ( 1Og ) ZNlOg%
g (%5 + 1) log (25 +1)]
Hence

log ne
0 1-b? N 2 log
05111 =81 EE 2 10g T
Thus in case (ii), is also satisfied.
Next we have,
- - CN log(2e)
P||gsc| < CAN?R™H | ———F 2=
|psc| < CF ( AN?
- - CN log(e
<neo 4 P[|¢Sc| < CAN2L! (Oi(“) 5]
AN
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< +P[ \wsn%a 1) 4 Zs

_,{CNlog(%¢)
< 2 1 N
= CyNh < YN? )]

CN log(%&
<o+ | 251 2 10511 - )] - oyt (SEOER))

where C' > 0 is a sufficiently large absolute constant. In the second line and third lines we use
the event £ from (H.23), and in the last line we use the triangle inequality. By (H.7), we have
conservatively that

CN log(%7)

2 2 271 —1
s - #2)] - ot (S0

1 ne
) > 2165131 = 6%)] > [16sl1 log 57
for n sufficiently large. Thus for n sufficiently large,

CN log(2¢)

P||pse| < CANZ2H!
|Psc| < CF ( N

1
)] = pizsl > gl ioslia - )

N
<n7% 4 (—)10.
ne
Therefore the type 2 error for the ideal scan statistic is also o(1). O

Lemma H.4. Let ¢, denote the scan statistic defined in (HA4), and let 7 denote the random threshold
defined in (H.6). Then under the null hypothesis,

-1
P(|¢sc| > 7] < (;}) +v5 +n"% +exp (— Nlog %),
and under the alternative hypothesis,for n sufficiently large we have

—1
P[|¢5¢| < 7A'j| < (;) +U601 4% 4 (%)10.

Proof. We show that the plug-in effect is negligible compared to the threshold and signal-strength.

By Lemma[H:2]
max |Lp| < 4/ Niyl g
\D\a)I(V| ol o Og(wo)

with high probability. Since h(u) < u? for u > 0, it follows that

h( NS’vlog(fv’i)) _ Nivlos(§5)  log i
VN2 NG AN

Under the null, we have by Lemma [H.3] that

Pllgsel = 7] < P[lsel = 7 — ‘gl‘i}J(\JLD”
-1 * ne ne
n e ~ w2, 1 C"Nlog(%7) o, 1 [ log 2¢
< 1 > — — °oMNZ)
< (N> + g +P[I¢sc > C*4N?h ( N7 W g

-1
n —C —C ne
S(N) +vg?t +n °+exp(leogW)

for C* > 0 a sufficiently large absolute constant. It suffices to take C* > 2C.
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Under the alternative hypothesis, we have by Lemma[H.3]that

Pllgsel < 7] < P[I0wc] < 7+ max [Lol]

—1 * ne ne

n e ~ w2, —1 [ C"Nlog(%7) o, 1 (log %
1 * ne
n e ~ a2y —1 C NlOg(W)
S(N) + vy ¢ +P[¢SCISQC YN*“h (WNQ

-1
n . _ N
S(N) + vy 1+n(°+(n )10

€

for n sufficiently large.

Observe that Theorem 2.5]follows directly from Lemma [H.4]

I PROOF OF THEOREM [2.6| (COMPUTATIONAL LOWER BOUND)

In this section, we provide the proof of Theorem For convenience, we denote b = M, d=

n—2N
%. Under Hy, all upper triangular entries A are i.i.d. Bernoulli distributed with probability

d. Then an orthonormal basis of the adjacency matrix of graph D is

A —d
fr(A) = H w2
i<j:(i,5)er V d(1 —d)
Here,I" C {(7,7) : 1 <i < j < n} takes all subsets of all upper triagonal entries of A. Denote |T'| as
the cardinality of T and B(D) = {T" C {unordered pairs (i, j) : i # j,i,7 € [n]},T # 0,|T| < D}
as all subsets of off-diagonal entries of A of cardinality at most D. By Proposition[[.T|and the property
of the orthonormal basis function of A,

sup En, f(A) = |[LR<P — 1]
f is polynomial; degree(f)<D
]EHO f(A):O,VaIHO (A):l

1/2 1/2
Y B fr(AERPA) -0y ST (B fr(A)LR(A))?
reB(D) reB(D)
1/2 2 1/2
= Em (fr(A)°*p =
F€§(D) F€§(D) (z!_)[erv d(l —d

Here, (*) is due to Ep, fr LRSP = Ep, fr LR by the property of projection and Eg, fr(A) = 0 for
any I' € B(D). Therefore, to establish the desired computational lower bound, we only need to prove

2

=o(1
under the described asymptotic regime. For convenience, we denote
a—d b—d c—d
NVt BT var-a P Va4
We can calculate that
(n—N)*(a—c) b_d:_(an)N(a—c)

a-d= n(n—2N) ' n(n—2N) ' - n(2-2N)’
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and

c—d=-—2 (b—d)z(

N 2
p— N) (a—d). (L1)

n —

cln=N)—aN ~ and N < n/3, we know a < ¢(n — N)/N and

Since b = =——

c(n—N)2—aN? _ ¢(n—N)>—=N(n—N)c
n(n — 2N) = n(n — 2N) = (n -

N)/n-c¢>2/3-c.

c(n—N)?>—aN?

n(n—2N) and

Under the asymptotic regime of this theorem, we have d =

(n—N)%(a—rc) a—c

P o) al—d)

1.2)

i.e., there exists constant § > 1 such that § ¢ < p; < de. By (1), we have p3 = —N/(n— N)ps =
N?/(n — N)?p;y. Forany fixed ' C {(4,j) : 1 <i < j <n},

A has two communities assigned by IT

=Eng<E
zylel—‘ \ 1_ ! z%_[El—‘ \

:Enp\lmK@m .p\21"mK®K | .p:\gFﬁK ®K°| _ Ep H p1-(=N/(n— N))ﬂi+7rj72}

(i,9)€r
Tl i 2, gyer(Titmj=2) o i > jyer(mitmi—2)
_pl n— N = pl — N
mi—1)- i’ ;) el o, : -
=pm~ﬁ _N O\ T D) erd (i)pm-ﬁ ﬁ +n—N _N A\ GNert |
! iy \ N ! Pl n n n—N

Here, (a) is because P(m; = 1) = N/n; P(m; = 2) = (n — N)/n. Thus, the following fact
holds: if there exists a node 4 that appears exactly one time in I, i.e., [{j’ : (,7) € T'}| =
Aii=d_ _ (). On the other hand, for all I" that each node appear zero times or at least

Er I gyer Vd(1—a)

two times, we have

|{4:7 appears at least 2 times in I"}|
w I1 - Pl {N+n—N<—N )2} o
(”)GF ‘/ n n n—N
| IN |{4:7 appears at least 2 times in I"}|
<p1 (n) :

Finally, we denote

By(D) ={T € B(D) : each node in [n] appears zero time or at least 2 times} ,

m(T") = |{i : i appears in some pair of I'}|.
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For any I' € By(D), we must have m(T’ ) < T < my( —1)/2. Then,

I)(m
2
Z H . Ay —d
reB(D) (” yer \/17— FGBO(D (” Jer d(l —d)
<

2T IN 2|{4:% appears at least 2 times in '} |
by -\ —
n

mQPQQ(QN)Q D max{ mpl (mp )D/\m(m 1)/2} 2N)2m
< Z Z rnlll .pm s Z nm

max{mp?, (mp?)M} . 2\"
DZ( (s o) - 2 0

m=2

Here, M = max,,>1 W < +/D/2 —1; (a) is because the number of ' € By(D) with
m(I') = mand |T'| = gisatmost () - m?; (b) is due to the asymptotic assumption and ([:2), which
leads to N

NG (prvpl") <n7c.
We have thus finished the proof of this theorem. [

Proposition 1.1 (Proposition 1.15 of [Kunisky et al.|(2019)). Given data A, consider the simple

hypothesis testing problem: Hg versus Hy. Let the likelihood ratio function be LR(A) = I; Zl Efxg.
0

Define || f|| = /Emu, f2(A) and f<P as the projection of any function f to the subspace of polyno-
mials of degree at most D, i.e., f<P = argming is poyynomiall| f — gl|. Then for any positive integer D,
degree(g)<D
we have
LRSP(A) -1| = Ex, f(A);
ILREP(A)~ 1] = | max | Ea,f(4)
En, f2(A)=1
Epn, f(A)=0
LR=P(A) -1
T oD A o — Argmaxy.egree <DEH f(A)
[ER=P(A) 1] psep<pBan
0
En, f(A)=0

J PROOF OF THEOREM (POWER OF EST)

The EST statistic is defined to be
¢EST = Ssup Z Azya

|‘<y1j€S
and the EST is defined to be ")
psT = 1[¢per > €],
where v, e are relatively prime and satisfy
w
P —— < - < 6.
1-5
Such v and e exist because
— <,
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by assumption. Furthermore, we have
v<e

since w, d € (0,1).
To prove the statement, we require some preliminaries. Let G(n, p) denote an ErdGs-Rényi graph with

parameter p. A graph H with v vertices and e edges is said to be balanced if for all (not necessarily
induced) subgraphs H' C H with v vertices and e’ edges, it holds that

efv>ce/v.

Next, the power of EST hinges on two well-known facts from probabilistic combinatorics. The first
concerns the appearance of an arbitrary graph H in G(n, p).
Theorem J.1 (Adapted from Theorem 4.4.2. of |Alon & Spencer| (2016)). Let H denote a graph

with v vertices and e edges. Then if p < n~"/¢, the random graph G(n,p) does not have H as a
subgraph, with high probability as n — oo.

On the other hand, if H is balanced and p > n="/¢, the random graph G(n,p) contains H as a
subgraph, with high probability as n — oo.

Theorem J.2 (Rucinski & Vince|(1986);[Catlin et al.|(1988)). There exists a balanced graph with v
vertices and e edges ifand only if 1 <v—1<e < (g)

Now we continue the proof. Recall that v and e are integers chosen such that ﬁ <wv/e <.

Type 1 error: Observe that

and thus

a:a5+b(1—e):a5+(1—5)(c~n

N N - N N? - N
:a(—(l—s) )+(1—6)': c=—a-— =+ (1—¢) n ¢~ .,

n n—2N
where above we use that ae < c.
Thus under the alternative, A is distributed as Erd6s-Rényi with parameter
a~c=n"%<n e,

by our choice of v and e. By the first part of Theorem [J.1] no subset of size v of A contains more
than e edges, with high probability as n — oco.

To be more precise, there are a finite number of graphs Hi, ..., Hy with v vertices and at least e
edges, where L is a constant depending only on v. For each graph H;, Theorem[J.T|contains H; as a
subgraph with probability tending 0 as n — co. The type 1 error of EST thus vanishes by the union
bound.

Type 2 error: Let H denote a balanced graph on v vertices and e edges, whose existence is guaranteed
by Theorem Consider the induced subgraph on Cy, the smaller community, which is an Erd&s-
Rényi random graph on IV vertices with parameter a = n~“. By our choice of v and e, we have

a=n"Y=N"T7 3> N Ve

By Theorem[J.1] C; contains a copy of H with high probability. Since H has e edges, we conclude
that ¢\’ > ¢, and thus the null is rejected with high probability as n — cc.
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