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The appendix is organized as follows: Section 1 details the collection method and distribution of the32

SuperCon3D dataset. Section 2 presents more details of disordered graph and models. Section 333

elaborates on the implementation specifics of both property prediction and generative models. The34

identification of potential superconductors and their corresponding DFT computational outcomes35

are presented in Section 4. A systematic approach for the design of practical superconductors is36

expounded in Section 5. We present the limitation of our data and models in Section 6. Section 737

provides the repository link for the associated coding resources.38

1 SuperCon3D data details39

We extracted approximately 33,000 superconductors, including their chemical formulas and critical40

temperatures, from the SuperCon database1. After eliminating duplicates and non-superconductors,41

we retained 11,949 superconducting materials. Over 200,000 ordered and disordered crystal structures42

were collected from the ICSD database. We then matched the 11,949 SuperCon entries with 208,42543

ICSD entries based on chemical composition, space group and lattice parameter. Specifically, we first44

performed an initial matching based on chemical composition, which may result in one-to-one or45

one-to-many matches. We then further refined the matches using additional information provided46

in the literature, such as space groups and lattice constants. Additionally, Tc values and structural47

data for hydrogen-enriched superconductors were obtained from literature sources. Ultimately, we48

compiled 1,578 superconductors with both Tc and crystal structure information.49

Figure 4: The data distribution of SuperCon3D dataset. (a). The probability of crystals containing a
given element in the dataset. (b). The distribution of ordered and disordered superconductors. (c).
The distribution of superconducting types. (d). The distribution of Tc values.

We plot the data distribution of SuperCon3D dataset in Fig. 4. In dataset, there are 83 different50

elements, which encompass most of elemental types found in the periodic table. The most frequent51

1https://github.com/vstanev1/Supercon
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elements are O, Cu, La, Ba, Y as shown in Fig. 4a. Fig. 4b depicts the order and disorder distribution.52

We classify superconducting materials according to cuprate, H riched, heavy fermion, iron based,53

and others, and distribute the types in Fig. 4c. The distribution of the Tc values of superconducting54

materials is shown in Fig. 4d. The SuperCon3D dataset can be obtained from the source code package,55

and the access address is proveide in Sec. 7.56

2 Methods57

2.1 Interstitial disorder58

Interstitial disorder (ID). ID refers to the presence of atoms occupying interstitial sites within a59

crystal lattice, which are not part of the regular lattice positions. These interstitial atoms introduce60

additional disorder into the structure. The total occupancy, including both regular lattice sites and61

interstitial sites, can be expressed as:62

wi,1 +wi,2 + · · ·+wi,mi +wi,interstitial = 1 +∆ (1)

where wi,mi represents the occupancy weight of mi at site i, wi,interstitial represents the occupancy63

weight of interstitial atoms at site i, ∆ is the excess occupancy due to interstitial atoms, with ∆ > 064

indicating the presence of ID. In this case, our disordered graph encoding method remains effective.65

ID mixed with substitutional disorder (SD) and positional disorder (PD), would result in more new66

types. However, given the lack of observation of ID in the SuperCon3D dataset, we will not elaborate67

further on it.68

2.2 Gate layer69

We employ the gate activation mechanism Weiler et al. [2018] for the equivariant activation function.70

Standard activation functions are applied to type-0 vectors. For higher order vectors (L >0), we achieve71

equivariance by multiplying them with non-linearly transformed type-0 vectors. Specifically, for an72

input x comprising non-scalar CL type-L vectors (where 0 < L ≤ Lmax) and (C0 + PL

∑Lmax
L=1 CL)73

type-0 vectors, we apply SiLU Elfwing et al. [2018] to the first C0 type-0 vectors and a sigmoid74

function to the remaining PL

∑Lmax
L=1 CL type-0 vectors. This process generates non-linear weights,75

which are then used to scale each type-L vector. After gate activation, the number of channels for76

type-0 vectors is reduced to C0.77

2.3 The denoising method of DiffCSP78

We introduce the denoising model ϕ(L,F ,A, t) as part of the original DiffCSP model, which is79

related to the Transformer-based Architecture section in the main text.80

Node representations in the s-th layer, H(s) = [h
(s)
1 , · · · ,h(s)

N ], are initialized as h
(0)
i =81

ρ(fatom(ai), fpos(t)), combining atomic embeddings fatom and sinusoidal positional encoding fpos Ho82

et al. [2020], Vaswani et al. [2017], processed by MLP ρ.83

Incorporating EGNN Satorras et al. [2021], the message-passing in layer s is:84

m
(s)
ij = φm(h

(s−1)
i ,h

(s−1)
j ,L⊤L, ψFT(fj − fi)), (2)

m
(s)
i =

N∑
j=1

m
(s)
ij , (3)

h
(s)
i = h

(s−1)
i + φh(h

(s−1)
i ,m

(s)
i ). (4)

Here, φm and φh are MLPs. ψFT executes Fourier Transformation on relative fractional coordinates,85

ensuring periodic translation invariance.86
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Following S message-passing layers, lattice noise ϵ̂L is computed as follows:87

ϵ̂L = LφL

( 1

N

∑
i = 1Nh

(S)
i

)
, (5)

with φL shaping output as 3× 3. For fractional coordinate score ϵ̂F , we have:88

ϵ̂F [:, i] = φF (h
(S)
i ), (6)

where ϵ̂F [:, i] is the i-th column, and φF operates on the final layer’s output.89

The inner product L⊤L in Eq.(2) ensures O(3)-invariance, as (QL)⊤(QL) = L⊤L for any orthog-90

onal Q ∈ R3×3. This guarantees the O(3)-invariance of φL in Eq.(6), and L left-multiplied with φL91

ensures O(3)-equivariance of ϵ̂L. Thus, ϕ(L,F ,A, t) satisfies the proposed properties. More details92

are described in Jiao et al. [2023].93

3 Hyper-parameters and training details94

In this section, we provide the training details of property predicting models and generative models.95

3.1 Property predicting models96

We employ the codebase from SchNet Schütt et al. [2018]2, CGCNN Xie and Grossman [2018]3,97

DimNet++ Gasteiger et al. [2020]4, SphereNet Liu et al. [2022]5,ALIGNN Choudhary and DeCost98

[2021]6, Matformer Yan et al. [2022]7 and MEGNet Chen et al. [2019]8 for baseline implementations.99

All models are conducted 10-fold experiments based data splited method of 8:1:1. The training details100

of each model are as follows:101

3.1.1 SchNet.102

Employing the SchNet framework, our method integrates six 64-dimensional message passing layers.103

SchNet was trained over 500 epochs, using a 5e-4 learning rate and 64 batch size. We optimized104

using Adam with 1e-5 weight decay, and a one-cycle learning rate scheduler. Atomic radii were105

determined by the 12th smallest distance between an atom and its neighbors.106

3.1.2 CGCNN.107

A batch size of 64 is employed, and the model consists of three layers of CGCNN message passing108

layer with 128 hidden dimensions. The training process utilizes the Adam optimizer. Initially, a109

learning rate of 1e-3 is set for the 200 epochs. During the training, a radius cutoff of 8.0 is applied to110

all crystals, and the 32 nearest neighbors are selected.111

3.1.3 DimNet++.112

In our approach, we apply a radius cutoff of 8.0 to all crystals and select the 12 nearest neighbors.113

To represent each node, we utilize Gaussian radial basis function (RBF) kernels. This results in a114

64-dimensional embedding for each node. To optimize the model, we employ the Adam optimizer115

with a weight decay of 1e-6. The model is trained for 500 epochs using a batch size of 128.116

2https://github.com/atomistic-machine-learning/SchNet
3https://github.com/txie-93/cgcnn
4https://github.com/gasteigerjo/dimenet
5https://github.com/divelab/DIG
6https://github.com/usnistgov/alignn
7https://github.com/YKQ98/Matformer
8https://github.com/materialsvirtuallab/megnet
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3.1.4 SphereNet.117

In our method, we utilize multi-graph representations of materials as inputs to SphereNet models.118

The input embedding size is set to 256, and the output embedding size is set to 64 for both the 8 LB2119

and LB blocks. A cutoff distance of 6 is used. For each model, we initially perform a warm-up on120

the learning rate, starting at 1e-3. Subsequently, two learning rate strategies—ReduceLROnPlateau121

and StepLR—are employed for training. In the StepLR strategy, the learning rate is decayed by a122

specified ratio every fixed number of epochs, known as the step size. The batch size is set to 32, and123

training is conducted for 300 epochs.124

3.1.5 ALIGNN.125

ALIGNN is trained for 150 epochs with a learning rate of 5e-4 and a batch size of 64. The model126

architecture follows the original paper, consisting of four GCN layers and four ALIGNN layers. The127

atom feature dimension is set to 92, and the edge feature dimension is set to 80. The training process128

utilize the Adam optimizer with a weight decay of 1e-5. Additionally, a one-cycle learning rate129

scheduler is employed. For all crystals, a radius cutoff of 8.0 is applied, and the nearest 12 neighbors130

are selected.131

3.1.6 Matformer.132

In constructing the crystal graph, we follow a specific procedure. The radius for the neighborhood133

of a given atom is determined by the 12-th smallest distance between that atom and its neighboring134

atoms. All atoms within this radius are considered part of the neighborhood for the given atom. Each135

node is then represented by mapping its atomic number to a 92-dimensional embedding using the136

CGCNN atomic embedding. This embedding is further transformed into a 128-dimensional vector137

through a linear transformation. Similarly, for each edge, we utilize a 128-dimensional embedding138

mapping of the Euclidean distance. This mapping is achieved by employing 128 radial basis function139

(RBF) kernels with centers ranging from 0.0 to 8.0. During the training process, we employ the140

Adam optimizer with a weight decay of 1e-5. Additionally, a one-cycle learning rate scheduler is141

utilized. A batch size of 64 is employed and trained for 150 epochs.142

3.1.7 MEGNet.143

To construct the crystal graph, we employ three layers of the MEGNET message passing with with144

64,32,16 hidden units, and utilize the Set2Set readout function. Following the configuration described145

in the original paper, MEGNET is trained for 200 epochs using a batch size of 64 and a learning rate146

of 1e-3. The Adam optimizer with a weight decay of 1e-5 is used for optimization, and a one-cycle147

learning rate scheduler is implemented. A radius of 8.0 is set for all crystals.148

Table 7: Hyper-parameters for SODNet.

Hyper-parameters Value or description

Batch size 32, 64, 128
Number of epochs 150, 300
Number of attention heads 4, 8
Dropout rate 0.0, 0.1, 0.2
Cutoff radius () 8, 12, 16
Number of radial bases 128
Number of transformer blocks 6
Weigh decay 0.5×10−3, 1×10−3

3.1.8 SODNet149

During training, we use a batch size of 64 and trained the model for 150 epochs. A radius of 8.0150

is applied to define the neighborhood of each crystal. We utilize 128 basis functions to capture the151
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Table 8: Recently discovered superconductors (not included in the training data).

No. Material Type T exp
c (K)

1 CaH6 @172 GPa Order 215 Ma et al. [2022]
2 Ti @248 GPa Order 26 Zhang et al. [2022]
3 CsV3Sb5 Order 2.3 Ge et al. [2022]
4 Cs(V0.93Nb0.07)3Sb5 SD 4.45 Li et al. [2022]
5 Zr4Rh2O Order 3.73 Watanabe et al. [2023]
6 Zr4Pd2O Order 2.73 Watanabe et al. [2023]
7 LaFeSiO0.9 PD 10 Hansen et al. [2022]

features of the crystals. To control overfitting, a weight decay of 5e-3 is applied. The learning rate is152

set to 5e-5, with a minimum learning rate of 1e-6. We employ the AdamW optimizer for efficient153

optimization. The model architecture consisted of 6 Transformer blocks, each with 8 attention154

heads. This allowed the model to effectively capture the relationships and dependencies within the155

crystal structures. Irreps features consist of channels of vectors with degrees up to Lmax. We denote156

CL type-L vectors as (CL, L) and C(L,p) type-(L, p) vectors as (C(L,p), L, p). Brackets denote157

concatenations of vectors. we set irreps features containing 512 type-0 vectors and 128 type-1 vectors,158

which can be expressed as [(512, 0), (128, 1)].159

Table 7 summarizes the hyper-parameters for the model.160

Table 9: The predicted potential candidates of high-Tc cuprate and h-riched superconductors. Candi-
dates of high confidence are marked in gray.

Type ICSD code Chemical formula O/SD/PD Tc (K) Reported SC.

Cuprate

68675 CuO2Sr0.075 PD 93.42 CuO2Sr
91K Takahashi et al. [1994]

50774 Ca0.779CuO2Y0.041 PD 65.70

50773 Ca0.82CuO2 PD 64.72 CaCuO2

89K Schön et al. [2001]

68217 Ba2CuO3 O 59.89 Ba2CuO3.2

70K Li et al. [2019]
67394 Ba2CuIO2 O 43.80 -

H-riched

187375 ErH3 O 193.03 -
635802 GdH3 O 143.19 -
623739 H2.57Co0.14U0.84 PD 136.76 -
42009 TbH2.25 SD 135.13 -

424154 H6Mg1.02Ti1.98 O 134.34 -
230140 Li0.14Y0.86H2.7 PD 125.94 -
93250 YFe2H5 PD 125.00 -

3.2 Generative models161

We apply the codebases from CDVAE Xie et al. [2022]9, SyMat Luo et al. [2024]10 and DiffCSP Jiao162

et al. [2023]11 for baseline implementations. All models are conducted experiments based data163

splited method of 6:2:2. For pretraining, we obtain crystal structures from the databases of Materials164

Project12, Open Quantum Materials Database13, Matgen14, and ICSD15. Molecular crystals are165

excluded from the dataset. Subsequently, we perform deduplication on all crystal structures, resulting166

in approximately 1.14 million unique structures. The training specifics for each model are outlined167

below:168

9https://github.com/txie-93/cdvae
10https://github.com/divelab/AIRS
11https://github.com/jiaor17/DiffCSP
12https://next-gen.materialsproject.org
13https://www.oqmd.org
14https://matgen.nscc-gz.cn
15https://icsd.products.fiz-karlsruhe.de/
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3.2.1 CDVAE.169

For CDVAE model, We replaced the original DimNet++ Gasteiger et al. [2020] with SODNet to170

ensure a fair comparison with other generation models. Regarding the decoder, we utilize the171

GemNet-T Gasteiger et al. [2021], which consists of 3 layers and 128 hidden states.172

3.2.2 SyMat.173

For the SyMat model, the property predictor employs SphereNet, which consists of four message-174

passing layers with a hidden size of 128. The VAE decoder utilizes MLP models composed of175

two linear layers with a ReLU activation function between them and a hidden size of 256. During176

training, we use a learning rate of 0.001, a batch size of 128, and run for 1,000 epochs. We assign177

different weights to various loss terms: 1.0 for atom type set size, 30.0 for atom types, 1.0 for the178

number of each atom type, and 10.0 for lattice items. Additionally, we apply a weight of 0.01 for the179

KL-divergence loss and 10.0 for the denoising score matching loss.180

3.2.3 DiffCSP.181

We employ a configuration of 6 layers with 512 hidden states for datasets other than specified182

ones. The dimension of the Fourier embedding is set to 256. To control the variance of the DDPM183

(Diffusion-Driven Probabilistic Modeling) process on Lt, we utilize the cosine scheduler with 0.008.184

Additionally, we use an exponential scheduler with σ1 = 0.005, σT = 0.5 to control the noise scale185

of the score matching process on Ft. The diffusion step is set to 1000. Our model is trained for 1000186

epochs, employing the same optimizer and learning rate scheduler as CDVAE.187

3.2.4 DiffCSP-SC.188

We utilize SODNet as the property predictor, and the parameter configuration aligns with Table 7.189

The parameters for the diffusion process also follow the original DiffCSP setup. The difference lies190

in the message passing layer, where we employ a transformer. Specifically, we use a 512-dimensional191

hidden state encoding and set the number of heads to 8.192

3.3 Pre-training dataset193

we pre-trained our model on approximately 1.14 million unique 3D crystals sourced from existing194

databases, including Project16, OQMD17, Matgen18, and ICSD19.195

4 Potential superconductors196

In this section, we initially validate our model using the Tc values of superconducting materials197

reported in recent literature, noting that these data points are not included in the SuperCon3D dataset.198

Subsequently, we present the potential superconducting materials using property prediction model199

based on SODNet and generative model based on DiffCSP-SC, respectively.200

4.1 Real-world superconductors validation201

As shown in Table 8, we have collected the structures of superconducting materials along with their202

corresponding Tc values, as reported in the latest literature over the past three years. This includes a203

total of seven superconducting materials with both ordered and disordered structures.204

16https://next-gen.materialsproject.org
17https://www.oqmd.org
18https://matgen.nscc-gz.cn
19https://icsd.products.fiz-karlsruhe.de
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Table 10: The predicted potential candidates of high-Tc heavy-fermion, iron-based and others
superconductors. Candidates of high confidence are marked in gray.

Type ICSD code Chemical formula O/SD/PD Tc (K) Reported SC.

Heavy-Fermion

168466 LaMg12 O 23.83 -
161141 LaMg11.196 Al0.804 SD 21.13 -
69897 C2Ce0.75U0.25 PD 11.88 -
647197 Np1.1Pu0.9 SD 11.75 -
614236 TmFe4B O 10.81 -

Iron-based

427163 Ba0.83Fe2Rb0.17As2 SD 23.21 Ba0.6Fe2Rb0.4As2
37.5K Peschke et al. [2014]

188347 BaFe2As2 O 23.27 -
39530 FeCl7Te O 19.57 -
633401 FeSb0.4Te1.6 SD 16.83 -

165523 As2Ba0.777Fe2-
K0.126Sn0.096

PD 15.55 -

Others

96031 Ba1.1432Co0.1429-
O3.0009Rh0.8574

PD 202.12 -

58639 Ba0.515Ca0.485 SD 160.95 -
616160 BaSr SD 123.51 -
106111 SrTl2 O 63.52 -
428028 Ge0.6Sb0.27Te SD 47.48 -

4.2 Screening based method205

We apply our superconductivity predicting model for screening the entire ICSD database. Potential206

superconductors are show in Table 9 and 10. To elaborate on the candidates with high confidence,207

we provide the subsequent details:208

1. CuO2Sr0.075 and Ca0.82CuO2 exhibit disordered structures, and their respective parent209

compounds demonstrate superconductivity Takahashi et al. [1994], Schön et al. [2001].210

Consequently, these disordered structures are more likely to be superconducting materials211

as well.212

2. Ba2CuO3.2 exhibits superconductivity with a Tc of 70K Li et al. [2019]. Its corresponding213

parent structure Ba2CuO3 may also be a superconductor, albeit with a comparatively lower214

probability.215

3. Ba0.83Fe2Rb0.17As2 and Ba0.6Fe2Rb0.4As2 share the same parent structure and have closely216

related compositions. Given that Ba0.6Fe2Rb0.4As2 exhibits superconductivity with a217

Tc of 37.5K Peschke et al. [2014], it is highly likely that Ba0.83Fe2Rb0.17As2 is also a218

superconducting material.219

4.3 Interpretability on SODNet220

We attempt to interpret our SODNet predictor by determining which feature(s) a given model weighs221

most heavily when making the prediction. As shown in Fig. 5, we extract the node embedding of the222

whole graph in the last layer of SODNet, and present the contributions of each atom to Tc values. We223

can observe that the B sites contributes more significantly to the property of Tc compared to the Mg224

site in Fig. 5 (a-d). Moreover, conducting atomic doping and atomic translation on the cation Mg225

results in a decrease in Tc with 39.0 K → 38.4 K → 34.3 K. This phenomenon demonstrates that226

attempting to enhance the Tc value by disrupting the symmetry of Mg site within the lattice may227

be not workable. Another case of cuprate superconductor has shown in Fig. 5 (e-f), there are three228

types of oxygen sites that contribute significantly to the Tc value: Hg-O-Hg (PD disorder), Cu-O-Cu229

(order), and Hg-O-Ba (order). Among them, the contribution of disordered Hg-O-Hg is the greatest,230

indicating that disrupting the symmetry of oxygen atoms within the lattice might potentially further231

enhance the property of Tc.232

9



Table 11: The novel high-Tc cuprate and h-riched superconducting candidates. Candidates of high
confidence are marked in gray.

Type Index Chemical formula Tc (K) Reported SC.

Cuprate

1 Ba2CuCl2O2 33.56 -
2 Tl2Ca2Ba2Cu3O10 14.09 -
3 Ba3CaLa2GdCu7O17 10.12 -
4 YCu3O7 9.73 -
5 BaCaCu3O7 9.65 -
6 Cu7BO16 7.87 -
7 CsMgCu3BiAuO8 7.82 -

H-riched

8 TbH3 164.33
TbH3

20K Hai et al. [2021]
Calculated by DFT

9 SeH3 139.89
SeH3

113K Novakovic et al. [2023]
Predicted by ML

10 CaGe2H9 103.55 -
11 Ca2MnCrH6 58.07 -

12 SbH3 46.42
SbH3

20K Fu et al. [2016]
Calculated by DFT

13 MgCoCuH42CS2N16 44.27 -
14 Rb2Ca2H4 13.05 -

Figure 5: Contribution of each atom to Tc value. (a). Feature relative importance of each site in three
type MgB2 superconductors. Snapshots of (b) SD Mg0.9Al0.1B2, (c) PD Mg0.98B2, and (d) ordered
MgB2 crystals. Here, B Mg and Al sites are colored by light pink, atrovirens and dark atrovirens.
(e). Feature relative importance of Ba2CuHgO4.27 superconductor. (f). Snapshot of Ba2CuHgO4.27

superconductor (Ba: green, Cu: blue, Hg: pink, O: red).
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4.4 Generative superconducting candidates233

We apply our generative model for generating new superconducting candidates. We present the crystal234

structures of the 20 superconducting candidate materials from Table 6 in Fig. 6. Additionally, we235

display the 32 superconducting candidate materials in Table 11 and 12, arranged in descending order236

of predicted Tc values. The structures of all superconducting candidate materials can be obtained237

in the source code package. We collected superconducting materials that have been reported and238

observed that five candidates are more likely to be superconducting materials. Among them, four can-239

didates obtained Tc through theoretical calculations, and another material displayed superconducting240

properties through doping. Specific descriptions are as follows:241

1. SeH3 exhibited a Tc of 113K as predicted by machine learning Novakovic et al. [2023],242

corroborated by DFT calculations indicating 110K Zhang et al. [2015].243

2. DFT methods calculated the Tc of TbH3, SbH3, and KFe2As2 as 20K Hai et al. [2021],244

Fu et al. [2016], Ptok et al. [2020]. Since H-riched materials belong to conventional super-245

conductors and show high Tc under high pressure, but the conditions for wet experimental246

synthesis are very stringent. Therefore, it can further verify whether superconducting mate-247

rials are superconducting materials by combining DFT methods, and reduce the research248

and development cycle of superconducting materials.249

3. The parent compound SmFeAsO underwent a superconducting Tc around 54 K Azam et al.250

[2023], following fluorine (F) doping at the O-site in the SmO layer. This case can provide us251

with a method that we can use DiffCSP-SC’s generative model to generate superconducting252

parent structures, and then improve the Tc of materials by doping, or transform materials253

without superconducting properties into superconducting materials.254

Table 12: The novel high-Tc heavy-fermion, iron-based and others superconducting candidates.
Candidates of high confidence are marked in gray.

Type Index Chemical formula Tc (K) Reported SC.

Heavy-Fermion

15 Th 43.61 -
16 Ba3Pu 44.81 -
17 ThC3 17.96 -
18 Lu 4.86 -
19 Yb3In 1.04 -

Iron-based

20 BaFe2Se2 11.99 -

21 SmFeAsO 4.42 SmFeAsO0.8F0.2
54K Azam et al. [2023]

22 KFe2As2 4.23
KFe2As2@30GPa

20K Ptok et al. [2020]
Calculated by DFT

23 NdFeAsF 4.13 -
24 FeSe 3.36 -

Others

25 Ba3Ca 80.04 -
26 Ba2Se 60.70 -
27 Ba 52.26 -
28 Mg3B 43.96 -
29 BaCl2O 35.72 -
30 Ba2CaB 32.77 -
31 Sb2Ba4 22.70 -
32 V3Si11 16.28 -

4.5 DFT calculations255

We conduct DFT calculation using the Vienna ab initio package (VASP)Wang and Pickett [1983],256

Chan and Ceder [2010]. The structures are fully relaxed using the generalized gradient approximation257

(GGA)Perdew et al. [1996] of the SCAN meta-GGA functional, employing the pseudopotentials258

of the projector augmented wave (PAW) methodBlöchl [1994]. A plane wave cutoff of 500 eV259

is employed for all simulations. Brillouin-zone integrations are performed using the τ -centered260

Monkhorst-Pack (MP) schemeMonkhorst and Pack [1976] . We initiate the calculations with a261
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Figure 6: The geometric structures of novel superconducting candidates in Table 6.
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Figure 7: The electronic structures of novel superconducting candidates.

k-point meth featuring a dense sampling density of 2π×0.04. The convergence criteria for energy262

and force is set to 0.1 meV and 0.001 eV/Å, respectively.263

The van Hove singularity (VHS) is a notable occurrence in condensed matter physics, specifically264

in the density of states (DOS) of a material. It manifests as a distinct peak or divergence in the265

DOS at a particular energy level. We select materials from Table 11 and 12 for DFT calculations266

and display their band structures and density of states (DOS) in Fig. 7. From the density of states267

(DOS) plot, we can observe the van Hove singularity (VHS) phenomenon. Additionally, we can268

also observe the presence of flat bands in the band structures of materials such as Ba2CuCl2O2, Lu,269

Ba4Sb2, and others. The integration of flat bands in the electronic architecture, along with the Van270

Hove Singularities (VHS) in the Density of States (DOS), markedly amplifies the likelihood of these271

candidates being superconducting materials.272

5 Pipeline for designing real-world superconductors.273

Fig. 8 presents a pipeline for designing SC., validating our dataset and models for real-world scenarios.274

We initially generate potential, ordered superconducting structures using the DiffCSP-SC model275

trained on the SuperCon3D database. Candidate materials are selected based on Tc values predicted276

by SODNet, followed by DFT verification to confirm the presence of superconducting electronic277

structures, such as VHS. Subsequently, selected candidates undergo wet lab synthesis, with Tc278

values characterized and recorded in the SuperCon3D database. Further, if a superconductor is279
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discovered, methods such as doping, which may transform ordered structures into disordered ones,280

are explored to enhance the Tc value. SODNet is employed to investigate the relationship between281

disordered structures and doping ratios, aiming to design optimal doping proportions for experimental282

verification. These experimental outcomes are also recorded in the database. Continuous expansion283

of the database will incrementally improve the accuracy of the DiffCSP-SC and SODNet models284

trained on this dataset, creating a reinforcing cycle of enhancement.285

Figure 8: Flowchart for designing novel SC materials.

6 Limitations286

Our SuperCon3D dataset, featuring experimental structures and Tc values, paves the way for287

real-world superconductor applications. Combined with SODNet, which addresses disordered graph288

issues previously overlooked by the AI community, and DiffCSP-SC for novel designs. However,289

the accuracy of data-driven models remains constrained by the collected superconducting dataset.290

As Figure 4 in the Appendix shows, data unevenness and elemental skewness (especially in Cu291

and O) may bias the model. Additionally, as Table 8 indicates, atomic distributions under extreme292

pressures contribute to predictive errors. Addressing these, Figure 8 presents our pipeline, combining293

DiffCSP-SC and SODNet, to design and validate novel superconductors through wet experiments,294

iteratively enriching the dataset for improved model training and accuracy.295

7 Code296

We have provided the source code of SODNet and DiffCSP-SC, which are mentioned297

in this article, on an anonymous GitHub repository. The access address is as follows:298

https://anonymous.4open.science/r/SODNet-F569, https://anonymous.4open.science/r/DiffCSP-SC-299

8F3F.300
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