
The Inductive Bias of Quantum Kernels

Jonas M. Kübler∗ Simon Buchholz∗ Bernhard Schölkopf
Max Planck Institute for Intelligent Systems

Tübingen, Germany
{jmkuebler, sbuchholz, bs}@tue.mpg.de

Abstract

It has been hypothesized that quantum computers may lend themselves well to
applications in machine learning. In the present work, we analyze function classes
defined via quantum kernels. Quantum computers offer the possibility to efficiently
compute inner products of exponentially large density operators that are classically
hard to compute. However, having an exponentially large feature space renders
the problem of generalization hard. Furthermore, being able to evaluate inner
products in high dimensional spaces efficiently by itself does not guarantee a
quantum advantage, as already classically tractable kernels can correspond to high-
or infinite-dimensional reproducing kernel Hilbert spaces (RKHS).
We analyze the spectral properties of quantum kernels and find that we can expect
an advantage if their RKHS is low dimensional and contains functions that are
hard to compute classically. If the target function is known to lie in this class, this
implies a quantum advantage, as the quantum computer can encode this inductive
bias, whereas there is no classically efficient way to constrain the function class in
the same way. However, we show that finding suitable quantum kernels is not easy
because the kernel evaluation might require exponentially many measurements.
In conclusion, our message is a somewhat sobering one: we conjecture that quan-
tum machine learning models can offer speed-ups only if we manage to encode
knowledge about the problem at hand into quantum circuits, while encoding the
same bias into a classical model would be hard. These situations may plausibly
occur when learning on data generated by a quantum process, however, they appear
to be harder to come by for classical datasets.

1 Introduction

In recent years, much attention has been dedicated to studies of how small and noisy quantum devices
[1] could be used for near term applications to showcase the power of quantum computers. Besides
fundamental demonstrations [2], potential applications that have been discussed are in quantum
chemistry [3], discrete optimization [4] and machine learning (ML) [5–12].

Initiated by the seminal HHL algorithm [13], early work in quantum machine learning (QML) was
focused on speeding up linear algebra subroutines, commonly used in ML, offering the perspective
of a runtime logarithmic in the problem size [14–17]. However, most of these works have an inverse
polynomial scaling of the runtime in the error and it was shown rigorously by Ciliberto et al. [18]
that due to the quantum mechanical measurement process a runtime complexity O(

√
n) is necessary

for convergence rate 1/
√
n.

Rather than speeding up linear algebra subroutines, we focus on more recent suggestions that use a
quantum device to define and implement the function class and do the optimization on a classical
computer. There are two ways to that: the first are so-called Quantum Neural Networks (QNN) or
∗JMK and SB contributed equally and are ordered randomly.
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Figure 1: Quantum advantage via inductive bias: (a) Data generating quantum circuit f(x) =
Tr
[
ρV (x)(M ⊗ id)

]
= Tr

[
ρ̃V (x)M

]
. (b) The full quantum kernel k(x, x′) = Tr

[
ρV (x)ρV (x′)

]
is too general and cannot learn f efficiently. (c) The biased quantum kernel q(x, x′) =
Tr
[
ρ̃V (x)ρ̃V (x′)

]
meaningfully constrains the function space and allows to learn f with little data.

parametrized quantum circuits [5–7] which can be trained via gradient based optimization [5, 19–23].
The second approach is to use a predefined way of encoding the data in the quantum system and
defining a quantum kernel as the inner product of two quantum states [7–11]. These two approaches
essentially provide a parametric and a non-parametric path to quantum machine learning, which are
closely related to each other [11]. Since the optimization of QNNs is non-convex and suffers from
so-called Barren Plateaus [24], we here focus on quantum kernels, which allow for convex problems
and thus lend themselves more readily to theoretical analysis.

The central idea of using a QML model is that it enables to do computations that are exponentially
hard classically. However, also in classical ML, kernel methods allow us to implicitly work with
high- or infinite dimensional function spaces [25, 26]. Thus, purely studying the expressivity of
QML models [27] is not sufficient to understand when we can expect speed-ups. Only recently first
steps where taken into this direction [10, 12, 28]. Assuming classical hardness of computing discrete
logarithms, Liu et al. [10] proposed a task based on the computation of the discrete logarithm where
the quantum computer, equipped with the right feature mapping, can learn the target function with
exponentially less data than any classical (efficient) algorithm. Similarly, Huang et al. [12] analyzed
generalization bounds and realized that the expressivity of quantum models can hinder generalization.
They proposed a heuristic to optimize the labels of a dataset such that it can be learned well by a
quantum computer but not a classical machine.

In this work, we relate the discussion of quantum advantages to the classical concept of inductive
bias. The no free lunch theorem informally states that no learning algorithm can outperform other
algorithms on all problems. This implies that an algorithm that performs well on one type of problem
necessarily performs poorly on other problems. A standard inductive bias in ML is to prefer functions
that are continuous. An algorithm with that bias, however, will then struggle to learn functions that
are discontinuous. For a QML model to have an edge over classical ML models, we could thus ensure
that it is equipped with an inductive bias that cannot be encoded (efficiently) with a classical machine.
If a given dataset fits this inductive bias, the QML model will outperform any classical algorithm. For
kernel methods, the qualitative concept of inductive bias can be formalized by analyzing the spectrum
of the kernel and relating it to the target function [25, 29–33].

Our main contribution is the analysis of the inductive bias of quantum machine learning models based
on the spectral properties of quantum kernels. First, we show that quantum kernel methods will fail to
generalize as soon as the data embedding into the quantum Hilbert space is too expressive (Theorem
1). Then we note that projecting the quantum kernel appropriately allows to construct inductive biases
that are hard to create classically (Figure 1). However, our Theorem 2 also implies that estimating the
biased kernel requires exponential measurements, a phenomenon reminiscent of the Barren plateaus
observed in quantum neural networks. Finally we show experiments supporting our main claims.

While our work gives guidance to find a quantum advantage in ML, this yields no recipe for obtaining
a quantum advantage on a classical dataset. We conjecture that unless we have a clear idea how the
data generating process can be described with a quantum computer, we cannot expect an advantage
by using a quantum model in place of a classical machine learning model.

2



2 Supervised learning

We briefly introduce the setting and notation for supervised learning as a preparation for our analysis
of quantum mechanical methods in this context. The goal of supervised learning is the estimation of
a functional mechanism based on data generated from this mechanism. For concreteness we focus
on the regression setting where we assume data is generated according to Y = f∗(X) + ε where
ε denotes zero-mean noise. We focus on X ∈ X ⊂ Rd, Y ∈ R. We denote the joint probability
distribution of (X,Y ) by D and we are given n i.i.d. observations Dn from D. We will refer to the
marginal distribution of X as µ, define the L2

µ inner product 〈f, g〉 =
∫
f(x)g(x)µ(dx) and denote

the corresponding norm by ‖ · ‖. The least square risk and the empirical risk of some hypothesis
h : X → R is defined by R(h) = ED

[
(h(X)− Y )2

]
and Rn(h) = EDn

[
(h(X)− Y )2

]
.

In supervised machine learning, one typically considers a hypothesis spaceH of functions h : X → R
and tries to infer argminh∈HR(h) (assuming for simplicity that the minimizer exists). Typically this
is done by (regularized) empirical risk minimization argminh∈HRn(h) + λΩ(h), where λ > 0 and
Ω determine the regularization. The risk of h can then be decomposed in generalization and training
error R(h) = (R(h)−Rn(h)) +Rn(h).

Kernel ridge regression. We will focus on solving the regression problem over a reproducing
kernel Hilbert space (RKHS) [25, 26]. An RKHS F associated with a positive definite kernel
k : X ×X → R is the space of functions such that for all x ∈ X and h ∈ F the reproducing property
h(x) = 〈h, k(x, ·)〉F holds. Kernel ridge regression regularizes the RKHS norm, i.e., Ω(h) = ‖h‖2F .
With observations {(x(i), y(i))}ni=1 we can compute the kernel matrix K(X,X)ij = k(x(i), x(j))
and the Representer Theorem [34] ensures that the empirical risk minimizer of kernel ridge regression
is of the form f̂λn (·) =

∑n
i=1 αik(x(i), ·), with α = (K(X,X) + λ id)−1y. The goal of our work is

to study when a (quantum) kernel is suitable for learning a particular problem. The central object to
study this is the integral operator.

Spectral properties and inductive bias. For kernel k and marginal distribution µ, the integral
operator K, is defined as (Kf)(x) =

∫
k(x, x′)f(x′)µ(dx′). Mercer’s Theorem ensures that there

exist a spectral decomposition of K with (possibly infinitely many) eigenvalues γi (ordered non-
increasingly) and corresponding eigenfunctions φi, which are orthonormal in L2

µ, i.e., 〈φi, φj〉 = δi,j .
We will assume that Tr [K] =

∑
i γi = 1 which we can ensure by rescaling the kernel. We can

then write k(x, x′) =
∑
i γiφi(x)φi(x

′). While the functions φ form a basis of F they might not
completely span L2

µ. In this case we simply complete the basis and implicitly take γ = 0 for the
added functions. Then we can decompose functions in L2

µ as

f(x) =
∑

i
aiφi(x). (1)

We have ‖f‖2 =
∑
i a

2
i and ‖f‖2F =

∑
i
a2i
γi

(if f ∈ F). Kernel ridge regression penalizes the
RKHS norm of functions. The components corresponding to zero eigenvalues are infinitely penalized
and cannot be learned since they are not in the RKHS. For large regularization λ the solution f̂λn is
heavily biased towards learning only the coefficients of the principal components (corresponding to
the largest eigenvalues) and keeps the other coefficients small (at the risk of underfitting). Decreasing
the regularization allows ridge regression to also fit the other components, however, at the potential
risk of overfitting to the noise in the empirical data. Finding good choices of λ thus balances this
bias-variance tradeoff.

We are less concerned with the choice of λ, but rather with the spectral properties of a kernel that
allow for a quantum advantage. Similar to the above considerations, a target function f can easily
be learned if it is well aligned with the principal components of a kernel. In the easiest case, the
kernel only has a single non-zero eigenvalue and is just k(x, x′) = f(x)f(x′). Such a construction is
arguably the simplest path to a quantum advantage in ML.

Example 1 (Trivial Quantum Advantage). Let f be a scalar function that is easily computable on
a quantum device but requires exponential resources to approximate classically. Generate data as
Y = f(X) + ε. The kernel k(x, x′) = f(x)f(x′) then has an exponential advantage for learning f
from data.
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To go beyond this trivial case, we introduce two qualitative measures to judge the quality of a kernel
for learning the function f . The kernel target alignment of Cristianini et al. [30] is

A(k, f) =
〈k, f ⊗ f〉

〈k, k〉1/2 〈f ⊗ f, f ⊗ f〉1/2
=

∑
i γia

2
i

(
∑
i γ

2
i )1/2

∑
i a

2
i

(2)

and measures how well the kernel fits f . If A = 1, learning reduces to estimating a single real
parameter, whereas for A = 0, learning is infeasible. We note that the kernel target alignment also
weighs the contributions of f depending on the corresponding eigenvalue, i.e., the alignment is better
if large |ai| correspond to large γi. The kernel target alignment was used extensively to optimize
kernel functions [31] and recently also used to optimize quantum kernels [35].

In a similar spirit, the task-model alignment of Canatar et al. [32] measures how much of the signal
of f is captured in the first i principal components: C(i) =

∑
j≤i a

2
j (
∑
j a

2
j )
−1. The slower C(i)

approaches 1, the harder it is to learn as the target function is more spread over the eigenfunctions.

3 Quantum computation in machine learning

In this section we introduce hypothesis spaces containing functions whose output is given by the
result of a quantum computation. For a general introduction to concepts of quantum computation we
refer to the book of Nielsen and Chuang [36].

We will consider quantum systems comprising d ∈ N qubits. Discussing such systems and their
algebraic properties does not require in-depth knowledge of quantum mechanics. A pure state of a
single qubit is described by vector (α, β)> ∈ C2 s.t. |α|2+|β|2 = 1 and we write |ψ〉 = α |0〉+β |1〉,
where {|0〉 , |1〉} forms the computational basis. A d qubit pure state lives in the tensor product of the
single qubit state spaces, i.e., it is described by a normalized vector in C2d . A mixed state of a d-qubit
system can be described by a density operator ρ ∈ C2d×2d , i.e., a positive definite matrix (ρ ≥ 0)
with unit trace (Tr [ρ] = 1). For a pure state |ψ〉 the corresponding density operator is ρ = |ψ〉 〈ψ|
(here, 〈ψ| is the complex conjugate transpose of |ψ〉). A general density operator can be thought of
as a classical probabilistic mixture of pure states. We can extract information from ρ by estimating
(through repeated measurements) the expectation of a suitable observable, i.e., a Hermitian operator
M = M† (where the adjoint (·)† is the complex conjugate of the transpose), as

Tr [ρM ] . (3)

Put simply, the potential advantage of a quantum computer arises from its state space being expo-
nentially large in the number of qubits d, thus computing general expressions like (3) on a classical
computer is exponentially hard. However, besides the huge obstacles in building quantum devices
with high fidelity, the fact that the outcome of the quantum computation (3) has to be estimated from
measurements often prohibits to easily harness this power, see also Wang et al. [37], Peters et al. [38].
We will discuss this in the context of quantum kernels in Section 4.

We consider parameter dependent quantum states ρ(x) = U(x)ρ0U
†(x) that are generated by

evolving the initial state ρ0 with the data dependent unitary transformation U(x) [7, 11]. Most often
we will without loss of generality assume that the initial state is ρ0 = (|0〉 〈0|)⊗d. We then define
quantum machine learning models via observables M of the data dependent state

fM (x) = Tr
[
U(x)ρ0U

†(x)M
]

= Tr [ρ(x)M ] . (4)

In the following we introduce the two most common function classes suggested for quantum machine
learning. We note that there also exist proposals that do not fit into the form of Eq. (4) [27, 35, 39].

Quantum neural networks. A "quantum neural network" (QNN) is defined via a variational
quantum circuit (VQC) [6, 40, 41]. Here the observable Mθ is parametrized by p ∈ N classical
parameters θ ∈ Θ ⊆ Rp. This defines a parametric function class FΘ = {fMθ

|θ ∈ Θ}. The most
common ansatz is to consider Mθ = U(Θ)MU†(Θ) where U(Θ) =

∏
i U(θi) is the composition of

unitary evolutions each acting on few qubits. For this and other common models of the parametric
circuit it is possible to analytically compute gradients and specific optimizers for quantum circuits
based on gradient descent have been developed [5, 19–23]. Nevertheless, the optimization is usually
a non-convex problem and suffers from additional difficulties due to oftentimes exponentially (in d)
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Table 1: Concepts in the quantum Hilbert spaceH and the reproducing kernel Hilbert space F .

Quantum Space of d qubits RKHS

x 7→ ρ(x) ∈ H (explicit feature map) x 7→ k(·, x) ∈ F (canonical feature map)

H =
{
ρ ∈ C2d×2d | ρ = ρ†, ρ ≥ 0,Tr [ρ] = 1

}
k(x, x′) = Tr [ρ(x)ρ(x′)] = 〈ρ(x), ρ(x′)〉H k(x, x′) = 〈k(·, x), k(·, x′)〉F
F = {fM |fM (·) = Tr [ρ(·)M ] ,M = M†} F = Span ({k(·, x) |x ∈ X})

vanishing gradients [24]. This hinders a theoretical analysis. Note that the non-convexity does not
arise from the fact that the QNN can learn non-linear functions, but rather because the observable Mθ

depends non-linearly on the parameters. In fact, the QNN functions are linear in the fixed feature
mapping ρ(x). Therefore the analogy to classical neural networks is somewhat incomplete.

Quantum kernels. The class of functions we consider are RKHS functions where the kernel is
expressed by a quantum computation. The key observation is that (4) is linear in ρ(x). Instead of
optimizing over the parametric function class FΘ , we can define the nonparametric class of functions
F = {fM |fM (·) = Tr [ρ(·)M ] ,M = M†}.2 To endow this function class with the structure of an
RKHS, observe that the expression Tr [ρ1ρ2] defines a scalar product on density matrices. We then
define kernels via the inner product of data-dependent density matrices:

Definition 1 (Quantum Kernel [7, 8, 11]). Let ρ : x 7→ ρ(x) be a fixed feature mapping from X to
density matrices. Then the corresponding quantum kernel is k(x, x′) = Tr [ρ(x)ρ(x′)].

The Representer Theorem [34] reduces the empirical risk minimization over the exponentially
large function class F to an optimization problem with a set of parameters whose dimensionality
corresponds to the training set size. Since the ridge regression objective is convex (and so are many
other common objective functions in ML), this can be solved efficiently with a classical computer.

In the described setting, the quantum computer is only used to estimate the kernel. For pure state
encodings, this is done by inverting the data encoding transformation (taking its conjugate transpose)
and measuring the probability that the resulting state equals the initial state ρ0. To see this we use
the cyclic property of the trace k(x, x′) = Tr [ρ(x)ρ(x′)] = Tr

[
U(x)ρ0U

†(x)U(x′)ρ0U
†(x′)

]
=

Tr
[(
U†(x′)U(x)ρ0U

†(x)U(x′)
)
ρ0

]
. If ρ0 = (|0〉 〈0|)⊗d, then k(x, x′) corresponds to the proba-

bility of observing every qubit in the ’0’ state after the initial state was evolved with U†(x′)U(x). To
evaluate the kernel, we thus need to estimate this probability from a finite number of measurements.
For our theoretical analysis we work with the exact value of the kernel and in our experiments we
also simulate the full quantum state. We discuss the difficulties related to measurements in Sec. 4.

4 The inductive bias of simple quantum kernels

We now study the inductive bias for simple quantum kernels and their learning performance. We
first give a high level discussion of a general hurdle for quantum machine learning models to surpass
classical methods and then analyze two specific kernel approaches in more detail.

Continuity in classical machine learning. Arguably the most important bias in nonparametric
regression are continuity assumptions on the regression function. This becomes particularly apparent
in, e.g., nearest neighbour regression or random regression forests [42] where the regression function
is a weighted average of close points. Here we want to emphasize that there is a long list of results
concerning the minimax optimality of kernel methods for regression problems [43–45]. In particular
these results show that asymptotically the convergence of kernel ridge regression of, e.g., Sobolev
functions reaches the statistical limits which also apply to any quantum method.

2F is defined for a fixed feature mapping x 7→ ρ(x). Although M is finite dimensional and thus F can be
seen as a parametric function class, we will be interested in the case where M is exponentially large in d and we
can only access functions from F implicitly. Therefore we refer to it as nonparametric class of functions.
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A simple quantum kernel. We now restrict our attention to rather simple kernels to facilitate
a theoretical analysis. As indicated above we consider data in X ⊂ Rd and we assume that the
distribution µ of the data factorizes over the coordinates (i.e. µ can be written as µ =

⊗
µi). This

data is embedded in a d-qubit quantum circuit. Let us emphasize here that the RKHS based on a
quantum state of d-qubits is at most 4d dimensional, i.e., finite dimensional and in the infinite data
limit n→∞ standard convergence guarantees from parametric statistics apply. Here we consider
growing dimension d→∞, and sample size polynomial in the dimension n = n(d) ∈ Poly(d). In
particular the sample size n� 4d will be much smaller than the dimension of the feature space and
bounds from the parametric literature do not apply.

Here we consider embeddings where each coordinate is embedded into a single qubit using a map
ϕi followed by an arbitrary unitary transformation V , so that we can express the embedding in
the quantum Hilbert space as |ψV (x)〉 = V

⊗
|ϕi(xi)〉 with corresponding density matrix (feature

map)3

ρV (x) = |ψV (x)〉 〈ψV (x)| . (5)

Note that the corresponding kernel k(x, x′) = Tr [ρ(x)ρ(x′)] is independent of V and factorizes
k(x, x′) = Tr [

⊗
ρi(xi)

⊗
ρi(x

′
i)] =

∏
Tr [ρi(xi)ρi(x

′
i)] where ρi(xi) = |ϕi(xi)〉〈ϕi(xi)|. The

product structure of the kernel allows us to characterize the RKHS generated by k based on the
one dimensional case. The embedding of a single variable can be parametrized by complex valued
functions a(x), b(x) as

|ϕi(x)〉 = a(x)|0〉+ b(x)|1〉. (6)

One important object characterizing this embedding turns out to be the mean density matrix of this
embedding given by ρµi =

∫
ρi(y)µi(dy) =

∫
|ϕi(y)〉〈ϕi(y)|µi(dy). This can be identified with

the kernel mean embedding of the distribution [46]. Note that for factorizing base measure µ the
factorization ρµ =

⊗
ρµi holds. Let us give a concrete example to clarify the setting, see Fig. 1(b).

Example 2. [11, Example III.1.] We consider the cosine kernel where a(x) = cos(x/2), b(x) =
i sin(x/2). This embedding can be realized using a single quantum RX(x) = exp (−ix2σx) gate
such that |ψ(x)〉 = RX(x)|0〉 = cos(x/2)|0〉+ i sin(x/2)|1〉. In this case the kernel is given by

k(x, x′) = |〈0|R†X(x)RX(x)|0〉|2 = | cos(x2 ) cos(x
′

2 ) + sin(x2 ) sin(x
′

2 )|2 = cos(x−x
′

2 )2. (7)

As a reference measure µ we consider the uniform measure on [−π, π]. Then the mean density
matrix is the completely mixed state ρµ = 1

2 id. For Rd valued data whose coordinates are encoded
independently the kernel is given by k(x, x′) =

∏
cos2 ((xi − x′i)/2) and ρµ = 2−did2d×2d . We

emphasize that due to the kernel trick this kernel can be evaluated classically in runtime O(d).

Quantum RKHS. We now characterize the RKHS and the eigenvalues of the integral operator
for quantum kernels. The RKHS consists of all functions f ∈ F that can be written as f(x) =

Tr [ρ(x)M ] where M ∈ C2d×2d is a Hermitian operator. Using this characterization of the finite
dimensional RKHS we can rewrite the infinite dimensional eigenvalue problem of the integral operator
as a finite dimensional problem. The action of the corresponding integral operator on f can be written
as

(Kf)(x) =

∫
f(y)k(y, x)µ(dy) =

∫
Tr [Mρ(y)] Tr [ρ(y)ρ(x)] µ(dy)

=

∫
Tr [(M ⊗ ρ(x))(ρ(y)⊗ ρ(y))] µ(dy) = Tr

[
(M ⊗ ρ(x))

∫
ρ(y)⊗ ρ(y)µ(dy)

] (8)

We denote the operator Oµ =
∫
ρ(y)⊗ ρ(y)µ(dy) for which Tr [Oµ] = 1 holds. Then we can write

(Kf)(x) = Tr [Oµ(M ⊗ ρ(x))] = Tr [Oµ(M ⊗ id)(id⊗ ρ(x))]

= Tr [Tr1 [Oµ(M ⊗ id)] ρ(x)]
(9)

3When we can ignore V , we simply assume V = id and write ρ(x) instead of ρV (x). For the kernel, since
V †V = id = V †V and due to the cyclic property of the trace we have kV (x, x′) = Tr

[
ρV (x)ρV (x′)

]
=

Tr
[
V ρ(x)V †V ρ(x′)V †

]
= Tr

[
V †V ρ(x)V †V ρ(x′)

]
= Tr [ρ(x)ρ(x′)] = k(x, x′).
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where Tr1 [·] refers to the partial trace over the first factor. For the definition and a proof of the last
equality we refer to Appendix A. The eigenvalues of K can now be identified with the eigenvalues
of the linear map Tµ mapping M → Tr1 [Oµ(M ⊗ id)]. As shown in the appendix there is an
eigendecomposition such that Tµ(M) =

∑
λiAiTr [AiM ] where Ai are orthonormal Hermitian

matrices (for details, a proof and an example we refer to Appendix C). The eigenfunctions of K are
given by fi(x) = Tr [ρ(x)Ai].

We now state a bound that controls the largest eigenvalue of the integral operator K in terms of the
eigenvalues of the mean density matrix ρµ (Proof in Appendix C.2).

Lemma 1. The largest eigenvalue γmax of K satisfies the bound γmax ≤
√

Tr
[
ρ2
µ

]
.

The lemma above shows that the squared eigenvalues of K are bounded by Tr
[
ρ2
µ

]
, an expression

known as the purity [36] of the density matrix ρµ, which measures the diversity of the data embedding.
On the other hand the eigenvalues of K are closely related to the learning guarantees of kernel ridge
regression. In particular, standard generalization bounds for kernel ridge regression [47] become
vacuous when γmax is exponentially smaller than the training sample size (if Tr [K] = 1 which holds
for pure state embeddings). The next result shows that this is not just a matter of bounds.

Theorem 1. Suppose the purity of the embeddings ρµi satisfies Tr
[
ρ2
µi

]
≤ δ < 1 as the dimension

and number of qubits d grows. Furthermore, suppose the training sample size only grows polynomially
in d, i.e., n ≤ dl for some fixed l ∈ N. Then there exists d0 = d0(δ, l, ε) such that for all
d ≥ d0 no function can be learned using kernel ridge regression with the d-qubit kernel k(x, x′) =
Tr [ρ(x)ρ(x′)] in the sense that for any f ∈ L2, with probability at least 1− ε for all λ ≥ 0

R(f̂λn ) ≥ (1− ε)‖f‖2. (10)

The proof of the theorem can be found in Appendix D. It relies on a general result (Theorem 3 in
Appendix D) which shows that for any (not necessarily quantum) kernel the solution of kernel ridge
regression cannot generalize when the largest eigenvalue in the Mercer decomposition is sufficiently
small (depending on the sample size). Then the proof of Theorem 1 essentially boils down to proving
a bound on the largest eigenvalue using Lemma 1.

Theorem 1 implies that generalization is only possible when the mean embedding of most coordinates
is close to a pure state, i.e. the embedding x→ |ϕi(x)〉 is almost constant. To make learning from
data feasible we cannot use the full expressive power of the quantum Hilbert space but instead only
very restricted embeddings allow to learn from data. This generalizes an observation already made
in [12]. Since also classical methods allow to handle high-dimensional and infinite dimensional
RKHS the same problem occurs for classical kernels where one solution is to adapt the bandwidth of
the kernel to control the expressivity of the RKHS. In principle this is also possible in the quantum
context, e.g., for the cosine embedding.

Biased kernels. We have discussed that without any inductive bias, the introduced quantum kernel
cannot learn any function for large d. One suggestion to reduce the expressive power of the kernel
is the use of projected kernels [12]. They are defined using reduced density matrices given by
ρ̃Vm(x) = Trm+1...d

[
ρV (x)

]
where Trm+1...d [·] denotes the partial trace over qubits m + 1 to

d (definition in Appendix A) . Then they consider the usual quantum kernel for this embedding
qVm(x, x′) = Tr

[
ρ̃Vm(x)ρ̃Vm(x′)

]
. Physically, this corresponds to just measuring the first m qubits and

the functions f in the RKHS can be written in terms of a hermitian operator M acting on m qubits so
that f(x) = Tr

[
ρV (x)(M ⊗ id)

]
= Tr

[
ρ̃Vm(x)M

]
. If V is sufficiently complex it is assumed that f

is hard to compute classically [48].

Indeed above procedure reduces the generalization gap. But this comes at the price of an increased
approximation error if the remaining RKHS cannot fully express the target function f∗ anymore,
i.e., the learned function underfits. Without any reason to believe that the target function is well
represented via the projected kernel, we cannot hope for a performance improvement by simply
reducing the size of the RKHS in an arbitrary way. However, if we know something about the data
generating process than this can lead to a meaningful inductive bias. For the projected kernel this
could be that we know that the target function can be expressed as f∗(x) = Tr

[
ρ̃Vm(x)M∗

]
, see

Fig. 1. In this case using qVm improves the generalization error without increasing the approximation
error. To emphasize this, we will henceforth refer to qVm as biased kernel.
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Figure 2: Left: Spectral behavior of biased kernel q, see Theorem 2b) and Equation (11) Right: The
biased kernel q, equipped with prior knowledge, easily learns the function for arbitrary number of
qubits and achieves optimal mean squared error (MSE). Models that are ignorant to the structure of
f∗ fail to learn the function. The classical kernel krbf and the full quantum kernel overfit (they have
low training error, but large test error). The biased kernel on the wrong qubit qw has litle capacity
with the wrong bias and thus underfits (training and test error essentially overlap).

We now investigate the RKHS for reduced density matrices where V is a Haar-distributed random
unitary matrix (proof in Appendix E).
Theorem 2. Suppose V is distributed according to the Haar measure on the group of unitary
matrices. Fix m. Then the following two statements hold:

a) The reduced density operator satisfies with high probability ρ̃Vm = 2−mid +O(2−d/2) and the
projected kernel satisfies with high probability qVm(x, x′) = 2−m +O(2−d/2) as d→∞.

b) Let TVµ,m denote the linear integral operator for the kernel qVm as defined above. Then the
averaged operator EV

[
TVµ,m

]
has one eigenvalue 2−m +O(2−2d) whose eigenfunction is constant

(up to higher order terms of order O(2−2d) and 22m − 1 eigenvalues 2−m−d +O(2−2d).

The averaged integral operator in the second part of the result is not directly meaningful, however it
gives some indication of the behavior of the operators TVµ,m. In particular, we expect a similar result
to hold for most V if the mean embedding ρµ is sufficiently mixed. A proof of this result would
require us to bound the variance of the matrix elements of TVµ,m which is possible using standard
formula for expectations of polynomials over the unitary group but lengthy.

Note that the dimension of the RKHS for the biased kernel qVm with m-qubits is bounded by 4m. This
implies that learning is possible when projecting to sufficiently low dimensional biased kernels such
that the training sample size satisfies n & 4m ≥ dim(F).

Let us now focus on the case m = 1, that is the biased kernel is solely defined via the first qubit.
Assuming that Theorem 2b) also holds for fixed V we can assume that the biased kernel has the form

q(x, x′) ≡ qV1 (x, x′) = γ0φ0(x)φ0(x′) +
∑3

i=1
γiφi(x)φi(x

′), (11)

where γ0 = 1/2 + O(2−2d) and φ0(x) = 1 is the constant function up to terms of order O(2−2d).
For i = 1, 2, 3 we have γi = O(2−d−1) = O(2−d) (Fig. 2) and φi is a function that conjectured to
be exponentially hard in d to compute classically [48]. It is thus impossible to include a bias towards
those three eigenfunctions classically. On the other hand we can include a strong bias towards the
constant eigenfunction also classically. The straightforward way to do this is to center the data in the
RKHS (see Appendix B for details).

Barren plateaus. Another conclusion from Theorem 2a) is that the fluctuations of the reduced
density matrix around its mean are exponentially vanishing in the number of qubits. In practice the
value of the kernel would be determined by measurements and exponentially many measurements
are necessary to obtain exponential accuracy of the kernel function. Therefore the theorem suggests
that it is not possible in practice to learn anything beyond the constant function from generic biased
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kernels for (modestly) large values of d. This observation is closely related to the fact that for many
quantum neural networks architectures, the gradient of the parameters with respect to the loss is
exponentially vanishing with the system size d, a phenomenon known as Barren plateaus [24, 49].

5 Experiments

Since for small d we can simulate the biased kernel efficiently, we illustrate our theoretical findings in
the following experiments. Our implementation, building on standard open source packages [50, 51],
is available online.4 We consider the case described above where we know that the data was generated
by measuring an observable on the first qubit, i.e., f∗(x) = Tr

[
ρ̃V1 (x)M∗

]
, but we do not know

M∗, see Fig. 1. We use the full kernel k and the biased kernel q for the case m = 1. To show the
effect of selecting the wrong bias, we also include the behavior of a biased kernel defined only on the
second qubit, denoted as qw. As a classical reference we also include the performance of a radial
basis function kernel krbf(x, x

′) = exp(−‖x − x′‖2/2). For the experiments we fix a single qubit
observable M∗ = σz and perform the experiment for varying number d of qubits. First we draw a
random unitary V . The dataset is then generated by drawingN = 200 realizations {x(i)}Ni=1 from the
d dimensional uniform distribution on [0, 2π]d. We then define the labels as y(i) = cf∗(x(i)) + ε(i),
where f∗(x) = Tr

[
ρ̃V (x)σz

]
, ε(i) is Gaussian noise with Var[ε] = 10−4, and c is chosen such that

Var[f(X)] = 1. Keeping the variances fixed ensures that we can interpret the behavior for varying d.

We first verify our findings from Theorem 2b) and Equation (11) by estimating the spectrum of q.
Fig. 2 (left) shows that Theorem 2b) also holds for individual V with high probability. We then
use 2/3 of the data for training kernel ridge regression (we fit the mean seperately) with preset
regularization, and use 1/3 to estimate the test error. We average the results over ten random seeds
(random V , x(i), ε(i)) and results are reported in the right panel of Fig. 2. This showcases that as
the number of qubits increases, it is impossible to learn f∗ without the appropriate spectral bias. k
and krbf have too little bias and overfit, whereas qw has the wrong bias and severly underfits. The
performance of qw underlines that randomly biasing the kernel does not significantly improve the
performance over the full kernel k. In the appendix we show that this is not due to a bad choice of
regularization, by reporting cherry-picked results over a range of regularizations.

To further illustrate the spectral properties, we empirically estimate the kernel target alignment [30]
and the task-model alignment [32] that we introduced in Sec. 2. By using the centered kernel matrix
(see App. B) and centering the data we can ignore the first eigenvalue in (11) corresponding the
constant function. In Figure 3 (left) we show the empirical (centered) kernel target alignment for 50
random seeds. The biased kernel is the only one well aligned with the task. The right panel of Fig. 3
shows the task model alignment. This shows that f∗ can be completely expressed with the first four
components of the biased kernel, while the other kernels essentially need the entire spectrum (we
use a sample size of 200, hence the empirical kernel matrix is only 200 dimensional) and thus are
unable to learn. Note that the kernel qw is four dimensional, and so higher contributions correspond
to functions outside its RKHS that it actually cannot even learn at all.

6 Discussion

We provided an analysis of the reproducing kernel Hilbert space (RKHS) and the inductive bias
of quantum kernel methods. Rather than the dimensionality of the RKHS, its spectral properties
determine whether learning is feasible. Working with exponentially large RKHS comes with the risk
of having a correspondingly small inductive bias. This situation indeed occurs for naive quantum
encodings, and hinders learning unless datasets are of exponential size. To enable learning, we neces-
sarily need to consider models with a stronger inductive bias. Encoding a bias towards continuous
functions is likely not a promising path for a quantum advantage, as this is where classical machine
learning models excel.

Our results suggest that we can only achieve a quantum advantage if we know something about the
data generating process and cannot efficiently encode this classically, yet are able use this information
to bias the quantum model. We indeed observe an exponential advantage in the case where we know
that the data comes from a single qubit observable and constrain the RKHS accordingly. However,

4https://github.com/jmkuebler/quantumbias
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Figure 3: Histogram of the kernel target alignment over 50 runs (left) and task model alignment
(right) for d = 7.

we find that evaluating the kernel requires exponentially many measurements, an issue related to
Barren Plateaus encountered in quantum neural networks.

With fully error-corrected quantum computers it becomes feasible to define kernels with a strong bias
that do not require exponentially many measurements. An example of this kind was recently presented
by Liu et al. [10]: here one knows that the target function is extremely simple after computing the
discrete logarithm. A quantum computer is able to encode this inductive bias by using an efficient
algorithm for computing the discrete logarithm.

However, even for fully coherent quantum computers it is unclear how we can reasonably encode a
strong inductive bias about a classical dataset (e.g., images of cancer cells, climate-data, etc.). The
situation might be better when working with quantum data, i.e., data that is collected via observations
of systems at a quantum mechanical scale. To summarize, we conclude that there is no indication
that quantum machine learning will substantially improve supervised learning on classical datasets.
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The Inductive Bias of Quantum Kernels
Supplementary Material

A Partial trace in quantum mechanics

Here we provide the definition of the partial trace used for the biased quantum kernels. For details
we refer to [36]. The state space of the union of two quantum systems with state spaceH1 andH2

is given by the tensor product H1 ⊗ H2. A general mixed state is described by a density matrix
ρ12 which is hermitian positive linear operator on H1 ⊗H2 with Tr [ρ12] = 1. The state ρ1 on the
subsystem H1 is obtained by the partial trace operation ρ1 = Tr2 [ρ12]. The partial trace can be
defined as the linear map Tr2 : L(H1 ⊗H2)→ L(H1) that satisfies

Tr2 [S ⊗ T ] = Tr [T ]S (12)

for all S ∈ L(H1), T ∈ L(H2). It can be shown that this map exists and is unique. Picking a basis
onH1 andH2 we consider the tensor product basis onH1 ⊗H2. In coordinates given by this basis
we can write

(ρ1)i1j1 = Tr2 [ρ12]i1j1 =

dim(H2)∑
k=1

(ρ12)i1k,j1k. (13)

For completeness and to illustrate the handling of the partial trace we prove the last equality in (9).
We want to show that for S ∈ L(H1 ⊗H2) and T ∈ L(H1) the identity

Tr [S(T ⊗ id] = Tr [Tr2 [S]T ] (14)

holds. We assume first that S = A⊗B for some A ∈ L(H1) and B ∈ L(H2). Then, by definition,

Tr [Tr2 [S]T ] = Tr [Tr2 [A⊗B]T ] = Tr [AT ] Tr [B]

= Tr [AT ⊗B] = Tr [(A⊗B)(T ⊗ id)] = Tr [S(T ⊗ id] .
(15)

Here we used that the trace of a tensor product is the product of the traces. For general S the statement
now follows from the linearity of both sides in S.

B General results about RKHS

In this section we briefly discuss basic results on centering in RKHS and the RKHS of tensor product
kernels.

B.1 Centering in the RKHS

As shown in Section 4, the constant function plays a special role for typical biased kernels as the
corresponding eigenvalue is much larger than the remaining eigenvalues. Clearly, it is also possible
classically to treat the constant function separately. To do so, it is natural to center the data by
subtracting the mean ȳ = n−1

∑n
i=1 yi and to consider the centered kernel. This corresponds to

putting no penalty on the constant function which is also common in linear models where no penalty
is put on the intercept. Formally, for a kernel k, the centered kernel is defined as

kc(x, x
′) = k(x, x′)− EX [k(X,x′)]− EX′ [k(x,X ′)] + EX,X′ [k(X,X ′)]. (16)

In analogy we can center the kernel matrix as Kc(X,X) =
(
id− 1

n11
>)K(X,X)

(
id− 1

n11
>),

where 1 is a vector of all ones.

Let k be a kernel with Mercer decomposition

k(x, x′) =
∑

γiφi(x)φi(x
′), (17)

and define ai =
∫
φi(x)µ(dx). Then the centered kernel can be written as

kc(x, x
′) =

∑
γi(φi(x)− ai)(φi(x′)− ai). (18)
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To make things explicit let us focus on the biased kernel of Equation (11). Ignoring terms of order
O(2−2d), the constant function is an eigenfunction of the kernel. In such a case centering corresponds
to setting the corresponding eigenvalue γ0 to zero, while the other terms in the spectral decomposition
are invariant under centering (by orthogonality we have ai = 0 for i 6= 0). The centered biased kernel
of Eq. (11) is thus

qc(x, x
′) =

3∑
i=1

γiφi(x)φi(x
′). (19)

By Theorem 2 we expect that all the eigenvalues of the centered biased kernel are similarly large.
Further we know that the centered part of the target function can completely be expressed in terms of
the eigenfunctions of the centered biased kernel f∗(x)−f̄∗ =

∑3
i=1 aiφi(x), where f̄∗ = E [f∗(X)].

Let us assume that all the three eigenvalues are completely equal. Then we can compute the kernel
target alignment of Eq. (2)

A(qc, f
∗ − f̄∗) =

∑3
i=1 γa

2
i

(
∑3
i=1 γ

2)1/2
∑3
i=1 a

2
i

=
γ
∑3
i=1 a

2
i√

3γ
∑3
i=1 a

2
i

=
1√
3
≈ 0.58. (20)

We emphasize that this expectation is in good accordance with the results of our experiments reported
in Fig. 3. Further, note that computing the kernel target alignment after centering is quite common in
the kernel literature and is used to optimize the kernel function [31].

B.2 Tensor product of kernels

In this section we describe the construction of product kernels on product spaces. More details can be
found in any textbook on RKHS [25]. Let (X1, k1) and (X2, k2) be two spaces with positive definite
kernels with RKHS F1 and F2. Then the function

k((x1, x2), (y1, y2)) = k1(x1, y1)k2(x2, y2) (21)

defines a positive definite kernel on X1 × X2 and the RKHS is given by {f1(x1)f2(x2) : f1 ∈
F1, f2 ∈ F2}. Morevoer, if we are given a product measure µ = µ1 ⊗ µ2 on X1 × X2 then the
integral operator for the kernel k factorizes, i.e., for functions f(x1, x2) = f1(x1)f2(x2)

(Kf)(x1, x2) =

∫
f(y)k(y, x)µ(dy)

=

∫
f1(y1)k1(y1, x1)µ1(dx1)

∫
f2(y2)k2(y2, x2)µ1(dx2)

= (K1f1)(x1)(K2f2)(x2).

(22)

Therefore the eigenvalue problems of the integral operators decouple and the eigenvalues of K are
given by {γ1γ2 : γ1 ∈ E1, γ

2 ∈ E2} where Ei denotes the eigenvalues of Ki.

It can be derived from the results above that the RKHS of the product kernel k(x, x′) =
k1(x, x′)k2(x, x′) on X is given by {f1(x)f2(x) : f1 ∈ F1, f2 ∈ F2} where Fi denotes the
RKHS of (X, ki). There is no simple relation for the integral operators.

C More details on quantum kernels for classical data

In this section we analyze in more detail the properties of quantum kernel methods for classical data.

C.1 Description of the RKHS

To understand the quantum kernel better we give a description of the RKHS for the quantum kernels.
We consider the one-qubit embedding x→ a(x)|0〉+ b(x)|1〉. The RKHS F̃ corresponding to the
(non-physical) kernel k̃(x, y) = 〈ϕ(x), ϕ(y)〉 is then generated by a(x), b(x). Moreover, the RKHS
corresponding to the physical kernel k(x, x′) = Tr [ρ(x)ρ(x′))] = |〈ϕ(x), ϕ(x′)〉|2 = |k̃(x, x′)|2 =

k̃(x, x′)
¯̃
k(x, x′) is the vector space F generated by {f · ḡ : f, g ∈ F̃} [52] (to obtain the real valued

RKHS which is more relevant in the learning theoretic setting we consider the real and imaginary
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part). This result can also be obtained by looking at the feature map x→ ρ(x) of the physical kernel
directly. When we consider data from Rd where all dimensions are encoded independently in a single
qubit the resulting RKHS has the tensor product structure F =

⊗
Fi where Fi are the RKHS for the

single coordinate embeddings.

C.2 Proof of Lemma 1

Here we analyze the integral operators in a bit more detail and prove Lemma 1. For the proof of
Lemma 1 we need to briefly look again at the simpler non-physical kernel k̃(x, y) = 〈ϕ(x), ϕ(y)〉
and its integral operator. Suppose data has distribution µ on R. We consider the integral operator K̃
acting on f(x) = 〈ω, ϕ(x)〉 defined by

K̃f(x) =

∫
f(y)k̃(y, x)µ(dy) =

∫
〈ω, ϕ(y)〉〈ϕ(y), ϕ(x)〉µ(dy) = 〈ω, ρµϕ(x)〉 (23)

where ρµ =
∫
|ϕ(y)〉〈ϕ(y)|µ(dy) denotes the mean density matrix associated with the measure µ.

We observe that the eigenvalues γ̃i of K̃ agree with the the eigenvalues of the density matrix ρµ. In
particular we conclude

‖K̃‖2HS =
∑

γ̃2
i = ‖ρµ‖2HS = Tr

[
ρ2
µ

]
(24)

where ‖·‖HS denotes the Hilbert-Schmidt norm (which for symmetric matrices agrees with the
Frobenius norm). This observation corresponds to the fact that for the linear kernel the eigenvalues of
the integral operator agree with the eigenvalues of the covariance matrix.

Now we can give the simple proof of Lemma 1. For convenience we restate the lemma.

Lemma 2 (Lemma 1 in the main part). The largest eigenvalue γmax of K satisfies the bound

γmax ≤
√

Tr
[
ρ2
µ

]
.

Proof. We observe, denoting the constant function with value 1 by 1,∫
1(x)k(x, y)1(y)µ(dx)µ(dy) =

∫
|k̃(x, y)|2 µ(dx)µ(dy) = ‖K̃‖2HS = ‖ρµ‖2HS = Tr

[
ρ2
µ

]
(25)

where we used (24) in the last two steps. Suppose that f is a normalized eigenfunction for the
eigenvalue γmax. From the Mercer decomposition we obtain

1 = K(x, x) ≥ γmaxf(x)2. (26)

Hence f is bounded by
√
γmax

−1 and we conclude that

γmax =

∫
f(x)(Kf)(x)µ(dx) =

∫
f(x)k(x, y)f(y)µ(dx)µ(dy)

≤ γ−1
max

∫
1(x)k(x, y)1(y)µ(dx)µ(dy) = γ−1

maxTr
[
ρ2
µ

]
where we used that k is pointwise positive. This ends the proof.

Let us look at this result in our main setting where each coordinate of d-dimensional data is embedded
in a single qubit. If the measure µ on Rd factorizes as µ =

⊗
µi. The integral operator factorizes

over the d coordinates and the eigenvalues of the integral operator are given by {
∏d
j=1 γij , γij ∈ Ej}

with Ej denoting the eigenvalues of the one-dimensional integral operators. In particular the largest
eigenvalue will be exponentially small (in d) as soon as max(Ej) ≤ δ < 1 for a fixed δ which
holds if the individual embeddings satisfy Tr

[
ρ2
µi

]
< δ. Note that Tr

[
ρ2
µi

]
= 1 if and only if the

embedding is constant.
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C.3 Spectral decomposition of the integral operator

As shown in the main text the integral operator K applied to f(x) = Tr [ρ(x)M ] can be written as

(Kf)(x) = Tr [Oµ(M ⊗ ρ(x))] = Tr [Oµ(M ⊗ id)(id⊗ ρ(x))] = Tr [Tr1 [Oµ(M ⊗ id)] ρ(x)]
(27)

whereOµ =
∫
ρ(y)⊗ρ(y)µ(dy). Note that this reformulation makes the isomorphism of L(H,H)⊗

L(H,H) ' L(H⊗H,H⊗H) ' L(L(H,H),L(H,H)) explicit. The spectrum of K thus agrees
with the eigenvalues of the linear map T acting on matrices by

T (M) = Tr2 [Oµ(id⊗M)] . (28)

We claim that there is an eigendecomposition

T (M) =
∑

γiAiTr [AiM ] (29)

where Ai are orthonormal hermitian matrices. Moreover, the eigenfunctions of K are fi(x) =
Tr [ρ(x)Ai]. This result follows from standard results in linear algebra, we give all details in the next
subsection.

C.4 Spectral decomposition of linear maps preserving hermitian matrices

We consider the space of matrices Cn×n equipped with the usual scalar product 〈A,B〉 = Tr
[
A†B

]
which agrees with the standard scalar product onCn

2

after vectorisation. We will need them following
fact: For hermitian matrices A,B the scalar product 〈A,B〉 ∈ R is real.
Lemma 3. Let T : Cn×n → Cn×n be a linear and hermitian map that maps hermitian matrices
to hermitian matrices. Then there is a eigendecomposition (γi, Hi) with real eigenvalues γi and
orthonormal hermitian matrices Hi such that

T (A) =
∑
i

γiHiTr
[
H†iA

]
. (30)

Proof. Hermitian matrices can be diagonalized with real values γi so we can write

T (A) =
∑
i

γiXiTr
[
X†iA

]
(31)

where Xi form an orthonormal eigenbasis. It remains to show that we can find such a decomposition
where the Xi are hermitian. We decompose Xi = H̃i + iS̃i where H̃i and S̃i are hermitian. Then we
observe

γi(H̃i + iS̃i) = γiXi = T (Xi) = T (H̃i) + iT (S̃i). (32)

Using the invariances of T on hermitian matrices we conclude that S̃i and H̃i are again eigenvectors
with eigenvalue γi. Now we can iteratively replace Xi by either S̃i or H̃i so that the set of vectors
remains a basis. Finally we orthonormalize the resulting basis of all eigenspaces using the Gram-
Schmidt procedure. Since scalar products of hermitian matrices are real we obtain an orthonormal
eigenbasis Hi consisting of hermitian matrices.

We now apply this to the integral operator for the quantum embedding. Recall that the linear map T
acting on matrices was defined by

T (M) = Tr2 [Oµ(id⊗M)] . (33)

Clearly, T is linear. To show that T is hermitian we observe that

〈M,T (M)〉 = Tr
[
M†Tr2 [Oµ(id⊗M)]

]
=

∫
Tr
[
M†Tr2 [ρ(y)⊗ ρ(y)(id⊗M)]

]
µ(dy)

=

∫
Tr
[
M†ρ(y)

]
Tr [ρ(y)M ] µ(dy) ∈ R.

(34)
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Similarly we see that T preserves hermitian matrices, indeed, if M = M†

T (M) =

∫
Tr2 [ρ(y)⊗ ρ(y)(id⊗M)] µ(dy) =

∫
ρ(y)Tr [ρ(y)M)] µ(dy). (35)

which is hermitian because ρ(y) is hermitian and the scalar product of hermitian matrices is real.
Using Lemma 3 above we conclude that we can write T (M) =

∑
i γiAiTr [AiM ] where γi are the

eigenvalues of T which agree with the eigenvalues of the corresponding integral operator and the
eigenfunctions are given by x→ Tr [ρ(x)Ai].

C.5 A complete example

To illustrate the analysis above we consider the setting from Example 2 where x→ cos(x/2)|0〉+

i sin(x/2)|1〉. Then F̃ = 〈sin(x), cos(x)〉 and F = 〈sin2(x), cos2(x), sin(x) cos(x)〉. Note that the
RKHS has dimension 4 when the relative phase between a(x) and b(x) is not constant (then āb and
ab̄ are not linearly dependent). The feature map of the physical kernel for our example is

ρ(y) =

(
cos2(y2 ) −i cos(y2 ) sin(y2 )

i cos(y2 ) sin(y2 ) sin2(y2 )

)
. (36)

For the analysis of the integral operator we need the matrix elements of the linear map T We observe
that in index notation using the Einstein summation convention and denoting complex conjugation
without transposition by ∗

T (M)ij =

∫
ρ(y)ijρ(y)klMlk µ(dy) =

∫
ρ(y)ijρ

∗(y)lkMlk µ(dy). (37)

Using vectorisation we obtain

Vec(T (M)) =

∫
Vec(ρ(y))Vec(ρ(y))> µ(dy)Vec(M) = AµVecM. (38)

In our example we obtain

Aµ =
1

π

∫ π

0

 cos2(y2 )
−i cos(y2 ) sin(y2 )
i cos(y2 ) sin(y2 )

sin2(y2 )

(cos2(y2 ) i cos(y2 ) sin(y2 ) −i cos(y2 ) sin(y2 ) sin2(y2 )
)

dy

=
1

π

∫ π

0


cos4(y2 ) i cos3(y2 ) sin(y2 ) −i cos3(y2 ) sin(y2 ) cos2(y2 ) sin2(y2 )

−i cos3(y2 ) sin(y2 ) cos2(y2 ) sin2(y2 ) − cos2(y2 ) sin2(y2 ) −i cos(y2 ) sin3(y2 )
i cos3(y2 ) sin(y2 ) − cos2(y2 ) sin2(y2 ) cos2(y2 ) sin2(y2 ) i cos(y2 ) sin3(y2 )
cos2(y2 ) sin2(y2 ) i cos(y2 ) sin3(y2 ) −i cos(y2 ) sin3(y2 ) sin4(y2 )

dy

=
1

8

3 0 0 1
0 1 −1 0
0 −1 1 0
1 0 0 3


(39)

We obtain the eigenvalues 1
2 ,

1
4 ,

1
4 , 0 the eigenvectors are, in matrix notation,

H1 =

(
1 0
0 1

)
, H2 =

(
1 0
0 −1

)
, H3 =

(
0 i
−i 0

)
, H4 =

(
0 1
1 0

)
. (40)

The corresponding eigenfunctions fi of the integral operator are given by x→ Tr [ρ(x)Hi], i.e.,

f1(x) = 1, f2(x) = cos2(x2 )− sin2(x2 ) = cos(x),

f3(x) = 2 cos(x2 ) sin(x2 ) = sin(x), f4(x) = 0.
(41)

We can also parametrize the functions in the RKHS by a cos(x+ b) + c with a, b, c ∈ R.

Let us also look at the generalization to the vector valued case with d-qubits. Then the RKHS is given
by all functions of the form

x→
d∏
i=1

(ai cos(xi + bi) + ci). (42)
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The eigenfunctions of the integral operator are given by
d∏
i=1

sinαi(xi) cosβi(xi) (43)

where αi, βi are non-negative integers satisfying αi + βi ≤ 1. The corresponding eigenvalue is
2−d−

∑
(αi+βi). The degeneracy of the eigenvalue 2−d−l can be calculated to 2l

(
d
l

)
.

D Proof of Theorem 1

In this section we prove Theorem 1 which will follow easily from the result below. We remark that
the following theorem is by no means sharp but a detailed analysis when learning is not possible is of
limited interest. Note that again typical lower bounds for the learning performance are focused on the
case n→∞ [43].
Theorem 3. Consider a measure space (X,µ) such that µ(X) = 1 with a kernel k satisfying
k(x, x) = 1 for all x ∈ X . Denote by γmax the largest eigenvalue of the corresponding integral
operator. Suppose we have n training points Dn = {(xi, yi), 1 ≤ i ≤ n} with (xi, yi) ∈ X × R
where xi are i.i.d. draws from µ and yi = f(xi) for some square integrable function f . Then, for any
ε > 0 with probability at least 1− ε− γmaxn4

‖f − f̂λn‖2 ≥

(
1−

√
2γmaxn2

ε

)
‖f‖2 (44)

for all λ ≥ 0 where f̂λn denotes the kernel ridge regression estimator for training data (xi, yi).

Proof. Denote the eigenvalues of the integral operator by γi with γ1 = γmax. Standard results for
integral operators imply ∑

i

γi =

∫
k(x, x)µ(dx) = 1 (45)

∑
i

γ2
i =

∫
k(x, y)2 µ(dx)µ(dy) = ‖k‖22. (46)

We conclude that

‖k‖22 =
∑
i

γ2
i ≤ γmax

∑
i

γi = γmax. (47)

Since Eµ⊗µ
[
k(x, y)2

]
= ‖k‖22, Markov’s inequality together with (47) implies Pµ⊗µ(|k(x, y)| ≥

ε) ≤ γmax
ε2 . Let An = {|k(xi, xj)| ≤ 1

2n for all i 6= j}. Using the union bound we conclude that

PDn(An) ≥ 1− n2Pµ⊗µ
(
|k(x, y)| ≥ 1

2n

)
≥ 1− 4n4γmax. (48)

Conditioned on An we can bound the eigenvalues of the kernel matrix K(X,X)i,j = k(xi, xj) using
Gerschgorin circles by 1− n 1

2n = 1
2 and thus

K(X,X)−1 ≤ 2 · idn. (49)

Let us denote the Mercer decomposition of k by

k(x, y) =
∑
i

γifi(x)fi(y) (50)

where fi are the orthonormal eigenfunctions. Then we can bound

|k(x, ·)|22 =

∫
k(x, y)2 µ(dy) =

∫ ∑
i

γifi(x)fi(y)
∑
j

γjfj(x)fj(y)µ(dy)

=
∑
i,j

δijγiγjfi(x)fj(x) ≤ γmax
∑
i

γifi(x)2 = γmax.
(51)
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The kernel ridge regression function fλn can be written as

fλn =
∑
i

αik(xi, ·) (52)

where the vector α is given by α = (K(X,X) + λ idn×n)−1y with y ∈ Rn denoting the vector with
components yi. Using (49) we conclude that conditioned on An we have

‖α‖2 ≤ 2‖y‖2. (53)
We now claim that for any ε > 0 with probability 1− ε we have

|y|2 ≤ n
ε ‖f‖

2
2. (54)

To show this we remark that E(y2
i ) = E(f(xi)

2) = ‖f‖22 because we assumed that xi is i.i.d. with
distribution µ. Using Markov’s inequality (and |y|2 ≥ 0) we can bound

P
(
|y|2 ≥ n

ε
‖f‖22

)
≤ E

(
|y|2

nε−1‖f‖22
1|y|2≥nε−1‖f‖22

)
≤ ε

n‖f‖22
E

(
n∑
i=1

|yi|2
)

= ε. (55)

This implies the claim (54).

Using (51), (53), and (54) we conclude that the L2 norm of fλn satisfies now with probability
1− ε− γmaxn4 the bound

‖fλn‖2 ≤
∑
i

|αi|‖k(xi, ·)‖2 ≤
√
γmax

∑
i

|αi| ≤
√
γmaxn

√∑
i

α2
i

≤ √γmaxn
√

2n‖f‖22
ε

≤
√

2γmaxn2

ε
‖f‖.

(56)

We conclude that with probability 1− ε− γmaxn4

‖f − fλn‖2 ≥ ‖f‖2 − ‖fλn‖2 ≥ ‖f‖2

(
1−

√
2γmaxn2

ε

)
. (57)

The proof of Theorem 1 is now a consequence of the result above.

Proof of Theorem 1. The general strategy of the proof is to show that the result follows from Theo-
rem 3 for sufficiently large d. We first note that, using the assumption µ =

⊗
µi

ρµ =
⊗

ρµi (58)

and thus
Tr [ρµ] =

∏
Tr [ρµi ] ≤ δd. (59)

Lemma 1 then implies that the largest eigenvalue of the integral operator is bounded by γmax(d) ≤
δd/2. Next we observe that there is d0(δ, l, ε) such that for d ≥ d0

δd/2 ≤ εd−4l/2 and δd/2 ≤ ε3d−2l/4, (60)
because the left sides of the equations are decaying exponentially in d (recall that δ < 1) and the right
sides only polynomially.

Using the estimates above and the assumption n ≤ dl we conclude that for d ≥ d0

γmax ≤ δd/2 ≤ εd−4l/2 ≤ εn−4/2 ⇒ γmaxn
4 ≤ ε/2 (61)

γmax ≤ δd/2 ≤ ε3d−2l/2 ≤ ε3n−2/4 ⇒
√

4γmaxn2ε−1 ≤ ε. (62)

We now denote the ε used in Theorem 3 as ε′ and set ε′ = ε/2. Theorem 3 and (61) and (62) then
imply that with probability at least

1− ε′ − γmaxn4 ≥ 1− ε/2− ε/2 = 1− ε (63)
the bound

‖f − f̂λn‖22 ≥

(
1−

√
2γmaxn2

ε′

)
‖f‖2 =

(
1−

√
4γmaxn2

ε

)
‖f‖2 ≥ (1− ε)‖f‖2 (64)

holds for all λ ≥ 0. This completes the proof.
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E Proof of Theorem 2

We introduce some theory and notation necessary for the proof. We investigate the behavior of
reduced density matrices when V is distributed according to the Haar-measure on the group of unitary
matrices. The first even moments of the Haar measure on U(2d) are given by (see e.g., [53])

∫
VijV

∗
i′j′ µ(dV ) =

δii′δjj′

2d∫
Vi1j1Vi2j2V

∗
i′1j
′
1
V ∗i′2j′2 µ(dV ) =

1

22d − 1

(
δi1i′1δj1j′1δi2i′2δj2j′2 + δi1i′2δj1j′2δi2i′1δj2j′1

)
− 1

2d(22d − 1)

(
δi1i′1δj1j′2δi2i′2δj2j′1 + δi1i′2δj1j′1δi2i′1δj2j′2

)
.

(65)

Note that here and in the following V ∗ the conjugated (but not transposed) matrix. Let us remark that
while random circuits that output Haar-distributed unitaries require an exponential (in d) number of
gates our arguments actually only require unitary t-designs which are point distributions that match
the first t moments of the Haar measure. In particular a 2-design is a measure with finite support on
unitary matrices satisfying (65) (and odd moments of lower order vanish). Those can be implemented
using polynomially many gates. For details and further information we refer to the literature [54].

Recall the definition of the projected quantum kernel

ρ̃Vm(x) = Trm+1...d

[
ρV (x)

]
. (66)

To denote the partial trace in index notation we split the index i ∈ {1, . . . , 2d} in (α, ᾱ) where
α ∈ {1, . . . , 2m} denotes the index corresponding to the first m qubits and ᾱ ∈ {1, . . . , 2d−m}
denotes the index corresponding to the remaining d−m qubits. We will always use roman letters for
indices in {1, . . . , 2d}, greek letters for indices in {1, . . . , 2m} and greek letters with a bar for indices
in {1, . . . , 2d−m}. In particular, summing 1 over ᾱ results in 2d−m and summing over i results in 2d.
We will always use Einstein summation convention in the following so that, e.g. δᾱᾱ = 2d−m. We
are now ready to prove Theorem 2.

Proof of Theorem 2. We start to prove the asymptotic expression for the reduced density matrix
which is a standard result. We can write

EV
[
ρ̃Vm(x)α1,α2

]
= EV

[
Vα1ᾱ,jρ(x)j,j′V

∗
α2ᾱ,j′

]
=

2d−m

2d
δα1α2

δjj′ρ(x)j,j′ = 2−mδα1α2
Tr [ρ(x)] .

(67)

To show the concentration around the expectation value we need to calculate the variance of this
expression. We calculate the second moment of the reduced density matrix

EV
[
ρ̃Vm(x)α1,α2

ρ̃Vm(y)β1,β2

]
= EV

[
Vα1ᾱ,j1ρ(x)j1,j′1V

∗
α2ᾱ,j′1

Vβ2β̄,j2ρ(y)j2,j′2V
∗
β1β̄,j′2

]
= A1 +A2 +A3 +A4.

(68)
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Here the terms Ai correspond to the four contributions on the right hand side of (65). The four terms
can be evaluated to (assuming that Tr [ρ(x)] = 1 for all x)

A1 =
1

22d − 1
δα1α2

2d−mTr [ρ(x)] δβ1β2
2d−mTr [ρ(y)] =

22d

22d − 1
2−2mδα1α2

δβ1β2

= 2−2mδα1α2
δβ1β2

+
1

22d − 1
2−2mδα1α2

δβ1β2

A2 =
1

22d − 1
δα1β2

δᾱβ̄δj1j′2δα2β1
δβ̄ᾱδj2j′1ρ(x)j1,j′1ρ(y)j2,j′2

=
1

22d − 1
δᾱᾱρ(x)j1,j′1ρ(y)j′1,j1δα1β2

δα2β1
=

2d−m

22d − 1
Tr [ρ(x)ρ(y)] δα1β2

δα2β1

A3 = − 1

2d(22d − 1)
δα1α2δᾱᾱδj1j′2δβ1β2δβ̄β̄δj2j′1ρ(x)j1,j′1ρ(y)j2,j′2

= − 22d−2m

2d(22d − 1)
ρ(x)j1,j′1ρ(y)j′1,j1δα1α2

δβ1β2
= − 2d−2m

22d − 1
Tr [ρ(x)ρ(y)] δα1α2

δβ1β2

A4 = − 1

2d(22d − 1)
δα1β2

δᾱβ̄δj1j′1δα2β1
δα̃β̃δj2j′2ρ(x)j1,j′1ρ(y)j2,j′2

= − 1

2d(22d − 1)
δᾱᾱρ(x)j1,j1ρ(y)j2,j2δα1β2

δα2β1
= − 2−m

22d − 1
δα1β2

δα2β1

(69)

Altogether we obtain

EV
[
ρ̃Vm(x)α1,α2 ρ̃

V
m(y)β1,β2

]
=δα1α2δβ1β22−2m

(
1− 2−dTr [ρ(x)ρ(y)] + 2−2d

)
+ δα1β2

δα2β1
2−m

(
2−dTr [ρ(x)ρ(y)]− 2−2d

)
+O(2−3d)

(70)

Recall that the complex variance of a random variable is defined by E
[
|X|2

]
− |E [X]|2. Using (70)

and that ρ̃ is hermitian we can bound the variance of the entries of ρ̃(x) by

EV
[
ρ̃Vm(x)α,β(ρ̃Vm(x)α,β)∗

]
− EV

[
ρ̃Vm(x)α,β

]
EV
[
(ρ̃Vm(x)α,β)∗

]
= EV

[
ρ̃Vm(x)α,β ρ̃

V
m(x)β,α

]
− EV

[
ρ̃Vm(x)α,β

]
EV
[
ρ̃Vm(x)β,α

]
= 2−2mδαβ − (2−m)2δαβ +O(2−d) = O(2−d).

(71)

This shows that ρ̃V (x) is close to 2−mid with high probability for large d and finishes the proof of
the first part of the theorem.

We now turn to the evaluation of the averaged operator EV [Oµ] and the corresponding operator

T (M) = Tr2 [EV [Oµ](id⊗M)] (72)

whose matrix elements we denote by Tα1α2;β1β2 so that T (M)α1,α2 = Tα1α2;β1β2Mβ1,β2 . We
assume that ρ(x) is pure for all x, i.e., Tr

[
ρ(x)2

]
= 1. We have seen in (37) that the matrix elements

of this operator are given by

EV
[∫

ρ̃Vm(y)⊗ (ρ̃Vm(y))∗ µ(dy)

]
=

∫
EV
[
ρ̃Vm(y)⊗ (ρ̃Vm(y))∗

]
µ(dy). (73)

From (70) we obtain for the matrix elements

EV
[
ρ̃V (y)α1,α2(ρ̃

V
(y)β1,β2)∗

]
= EV

[
ρ̃V (y)α1,α2 ρ̃

V (y)β2,β1

]
= 2−2mδα1α2

δβ1β2
+

2−m

2d
δα1β1δα2β2 −

2−2m

2d
δα1α2δβ1β2 +O(2−2d).

(74)
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Figure 4: Similar as in Fig. 2. However, for the full quantum kernel k and the rbf kernel, we compute
train and test loss over multiple choices of the regularization parameter. For each number of qubits,
we only report the loss of the method that achieved smallest test loss. Note that, although this is
invalid to asses the power of the full and rbf kernel, it shows, that the poor performance is not due to
the choice of regularization. Since we cherry-pick on the test loss, it can happen that an underfitting
regularization has the best test loss, which explains the outlier on k at d = 6.

Since this is independent of y we can write the matrix elements of T as

Tα1α2;β1β2 = 2−2m(1− 2−d)δα1α2δβ1β2 +
2−m

2d
δα1β1δβ2α2 +O(2−2d) (75)

From here we conclude that T can be written as

T (M)α1,α2
= 2−2m(1− 2−d)δα1α2

δβ1β2
Mβ1,β2

+
2−m

2d
δα1β1

δα2β2
Mβ1,β2

+O(2−2d)

= 2−2m(1− 2−d)δα1α2Mβ1,β1 +
2−m

2d
Mα1,α2 +O(2−2d)

(76)

or, more concisely,

T (M) =
2−m

2d
M + 2−2m(1− 2−d)id2m×2mTr [id2m×2mM ] +O(2−2d) (77)

and we observe that T is the sum of a multiple of the identity and a rank one perturbation (plus higher
order terms): In particular the eigenvalues neglecting the perturbation are

γ1 = 2−2m(1− 2−d)Tr [id2m×2m id2m×2m ] + 2−m−d = 2−m(1− 2−d) + 2−m−d = 2−m (78)

with eigenvector M1 = id2m×2m and γ2 = . . . = γ2m×2m = 2−m−d with traceless eigenvectors,
i.e., Tr [id2m×2mMi] = 0 for i 6= 1. Standard bounds show that the higher order terms change
the eigenvalues only by a term of order O(2−2d). Finally, we observe that the function mapping
x→ Tr

[
ρ̃Vm(x)M1

]
is a constant function for any V . Indeed,

Tr
[
ρ̃Vm(x)M1

]
= Tr

[
Trm+1...d

[
V ρ(x)V †

]]
= Tr

[
V ρ(x)V †

]
= Tr [ρ(x)] = 1. (79)

F More on experiments

For details on the implementation we refer to the provided code.5 We emphasize that our experiments
simulate the full quantum state and thus work with the true values of the quantum kernel. This is an
idealized setting and neglects the effect of finite measurements. Please see our discussion on Barren
Plateaus in the main paper.

To reduce computations and speed-up the simulation, we compute the full quantum kernel k(x, x′) =∏
cos2 ((xi − x′i)/2) directly without simulating a quantum circuit. For the biased kernels we

5https://github.com/jmkuebler/quantumbias
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recommend (and implement it that way) to completely simulate ρV1 (xi) for all i = 1, . . . , n and
store the reduced density matrices (2× 2 hermitian matrices). On a real quantum device this would
correspond to doing quantum state tomography [36]. The benefit of this is that we only need to
simulate the quantum circuit n times and can then directly compute the biased kernels via matrix
products and tracing. If we chose to compute each entry of the kernel matrix individually we would
have to simulate the circuit n2 times.

Random generation of V . In order to generate random unitary matrices V we use the PennyLane
function RANDOMLAYERS [51]. For d qubits we use d2 layers of single qubit rotations and 2-qubit
entangling gates. For more details and the used seeds please refer to the provided implementation.

Choice of regularization. For the biased kernels q, qw regularization does not matter much, since
they have only a four-dimensional RKHS and we consider sample sizes much larger than that. The
RKHS simply does not have enough capacity to overfit to random noise. We therefore set the
regularization λ = 0 for the biased kernels. On the other hand for the higher dimensional kernels
k, krbf, the regulariyation strongly influences their performance. For the experiment in the main paper
we set λ = 10−3 for the latter methods. Note that in a real application one should use cross-validation
or other model selection techniques to find good hyperparameters, which we omitted for simplicity.
To exclude that the bad performance of k and krbf stems from a bad choice of regularization, we
include experiments where we fit kernel ridge regression for 15 values of λ on a logarithmic grid
from 10−6 to 104. We then cherry-pick only the solution that performs best and report it in Figure
4. Note that such an approach is of course not legit to asses the actual performance. However, it
serves to bound the performance for the optimal choice of regularization. Our observations show that
the behavior does not significantly change and we conclude that the performance difference indeed
comes from the spectral bias as predicted by our theory.

Additional experiments. To show how the kernel target alignment changes as we increase the
number of qubits d, we include further histograms in Figure 5. The estimated kernel alignment
correlates with the learning performance reported in Figure 2.
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Figure 5: Kernel Target Alignment for d = 1, 3, 5, 7.
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