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ABSTRACT

We study learning the approximate Nash equilibrium (NE) policy profile in two-
player zero-sum imperfect information extensive-form games (IIEFGs) with last-
iterate convergence. The algorithms in previous works studying this problem ei-
ther require full-information feedback or only have asymptotic convergence rates.
In contrast, we study IIEFGs in the formulation of partially observable Markov
games (POMGs) with the perfect-recall assumption and bandit feedback, where
the knowledge of the game is not known a priori and only the rewards of the
experienced information set and action pairs are revealed to the learners in each
episode. Our algorithm utilizes a negentropy regularizer weighted by a virtual
transition over information set-action space. By carefully designing the virtual
transition together with the leverage of the entropy regularization technique, we
prove that our algorithm converges to the NE of IIEFGs with a provable finite-time
convergence rate of Õ(k−1/8) with high probability under bandit feedback, thus
answering the second question of Fiegel et al. (2023) affirmatively.

1 INTRODUCTION

In imperfect information games (IIGs), players operate with limited visibility into the game’s true
state, necessitating strategic decision-making based on incomplete information. Notably, the concept
of imperfect-information extensive-form games (IIEFGs), as introduced by Kuhn (1953), encapsu-
lates both the intricacies of imperfect information and the sequential nature of players’ moves. This
framework aptly represents a broad spectrum of real-world scenarios, such as Poker (Heinrich et al.,
2015; Moravčı́k et al., 2017; Brown & Sandholm, 2018), Bridge (Tian et al., 2020), Scotland Yard
(Schmid et al., 2021), and Mahjong (Li et al., 2020; Kurita & Hoki, 2021; Fu et al., 2022). Extensive
research has been devoted to identifying the (approximate) Nash equilibrium (NE) (Nash Jr, 1950)
within IIEFGs. Assuming the condition of perfect recall, where players possess the memory of past
events and their implications, various methodologies have been employed to tackle these games.
These include linear programming approaches (Koller & Megiddo, 1992; Von Stengel, 1996; Koller
et al., 1996), which leverage mathematical optimization under full game knowledge, first-order op-
timization techniques (Hoda et al., 2010; Kroer et al., 2015; 2018; Munos et al., 2020; Lee et al.,
2021; Liu et al., 2022), which iteratively refine strategies via repeated playthroughs of the games,
and counterfactual regret minimization algorithms (Zinkevich et al., 2007; Lanctot et al., 2009; Jo-
hanson et al., 2012; Tammelin, 2014; Schmid et al., 2019; Burch et al., 2019; Liu et al., 2022), which
adaptively adjust strategies based on counterfactual outcomes.

In practical scenarios, IIEFGs might involve large information set and action spaces, thwarting the
application of linear programming approaches for computing the NE in IIEFGs. In this realm, the
NE in IIEFGs is typically learned from random samples gathered through iterative playthroughs
of the game, by Monte-Carlo counterfactual regret minimization (CFR) methods (Lanctot et al.,
2009; Farina et al., 2020; Farina & Sandholm, 2021) or online mirror descent (OMD) and follow-
the-regularized-leader (FTRL) frameworks (Farina et al., 2021; Kozuno et al., 2021; Bai et al.,
2022; Fiegel et al., 2023). Notably, Bai et al. (2022) devise an OMD-based approach incorpo-
rating “balanced exploration policies” to learn an ε-approximate NE with sample complexity of
Õ
(
H3(XA+ Y B)/ε2

)
, where H is the horizon length, X , Y are the sizes of the information set

space for the max- and min-player, and A and B are the sizes of the action space for the max- and
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min-player. This upper bound is information-theoretically optimal with respect to all parameters ex-
cept H , up to logarithmic factors. Building upon Bai et al. (2022), Fiegel et al. (2023) make further
strides, refining the upper bound to Õ

(
H(XA+ Y B)/ε2

)
by harnessing FTRL with “balanced

transitions”, achieving (nearly) optimal learning of IIEFGs in all parameters.

Despite the (nearly) optimal leaning of the ε-NE in IIEFGs by Bai et al. (2022); Fiegel et al. (2023),
the algorithms in these works require to average all the policies generated during the running of the
algorithms, so as to obtain the final policy profile with ε-NE guarantee. This is typically termed as
the average-iterate convergence. However, in IIEFGs with large information set and action spaces,
such an average operation over policy sets usually induces substantial storage and computation over-
head. In cases when the policies in the games are approximated by nonlinear function approximation
(e.g., neural networks), which has achieved great empirical success in recent years (Moravčı́k et al.,
2017; Brown & Sandholm, 2018), computing the averaged policy even might be not feasible due
to the nonlinearity of such function approximations. This motivates the studies of the learning al-
gorithms with the last-iterate convergence guarantee of games including IIEFGs (Lin et al., 2020;
Wei et al., 2021a;a; Lee et al., 2021; Cai et al., 2022; Abe et al., 2023; Feng et al., 2023; Cen et al.,
2023; Liu et al., 2023). Specifically, Lee et al. (2021); Liu et al. (2023) establish algorithms for
learning IIEFGs with last-iterate convergence rate of Õ(1/k). However, the algorithms of Lee et al.
(2021); Liu et al. (2023) require full-information feedback when learning IIEFGs, and thus can not
be directly applied in practical cases when the knowledge of the games is not known a priori. The
above considerations naturally motivate the following question:

Can we achieve last-iterate convergence for learning IIEFGs with bandit feedback?

Indeed, the same question has also been raised by Fiegel et al. (2023). In this work, we answer this
question affirmatively. The main contributions of our work are summarized as follows:

• We propose the first algorithm that learns the approximate NE of IIEFGs with provable last-iterate
convergence in the bandit feedback setting. In contrast with the vanilla negentropy regularizer
(Lee et al., 2021) and the dilated negentropy regularizer (Lee et al., 2021; Liu et al., 2023) used by
previous works to achieve the last-iterate convergence for IIEFGs with full-information feedback,
our algorithm leverages the negentropy regularizer weighted by a virtual transition over infoset-
action space to regularize the game. Via constructing the loss estimator regularized by such vir-
tual transition weighted negentropy, our algorithm avoids directly regularizing the sequence-form
representation of policies and results in a desirable contraction of the KL-divergence between
probability measures over the information set-action space, instead of only obtaining the KL-
divergence between the sequence-form representation of policies (see Section 4.1 and Section 5.1
for details). Besides, our algorithm does not require any communication or coordination between
the two players and is model-free, without requiring the knowledge of the underlying state transi-
tion probabilities and the reward functions.

• To efficiently bound the stability term in the one-step analysis of OMD with Bregman divergence
induced by the virtual transition weighted negentropy regularizer, we design a virtual transition
over the information set-action space that maximizes the minimum visitation probability of all the
information sets (see Section 4.1 for more elaboration on this). With such a virtual transition, we
finally prove that our algorithm obtains the finite-time last-iterate convergence rate for learning
IIEFGs in the bandit feedback setting of Õ((X +Y )[(XA+Y B)1/2 +(X +Y )1/4H]k−1/8) with
high probability (for large enough k), where H is the horizon length, X and Y are the size of the
information set spaces of the max- and min-player, A and B are the size of the action spaces of
the max- and min-player, and k is the number of episodes. The methodology of our algorithm’s
analysis is inspired by the last-iterate convergence learning of the matrix games and the (fully
observable) Markov games of Cai et al. (2023), but we provide a refined analysis specifically for
IIEFGs to further sharpen the dependence on the parameters when deriving the final convergence
rate (see Section 5.1 for details).

• When only obtaining the expected convergence rate is desired, our algorithm can generate a policy
profile converging to the NE with a rate of Õ((X + Y )[(X2A+ Y 2B)1/2 + (X + Y )1/4H]k−1/6)
in expectation. For the problem of learning the NE of IIEFGs in the bandit-feedback setting, we
provide an Ω(

√
XA+ Y Bk−1/2) lower bound of the last-iterate convergence rate.
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2 RELATED WORKS

2.1 PARTIALLY OBSERVABLE MARKOV GAMES (POMGS)

With perfect information, learning Markov games (MGs) can be traced back to the seminal work of
Littman & Szepesvári (1996) and has since garnered extensive research attention (Littman, 2001;
Greenwald & Hall, 2003; Hu & Wellman, 2003; Hansen et al., 2013; Sidford et al., 2018; Lagoudakis
& Parr, 2002; Pérolat et al., 2015; Fan et al., 2020; Jia et al., 2019; Cui & Yang, 2021; Zhang et al.,
2021; Bai & Jin, 2020; Liu et al., 2021; Zhou et al., 2021; Song et al., 2022; Li et al., 2022; Xiong
et al., 2022; Wang et al., 2023; Cui et al., 2023). In scenarios where only imperfect information
is available yet the complete knowledge of the game (transitions and rewards) is known, exist-
ing research can be categorized into three primary streams. The first stream leverages sequence-
form representation of policies to recast the problem as a linear program (Koller & Megiddo, 1992;
Von Stengel, 1996; Koller et al., 1996). The second stream translates the problem into a minimax
optimization problem and explores first-order algorithms, as exemplified in (Hoda et al., 2010; Kroer
et al., 2015; 2018; Munos et al., 2020; Lee et al., 2021; Liu et al., 2022). Lastly, the third stream
addresses the problem through CFR, minimizing counterfactual regrets locally within each informa-
tion set (Zinkevich et al., 2007; Lanctot et al., 2009; Johanson et al., 2012; Tammelin, 2014; Schmid
et al., 2019; Burch et al., 2019; Liu et al., 2022).

In the realm where the knowledge of the game is either unknown or only partially accessible, the
Monte-Carlo CFR algorithm introduced by Lanctot et al. (2009) pioneers the achievement of the
first ε-NE result. This framework has been further generalized and extended by Farina et al. (2020);
Farina & Sandholm (2021). Additionally, another line of research focuses on integrating OMD and
FTRL frameworks with importance-weighted loss estimators (Farina et al., 2021; Kozuno et al.,
2021; Bai et al., 2022; Fiegel et al., 2023). Remarkably, Bai et al. (2022) achieve an ε-approximate
NE with sample complexity of Õ

(
H3(XA+ Y B)/ε2

)
by employing a “balanced” dilated KL-

divergence as the distance metric. Building upon this concept, Fiegel et al. (2023) utilize “bal-
anced transitions” and attain a (nearly) optimal sample complexity of Õ

(
H(XA+ Y B)/ε2

)
, which

matches the information-theoretic lower bound up to logarithmic factors. However, we note that all
the algorithms in existing works studying POMGs with bandit feedback only have average-iterate
convergence guarantees, while we aim to establish the last-iterate convergence guarantee.

2.2 LAST-ITERATE CONVERGENCE LEARNING IN GAMES

With full-information feedback, learning in games with last-iterate convergence guarantee has been
investigated in strongly monotone games (Mokhtari et al., 2020; Jordan et al., 2024), monotone
games (Golowich et al., 2020; Cai et al., 2022; Gorbunov et al., 2022; Cai & Zheng, 2023), Markov
games (Cen et al., 2021; 2023), and IIEFGs (Lee et al., 2021; Liu et al., 2023; Bernasconi et al.,
2024).

Recently, motivated by the fact that it might be restrictive to require full knowledge of the (noisy)
gradient as in the full-information feedback setting, a growing body of works has studied learning
in games with last-iterate convergence guarantee in the bandit feedback setting including strongly
monotone games (Bravo et al., 2018; Lin et al., 2021) (Bravo et al., 2018; Hsieh et al., 2019; Lin
et al., 2021; Drusvyatskiy et al., 2022; Huang & Hu, 2023), matrix games (Cai et al., 2023) and
Markov games (Wei et al., 2021b; Chen et al., 2022; Cai et al., 2023). However, the algorithm
of Wei et al. (2021b) needs coordinated updates and some prior knowledge of the game, and the
algorithm of Chen et al. (2022) requires the players to inform the opponent about the entropy of
their own policies. Amongst these works, Cai et al. (2023) remove all the coupling requirements,
achieving last-iterate convergences of Õ(k−1/8) for matrix games and of Õ(k−1/9+ε) for any ε >
0 for irreducible Markov games. We note that all existing works study fully-observable Markov
games, while we aim to establish uncoupled algorithms for learning IIEFGs in the formulation of
partially-observable Makov games, without requiring the knowledge of the games.

3 PRELIMINARIES

For ease of exposition, we consider IIEFGs in the formulation of POMGs and introduce the prelim-
inaries of them in this section, following previous works (Kozuno et al., 2021; Bai et al., 2022).
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Partially Observable Markov Games We study episodic, finite-horizon, two-player zero-sum
POMGs, denoted by POMG(S,X ,Y,A,B, H,P, r), in which

• H is the horizon length;

• S =
⋃
h∈[H] Sh is the finite state space with Sh as the state space at step h. S =

∑H
h=1 Sh is the

size of S where |Sh| = Sh, ∀h ∈ [H];
• X =

⋃
h∈[H] Xh is the finite space of information sets (short for infosets in the following) for the

max-player, where Xh = {x(s) : s ∈ Sh} is the set of the infosets at step h with x : S → X
as the emission function. X =

∑H
h=1Xh is the size of X with |Xh| = Xh. The finite space of

infosets Y =
⋃
h∈[H] Yh for the min-player and its size are defined analogously;

• A with |A| = A and B with |B| = B are the finite action spaces for the max-player and min-
player, respectively;

• P = {p0(·) ∈ ∆S1
}
⋃
{ph (·|sh, ah, bh) ∈ ∆Sh+1

}(sh,ah,bh)∈Sh×A×B,h∈[H−1] are the state tran-
sition probabilities, where p0(·) is the probability distribution of initial states, ph(sh+1|sh, ah, bh)
is the probability of transitioning to the next state sh+1 conditioned on (sh, ah, bh) at step h, and
∆Sh

denotes the probability simplex over Sh;
• r = {rh (sh, ah, bh) ∈ [0, 1]}(sh,ah,bh)∈Sh×A×B,h∈[H] are the (randomized) reward functions

with r̄h (sh, ah, bh) as mean for each rh(sh, ah, bh).

Learning Protocol Define the max-player’s stochastic policy as µ = {µh}h∈[H], where µkh :
Xh → ∆A denotes the policy at step h during episode k. The set of all such policies for the
max-player is denoted by Πmax. Analogously, the min-player’s stochastic policy is specified as
ν = {νh}h∈[H], with νkh : Yh → ∆B being the policy at step h during episode k, and the set of
all min-player policies is denoted by Πmin. The game proceeds in a finite number of episodes. At
the commencement of episode k, the max-player selects a stochastic policy µk ∈ Πmax, while the
min-player chooses νk ∈ Πmin. Meanwhile, an initial state sk1 is sampled from the distribution
p0(·) by the environment. During each step h within an episode, the max-player and min-player
observe their respective infosets xkh := x(skh) and ykh := y(skh), but they do not directly observe the
underlying state skh. Given xkh, the max-player samples and executes an action akh ∼ µkh(·|xkh), while
the min-player concurrently takes an action bkh ∼ νkh(·|ykh). Upon taking these actions, the max-
player and min-player receive rewards rkh := rh(s

k
h, a

k
h, b

k
h) and −rkh, respectively. Subsequently,

the game transitions to the next state sth+1 ∼ ph(·|skh, akh, bkh). The k-th episode will terminate after
actions akH and bkH are taken conditioned on xkH and ykH .

Perfect Recall and Tree Structure Following prior works (Kozuno et al., 2021; Bai et al., 2022;
Fiegel et al., 2023), we assume that the POMGs adhere to the tree structure and the perfect re-
call condition, as defined by Kuhn (1953). Explicitly, the tree structure signifies that for any step
h = 2, . . . ,H and state sh ∈ Sh, there exists a unique path (s1, a1, b1, . . . , sh−1, ah−1, bh−1) cul-
minating in sh. The perfect recall condition, meanwhile, is fulfilled for both players, implying that
for any h = 2, . . . ,H and any infoset xh ∈ Xh of the max-player (analogously for the min-player),
there exists a unique history (x1, a1, . . . , xh−1, ah−1) leading to xh. Furthermore, we introduce the
notation Ch′(xh, ah) ⊂ Xh′ to represent the set of descendants of the infoset-action pair (xh, ah) at
step h′ ⩾ h. Also, we define Ch′(xh) :=

⋃
ah∈A Ch′(xh, ah) as the union of descendants across all

actions at xh, and for convenience, let C(xh, ah) := Ch+1(xh, ah) signify the immediate descen-
dants at the subsequent step.

Sequence-form Representations For any pair of product policies (µ, ν), the tree structure and the
perfect recall condition facilitate the sequence-form representation of the reaching probability for
the state-action tuple (sh, ah, bh):

Pµ,ν(sh, ah, bh) = p1:h(sh)µ1:h(x(sh), ah)ν1:h(y(sh), bh) , (1)

where p1:h(sh) = p0(s1)
∏h−1
h′=1 ph′(sh′+1|sh′ , ah′ , bh′) denotes the sequence-form transition prob-

ability, and µ1:h(xh, ah) :=
∏h
h′=1 µh′(ah′ |xh′) and ν1:h(yh, bh) :=

∏h
h′=1 νh′(bh′ |yh′) represent

the sequence-form policies of the max- and min player, respectively. Under the sequence-form rep-
resentation, we adopt a slight abuse of notation for µ and ν by interpreting them as µ = {µ1:h}h∈[H]
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and ν = {ν1:h}h∈[H].1 Furthermore, it is clear that Πmax constitutes a convex compact sub-
space of RXA that adheres to the constraints µ1:h(xh, ah) ⩾ 0 and

∑
ah∈A µ1:h(xh, ah) =

µ1:h−1(xh−1, ah−1), where (xh−1, ah−1) is such that xh ∈ C(xh−1, ah−1) (with the understanding
that µ1:0(x0, a0) = 1 as a base case).

Learning Objective In this work, we consider the learning objective of finding an approximate
NE of the POMG. Specifically, for any ε ⩾ 0, an ε-approximate NE is a pair of product policy (µ, ν)
satisfying

NEGap(µ, ν) := max
µ†∈Πmax

V µ
†,ν − min

ν†∈Πmin

V µ,ν
†
⩽ ε , (2)

where V µ,ν = Eµ,ν
[∑H

h=1 rh(sh, ah, bh)
]

the value function of (µ, ν) with the expectation taken
over the randomness of the product policy pair (µ, ν) and the environment. It is known that using
regret to NE conversion, an approximate NE can be obtained by averaging all the policies {µ}Kk=1
of the max-player generated by an algorithm with sublinear regret (similarly for the min-player) to
obtain the average policy pair (µ̄, ν̄) (see, e.g., Theorem 1 of Kozuno et al. (2021)). This is the
so-called average-iterate convergence of learning NE. In this work, we are interested in finding the
ε-NE with the (finite-time) last-iterate convergence guarantee; that is, the algorithm is required to
generate an approximate NE policy profile (µk, νk) such that NEGap(µk, νk) ⩽ εk in each episode
for finite-time k.

Information Available to the Players In this work, we consider learning POMGs in the bandit
feedback setting, where in each episode k, the max-player only observes her experienced trajectory
(xk1 , a

k
1 , r

k
1 , . . . , x

k
H , a

k
H , r

k
H) of infosets, actions, and rewards, but not the underlying states or the

opponent’s infosets and actions. Additionally, the max-player does not have knowledge about the
policies adopted by the min-player and also can not receive any information from the min-player
and vice versa. Besides, there is no shared randomness between both players; that is, the algorithms
of both players need to be fully uncoupled from each other.

Additional Notations We slightly abuse the notation to view xh as the set {s ∈ Sh : x(s) =
xh}, when writing s ∈ xh. Given sequence-form representations, for any µ ∈ Πmax and
a sequence of functions f = (fh)h∈[H] with fh : Xh × A → R, we define ⟨µ, f⟩ :=∑
h∈[H],(xh,ah)∈Xh×A µ1:h(xh, ah)fh(xh, ah). We denote by Fk the σ-algebra generated by the

random variables {(sth, ath, bth, rth)}h∈[H],t∈[k]. For brevity, we abbreviate the conditional expecta-
tion E[· | Fk] as Ek[·]. Throughout this paper, the notation Õ(·) suppresses all logarithmic factors.

4 ALGORITHM

In this section, we introduce the proposed algorithm, detailed in Algorithm 1.

4.1 FROM SEQUENCE-FORM REPRESENTATIONS TO PROBABILITY MEASURES OVER
INFOSET-ACTION SPACE

With sequence-form representations, we first reformulate the IIEFG into the following bilinear
game:

f(µ, ν) = µ⊤Gν , (4)

where G ∈ RXA×Y B is the loss matrix with G[(xh, ah), (yh, bh)] =∑
sh∈xh∩yh p1:h (sh) (1− rh (sh, ah, bh)). In this manner, the learning objective is equiva-

lent to finding (µ, ν) such that NEGap(µ, ν) = supµ†∈Πmax,ν†∈Πmin
f(µ, ν†) − f(µ†, ν) ⩽ ε. At

a high level, we apply the entropy regularizing technique to perturb the bilinear form of the game,
as defined in Eq. (4), into a strongly convex-strongly concave structure, ensuring convergence to
both the NE of the perturbed game (and thus the NE of the original game in Eq. (4)). This approach

1The sequence-form representation of policies is defined in a top-down manner and is equivalent to the
“treeplex” space of policies defined in a bottom-up manner (see, e.g., Lee et al. (2021)).
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Algorithm 1 OMD with Virtual Transition Weighted Negentropy Regularization (max-player)
1: Input: ηk = k−αη , γk = k−αγ , εk = k−αε .
2: Initialize: µ1(ah|xh) = 1

A , ∀(xh, ah) ∈ Xh ×A, ∀h ∈ [H]. Set px computed by Algorithm 2.
3: for k = 1, · · · , do
4: for h = 1, · · · , H do
5: Observes xkh, executes akh ∼ µkh(·|xkh) and receives rkh.
6: For all (xh, ah) ∈ Xh ×A, set entropy regularized loss estimator as

ℓ̂kh(xh, ah) =
Ikh{xh, ah}

µk1:h(xh, ah) + γk
(1− rkh) + εk · px1:h (xn) log[px1:h · µk1:h](xh, ah) .

7: end for
8: Update policy

µk+1 = argmin
µ∈Πk+1

max

ηk⟨µ, ℓ̂k⟩+Dψ(µ, µ
k) , (3)

where Πk+1
max = {µ ∈ Πmax : µ(ah|xh) ⩾ 1

A(k+1) , ∀(xh, ah) ∈ Xh ×A,∀h ∈ [H]}.
9: end for

Algorithm 2 Computing virtual transition px (max-player)
1: Input: Game tree structure of X ×A .
2: Initialization: Sequence-form representation of virtual transition q ∈ RX ; array of maximized

number of descendant infoset c ∈ RX , d ∈ RXA. For all xH in XH , set c[xH ] = 1.
3: for h = H − 1 to 1 do
4: for xh in Xh do
5: for ah in A do
6: Compute d[xh, ah] =

∑
xh+1∈C(xh,ah)

c[xh+1].
7: end for
8: Compute c[xh] = maxa∈A d[xh, a].
9: end for

10: end for
11: for x1 in X1 do
12: Compute q1:1(x1) =

c[x1]∑
x1∈X1

c[x1]
.

13: end for
14: for h = 1 to H − 1 do
15: for xh, ah in Xh ×A do
16: for xh+1 in C(xh, ah) do
17: Compute q1:h+1(xh+1) = q1:h(xh) · c[xh+1]∑

xh+1∈C(xh,ah) c[xh+1]
.

18: end for
19: end for
20: end for
21: return q.

builds upon previous research that has explored last-iterate convergence learning in Markov games
with full-information feedback (Cen et al., 2021; Chen et al., 2022; Cen et al., 2023), matrix games
and Markov games with bandit feedback (Cai et al., 2023), and IIEFGs with full-information
feedback (Liu et al., 2023). Specifically, we consider the following perturbed game as a surrogate:

fk(µ, ν) = µ⊤Gν + εkψ(µ)− εkψ(ν) , (5)

where ψ is some strongly convex regularizer to be used in OMD and εk > 0 serves as the knob
to control the strength of the entropy regularization in episode k. Intuitively, due to the strongly
convex-strongly concave property of the perturbed game, one is able to find the approximate NE
of it with last-iterate convergence using OMD. On the other hand, by gradually decreasing εk to
be moderately small, the approximate NE of the perturbed game in Eq. (5) will also serve as an
approximate NE of the original game in Eq. (4).
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The crucial aspect lies in selecting an appropriate regularizer ψ. Initially, the first candi-
date that might come to mind is the utilization of the vanilla negentropy regularizer ψ(µ) =∑
h,xh,ah

µ1:h(xh, ah) logµ1:h(xh, ah), which has been utilized to achieve the last-iterate conver-
gence for IIEFGs with full-information feedback (Lee et al., 2021) and matrix games, the special
case of IIEFGs, with bandit feedback (Cai et al., 2023). However, in IIEFGs with bandit feed-
back, though using the vanilla negentropy regularizer results in a convergence of the Bregman di-
vergence, it is generally hard to control the NE gap since it directly regularizes the sequence-form
representation policies. The other natural approach is considering using the dilated negentropy
ψ(µ) =

∑
h,xh,ah

µ1:h (xh, ah) log
(
µ1:h(xh,ah)
µ1:h(xh)

)
(Kroer et al., 2015; Kozuno et al., 2021). Indeed,

the dilated negentropy has also been used to achieve the last-iterate convergence of the IIEFGs with
full-information feedback (Lee et al., 2021; Liu et al., 2023; Bernasconi et al., 2024). However, in
contrast with the full-information feedback setting, leveraging the entropy regularization technique
to obtain the finite-time convergence guarantee in the bandit feedback setting requires the probabil-
ity of selecting each action ah given each infoset xh being lower bounded to prevent the stability
term in the analysis of OMD from being prohibitively largely. This essentially requires constraining
the optimization of OMD onto a subset of the entire space of the sequence-form representations of
policies Πmax. Nevertheless, this will also make the stability term of OMD using the dilated negen-
tropy in conjunction with the regularization technique hard to control, as bounding the stability term
of the OMD with dilated negentropy critically relies upon its closed-form update solution (see, e.g.,
Lemma 7 of Kozuno et al. (2021)), which no longer holds in the case where the policy update of
OMD is constrained onto a subset of Πmax.

To cope with the above difficulties, we instead consider using the negentropy regularizer weighted
by a kind of virtual transition px over the infoset-action space X ×A:

ψpx(µ) =
∑

h,xh,ah

px1:h(xh)µ1:h(xh, ah) log (p
x
1:h(xh)µ1:h(xh, ah)) ,

where pxh(·|xh, ah) ∈ ∆C(xh,ah) is a transition probability over Xh × A × Xh+1 and
px1:h(xh) = px0 (x1)

∏h−1
h′=1 p

x
h′ (xh′+1|xh′ , ah′) is its sequence-form representation. Note that

pxh(xh+1|x(sh), ah) is not necessarily to be the true transition probability Pµk,νk

(xh+1|x(sh), ah) =∑
sh+1∈xh+1,bh∈B p(sh+1|sh, ah, bh)νk(bh|y(sh)) experienced by the max-player in episode k.

Also, notice that ψpx(·) is dependent on the chosen virtual transition px and we drop the dependence
in the subscript of ψpx(·) on px when the context is clear for brevity. We remark that similar ideas
leveraging negentropy weighted by the transition over infoset-action space have also been exploited
by Bai et al. (2022); Fiegel et al. (2023). However, we would like to underscore that the design of our
virtual transition p⋆ over infoset-action space is different from those of Bai et al. (2022); Fiegel et al.
(2023) and we aim to establish the last-iterate convergence of IIEFGs while they can only guaran-
tee the average-iterate convergence, necessitating different theoretical analysis. Besides, one can see
that the constructed virtual transition px is well-defined by the perfect recall condition and px1:h ·µ1:h

with [px1:h · µ1:h](xh, ah) = px1:h(xh)µ1:h(xh, ah) is a probability measure over the infoset-action
space Xh × A at step h. Therefore, we actually regularize the probability measures over Xh × A
instead of directly regularizing the sequence-form representation µ, which tackles the difficulties of
using the vanilla negentropy and the dilated negentropy as mentioned above. The other nice prop-
erty of virtual transition weighted negentropy is that Dψ(µ1, µ2) = KL(pxµ1, p

xµ2), facilitating
bounding the final NE gap as we shall see in Section 5.1.

With regularizer ψ specified, the derivative of fk(µ, ν) w.r.t. µ(xh, ah) is ∂fk(µ,ν)
∂µ1:h(xh,ah)

=

Gν [(xh, ah)] + εk · px1:h (xn) [log[px1:h · µ1:h](xh, ah) + 1]. Since [px1:h · µ1:h] ∈ ∆Xh×A for any
µ, the constant 1 in the above display does not affect the optimization of OMD. On the other hand,
in the bandit feedback setting, an (optimistically biased) loss estimate I{xh,ah}

µk
1:h(xh,ah)+γk

(1 − rkh) of
Gν [(xh, ah)] in episode k is constructed (Kozuno et al., 2021), where γk > 0 is the implicit ex-
ploration parameter (Neu, 2015). This specifies the final entropy regularized loss estimator used by
Algorithm 1 on Line 6.

With the constructed loss estimator, Algorithm 1 then uses OMD to update policy. Since now the en-
tropy regularized loss estimator is considered, the variance of the loss estimator will be prohibitively
large if running OMD on the entire space of the sequence-form representations Πmax, eventually
leading to an unbounded stability term of OMD. Hence we constrain the feasible set of the OMD
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as a subset Πk+1
max of Πmax, where each µ ∈ Πk+1

max satisfying µ(ah|xh) is lower bounded for all
(xh, ah) ∈ Xh ×A and h ∈ [H] (Line 8).

4.2 VIRTUAL TRANSITION WITH MAXIMIZED MINIMUM VISITATION PROBABILITY

As elaborated in Section 4.1, our Algorithm 1 leverages a virtual transition weighted negentropy to
regularize the loss estimator and induce the Bregman divergence used in OMD. It remains to specify
an appropriate virtual transition px. The upside of employing such virtual transition px lies in that
it implicitly helps to operate the update of OMD in the space of probability measures over infoset-
action pairs instead of the sequence-form representations of policies. However, this also comes at
the expense of enlarging the stability term of OMD. Specifically, upon applying the virtual transition
to weight the negentropy, the stability term associated with OMD at each information set xh will be
enlarged by (approximately) a multiplicative factor of 1/px(xh). This enlargement arises intuitively
from the fact that, at each xh, the Bregman divergence induced by ψ undergoes a downscaling,
proportional to px(xh), thereby resulting in a relative increase in the stability term. Therefore, to
ensure that the stability term is well-controlled, we design the following px which maximizes the
minimum visitation probability of all xh in its sequence-form representation:

px = argmax
q∈Px

min
xh∈Xh,h∈[H]

q1:h(xh) . (6)

In the above display, we denote by Px the set of all the valid virtual transitions over infoset-action
space. We note that such a virtual transition px can be efficiently computed by Algorithm 2 via
backward dynamic programming.

Computation Due to the fact the update of OMD is now constrained onto a subset Πkmax of the
entire space Πmax of the sequence-form representation policies, the computation of Eq. (3) gen-
erally does not have a closed-form solution. We hereby provide an algorithm, which computes
an approximate solution to Eq. (3), detailed in Algorithm 3. In particular, Algorithm 3 utilizes a
Frank–Wolfe-type procedure to compute the update in Eq. (3). In particular, there will be T iter-
ations in Algorithm 3, and in each iteration t, the policy will be updated towards the direction that
minimizes the gradient of the objective function w.r.t. policy µ(t−1) in iteration t − 1 by dynamic
programming in Algorithm 4. We defer the details of Algorithm 3 and Algorithm 4 to Appendix F.

5 ANALYSIS

In this section, we first present the upper bound of the last-iterate convergence rate of our Algorithm
1. Then the lower bound for the problem of learning IIEFGs with bandit feedback and last-iterate
convergence guarantee will be provided.

5.1 UPPER BOUND OF LAST-ITERATE CONVERGENCE

Theorem 5.1. If Algorithm 1 is adopted by both players, for any k ⩾ 1, with probability at least
1− Õ(δ), it holds that

NEGap(µk, νk) = O
([

(XA+ Y B)
1
2 k−

1
8 + (XA+ Y B)

1
2 Hk−

3
8 +

(
X2A+ Y 2B

) 1
2 k−

1
4 + (X + Y )

1
4Hk−

1
8

]
·(X + Y ) (log (XAk/δ) + log (Y Bk/δ)) log

1
2 (k) + k−

1
8H(ln(XA) + ln(Y B)) + (XAB + Y BH)/k

)
.

Remark 5.2. Ignoring the poly-logarithmic terms and when k is large enough (specifically,
k ⩾ max{H4, (X

2A+Y 2B)
4

/(XA+Y B)4, (XA+Y B)
8/7
/(X+Y )

10/7}), we have NEGap(µk, νk) =

Õ((X + Y )[(XA + Y B)1/2 + (X + Y )1/4H]k−1/8). Besides, when only obtaining an expected
last-iterate convergence rate is desired, our Algorithm 1 has an improved last-iterate convergence
rate of Õ((X+Y )[(X2A+Y 2B)1/2+(X+Y )1/4H]k−1/6) in expectation, the details of which are
deferred to Appendix C. Though the last-iterate convergence rate of our Algorithm 1 is inferior to the
Õ(1/k) convergence rate by Lee et al. (2021); Liu et al. (2023), we note that both their algorithms
can only work in the full-information setting. Further, we remark that the algorithm of Lee et al.
(2021) needs the assumption that the NE of the IIEFG considered is unique, and the algorithm of Liu
et al. (2023) requires both players being controlled by a central controller, and thus the algorithm

8
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of Liu et al. (2023) is not uncoupled. In contrast, our algorithm can work in the bandit feedback
setting, is fully uncoupled between the two players, and can still guarantee a regret of order Õ(k7/8)
when the opponent of the max-player is an adversary. More importantly, we show in Section 5.2
that the lower bound of the convergence rate for learning IIEFGs with bandit feedback, last-iterate
convergence guarantee, and uncoupled algorithms will be of order Ω(k−1/2) (for large enough k).

Proof Sketch of Theorem 5.1 We postpone the complete proof of Theorem 5.1 to Appendix B.
Here we provide a proof sketch of it.

We denote by ξk,⋆ := (µk,⋆, νk,⋆) the unique NE in the regularized game fk in Eq. (5), where there
is only a unique NE since fk is strongly convex in µ and strongly concave in ν. We first show that
in each episode k, the product policy ξk := (µk, νk) generated by the algorithm will approach ξk,⋆
close enough by showing that the Bregman divergenceDψ(ξ

k,⋆, ξk) is an (approximate) contraction
mapping. In particular, we show that

Dψ

(
ξk+1,⋆, ξk+1

)
≲ (1− ηkεk)Dψ

(
ξk,⋆, ξk

)
+ η2k (Xτk + Y τ̄k) + η2k

(
X2A+ Y 2B

)
+ ηkρk + ηkσk + η2kε

2
kH

2 (XA+ Y B) + ωk , (7)

where we denote

τk =
1

X

∑
h,xh,ah

1

px1:h(xh)

(
Ikh {xh, ah}

µk1:h (xh, ah) + γk
− 1

)
,

τ̄k =
1

Y

∑
h,yh,bh

1

py1:h(yh)

(
Ikh {yh, bh}

νk1:h (yh, bh) + γk
− 1

)
,

ρk =
∑

h,xh,ah

µk1:h (xh, ah)

[
(Gνk) [(xh, ah)]−

(
Ikh {xh, ah}

µk1:h (xh, ah) + γk

(
1− rkh

))]

+
∑

h,yh,bh

νk1:h (yh, bh)

[(
1−

(
G⊤µk

)
[(yh, bh)]

)
− Ikh {yh, bh}
νk1:h (yh, bh) + γk

rkh

]
,

σk =
∑

h,xh,ah

µk,⋆1:k (xh, ah)

[
(Gνk) [(xh, ah)]−

(
Ikh {xh, ah}

µk1:h (xh, ah) + γ

(
1− rkh

))]

+
∑

h,yh,bh

νk,⋆1:h (yh, bh)

[
Ikh {yh, bh}

νk1:h (yh, bh) + γk
rkh −

(
1−

(
G⊤µk

)
[(yh, bh)]

)]
,

ωk =Dψ

(
µk+1,⋆, µk+1

)
−Dψ

(
µk,⋆, µk+1

)
+Dψ

(
νk+1,⋆, νk+1

)
−Dψ

(
νk,⋆, νk+1

)
.

Expanding the above recursion, we can bound Dψ

(
ξk+1,⋆, ξk+1

)
as

Dψ

(
ξk+1,⋆, ξk+1

)
≲

k∑
i=1

wikηiρi︸ ︷︷ ︸
Term 1

+

k∑
i=1

wikηiσi︸ ︷︷ ︸
Term 2

+(XA+ Y B)H2
k∑
i=1

wik (ηiεi)
2

︸ ︷︷ ︸
Term 3

+

k∑
i=1

wikη
2
i (Xτ i + Y τ̄i)︸ ︷︷ ︸
Term 4

+

k∑
i=1

wikη
2
i

(
X2A+ Y 2B

)
︸ ︷︷ ︸

Term 5

+

k∑
i=1

wikωi︸ ︷︷ ︸
Term 6

, (8)

where wik =
∏k
j=i+1 (1− ηjεj) is the contraction parameter. Then we bound each of the above

terms in by Lemma B.4 - Lemma B.9 in Appendix B.2. Note that we follow a similar analysis
scheme of Cai et al. (2023) to bound the last-iterate convergence of learning matrix games with
bandit feedback. However, we also remark that the straightforward application of their analysis will
not address our problem of learning IIEFGs with bandit feedback, since we leverage a different reg-
ularizer and a new virtual transition px computed by Algorithm 2, which serves as a core ingredient
of the analysis in deriving the contraction of Eq. (7) and bounding Term 6. Besides, compared
with the analysis of Cai et al. (2023), the additional Term 5 in Eq. (8) comes from the fact that we

9
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establish a refined analysis in the case of IIEFGs to further sharpen the dependence on X and A (as
well as Y and B) of the final convergence rate.

Further, one can see that the NE policy profile ξk,⋆ of the perturbed game in Eq. (5) is also an
approximate NE of the original game in Eq. (4), enabling to bound NEGap(ξk) using NEGap(ξk,⋆)
together with the distance between ξk and ξk,⋆ weighted by the virtual transitions as bellow:

NEGap(ξk) ⩽ NEGap(ξk,⋆) +X
∥∥px (µk − µk,⋆

)∥∥
1
+ Y

∥∥py (νk − νk,⋆
)∥∥

1
, (9)

where NEGap(ξk,⋆) can be controlled by Lemma B.2. Due to the constructed virtual transition
px and py , the second and the third term in Eq. (9) are actually the ℓ1-norm of the difference
between the probability measures over infoset-action spaces, which thus turns out to be bounded by
O(
√
KL (pxµk,⋆, pxµk)) and O(

√
KL (pyνk,⋆, pyνk)) by Pinsker’s inequality. Also, thanks to the

virtual transition weighted negentropy ψ, one can see that KL
(
pxµk,⋆, pxµk

)
= Dψ(µ

k,⋆, µk) (and
similarly on the min-player side). Therefore, the proof can be concluded by substituting Eq. (8) into
Eq. (9) and then using Lemma B.2 and Lemma B.4 - Lemma B.9.

5.2 LOWER BOUND OF LAST-ITERATE CONVERGENCE

Theorem 5.3. For any algorithm Alg that both players adopt to generate policy profile (µk, νk)
and is uncoupled between both players, there exists an IIEFG instance such that the lower bound
of the last-iterate convergence of learning this IIEFG in the bandit-feedback setting satisfies
NEGap(µk, νk) = Ω(

√
XA+ Y Bk−1/2), when k ⩾ max(XA,Y B).

Proof Sketch. The idea of the proof is to leverage the fact that if an uncoupled algorithm can learn
the NE of IIEFGs with a last-iterate convergence guarantee of Θ̃(k−α) (α ∈ [0, 1]) in the bandit
feedback setting, then it can be used to learn IIEFGs where the opponent is an adversary with a regret
of order Θ̃(k1−α). Therefore, considering that the hardness of minimizing regret of IIEFGs with an
adversarial opponent is equivalent to minimizing regret on a bandit problem with AX arms (Bai
et al., 2022; Fiegel et al., 2023), the proof of Theorem 5.3 can be completed by contradiction.

Remark 5.4. Compared with the lower bound of the convergence rate above, the upper bound in
Theorem 5.1 is loose by a factor of Õ((X + Y )k3/8) (for large enough X , Y , A and B). We believe
one of the promising approaches to improve the upper bound of the convergence rate might be to
consider using the optimistic OMD/FTRL, which utilizes accelerated techniques from the optimiza-
tion perspective and is typically used to achieve the Õ(1/k) convergence rate for learning IIEFGs
with last-iterate convergence in the full-information setting. One of the main difficulties of using
optimistic OMD/FTRL in conjunction with the regularization technique to achieve a faster last-
iterate convergence rate of learning IIEFGs in the bandit feedback setting is that the loss estimator
constructed in the bandit feedback setting (either unbiased or optimistically biased) to serve as a
surrogate of the true loss would have undesirably large variance, making the stability of optimistic
OMD/FTRL hard to be controlled even in the special case of learning matrix games. We leave the
possible improvement of our convergence upper bound as our future study.

6 CONCLUSTION

In this work, we make the first step to establishing the algorithm that learns an approximate NE of
IIEFGs in the bandit feedback setting with finite-time last-iterate convergence. Our algorithm is fully
uncoupled between the two players involved in the games and does not require any coordination,
communication, or shared randomness between these players. We prove that our algorithm achieves
the last-iterate convergence of order Õ((X + Y )[(XA+ Y B)1/2 + (X + Y )1/4H]k−1/8) with high
probability and of order Õ((X+Y )[(X2A+Y 2B)1/2+(X+Y )1/4H]k−1/6) in expectation (for large
enough k). Also, we provide the lower bound of order Ω(

√
XA+ Y Bk−1/2) for learning IIEFGs

with last-iterate convergence guarantee in the bandit feedback setting. An interesting problem might
be closing the gap between the established convergence upper and lower bound, which still remains
open in the special case of learning matrix games with the last-iterate convergence guarantee in the
bandit feedback setting. We will leave the investigation of this for our future research endeavors.
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Rémi Munos, Julien Pérolat, Jean-Baptiste Lespiau, Mark Rowland, Bart De Vylder, Marc Lanctot,
Finbarr Timbers, Daniel Hennes, Shayegan Omidshafiei, Audrunas Gruslys, Mohammad Ghesh-
laghi Azar, Edward Lockhart, and Karl Tuyls. Fast computation of nash equilibria in imperfect
information games. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pp. 7119–7129. PMLR, 2020.

John F Nash Jr. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48–49, 1950.

Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic ban-
dits. In Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp.
3168–3176, 2015.
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A MORE DISCUSSIONS ON VIRTUAL TRANSITION PROBABILITIES

A.1 ILLUSTRATION ON THE FAILURE OF USING UNIFORM VIRTUAL TRANSITION

Figure 1: An illustrative example where using uniform virtual transition p fails to guarantee
minxh∈Xh,h∈[H] p1:h(xh) ≥ 1/X .

On the IIEFG instance shown in Figure 1, there is only one action a and H = 4. Each infoset
x in the game tree of this instance satisfies |C(x, a)| = 2 except for infoset x2,1, which is such
that |C(x2,1, a)| = n with some n ≥ 2. Now suppose the uniform distribution p is used as a virtual
transition over infoset-action spaces. Then for all the descendants {x4,i}2ni=1 on step h = 4 of infoset
x2,1, one can see that p1:H(xH,i) =

1
2 · 1

n · 1
2 = 1

4n , while there are only X = 9 + 3n infosets in
total. Thus, it will happen that p1:H(xH,i) <

1
X when n > 9.

Actually, one can easily construct an IIEFG instance such that minxH∈XH
p1:H(xH) ≤ O( 1

nm ) and
X = O(mn+ c) with c as a parameter that depends on m but not n for uniform virtual transition p.
Therefore, when using uniform distribution p as a virtual transition, maxxH∈XH

1/p1:H(xH) might
be prohibitively large and lead to a convergence rate with much worse dependence on X than the
virtual transition constructed in our Algorithm 2.

A.2 BALANCED EFFECTS OF THE PROPOSED VIRTUAL TRANSITION PROBABILITY

Lemma A.1. For any h ∈ [H] and xh ∈ Xh, the constructed virtual transition px guarantees that
1/px1:h(xh) ≤ X .

Proof. Clearly, px1:h(·) is minimzed at h = H for some xH ∈ XH by the definition of virtual
transition. By the construction of px1:h(·) in Algorithm 2, one can deduce that ∀xH ∈ XH , it holds
that (understanding {(xh, ah)}h∈[H−1] as the unique trajectory leading to xH below)

px1:H(xH) = q[xH ]

= q [xH−1] ·
c [xH ]∑

x′
H∈C(xH−1,aH−1)

c [x′H ]

= q [xH−2] ·
c [xH−1]∑

x′
H−1∈C(xH−2,aH−2)

c
[
x′H−1

] · c [xH ]∑
x′
H∈C(xH−1,aH−1)

c [x′H ]

= q [xH−2] ·
c [xH−1]∑

x′
H−1∈C(xH−2,aH−2)

c
[
x′H−1

] · c [xH ]

d [xH−1, aH−1]

(i)

≥ q [xH−2] ·
c [xH−1]∑

x′
H−1∈C(xH−2,aH−2)

c
[
x′H−1

] · c [xH ]

c[xH−1]
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= q [xH−2] ·
c [xH ]∑

x′
H−1∈C(xH−2,aH−2)

c
[
x′H−1

]
≥ . . .

≥ c [xH ]∑
x1∈X1

c [x1]

≥ c [xH ]

XH

≥ c [xH ]

X

=
1

X
,

where c[·], q[·], and d[·, ·] are defined in our Algorithm 2; and (i) is due to c[xH−1] =
maxa∈A d[xH−1, a] ≥ d[xH−1, aH−1].

The property shown in this lemma of our constructed virtual transition px serves as a key ingredient
in the analysis (say, when bounding our Term 4 and when establishing the final convergence upper
bound of the NE gap in the proof of Theorem 5.1) as we shall see.

B PROOF OF HIGH-PROBABILITY LAST-ITERATE CONVERGENCE RATE

Lemma B.1 (One-step analysis of OMD with virtual transition weighted negentropy regularized
loss). Let

µ′ = argminµ̃∈Ω

∑
h,xh,ah

µ̃1:h (xh, ah) (ℓ (xh, ah) + ε (xh, ah) p
x
1:h (xh) log (p

x
1:h (xh)µ1:h (xh, ah)))

+
1

η
Dψ(µ̃, µ) ,

for some convex set Ω ⊆ Πmax, ℓ ∈ RXA⩾0 , and ε ∈
[
0, 1η

]XA
. Then ∀u ∈ Ω.

⟨µ′ − µ, ℓ+ εp log pµ⟩

⩽
∑

h,(xh,ah)

[
η

px1:h(xh)
µ1:h(xh, ah)ℓ

2(xh, ah) + ηε2(xh, ah) log
2(px1:hµ1:h(xh, ah))

]
,

where (εp log pµ)[(xh, ah)] := εpx1:h(xh) log (p
x
1:h(xh)µ1:h(xh, ah)).

Proof. The common one-step analysis of OMD shows that

⟨µ′ − µ, ℓ+ εp log pµ⟩ ⩽ 1

η
(Dψ(u, µ)−Dψ(u, µ

′)−Dψ(µ
′, µ)) .

Then, to upper bound ⟨µ−µ′, l + εp log pµ⟩ − 1
ηDψ (µ′, µ), notice that

⟨µ−µ′, ℓ+ εp log pµ⟩ − 1

η
Dψ (µ′, µ)

⩽ sup
v∈RXA

⩾0

(
⟨µ− v, ℓ+ εp log pµ⟩ − 1

η
Dψ(v, µ)

)

=⟨µ, ℓ+ εp log pµ⟩ − inf
v∈RXA

⩾0

(
⟨v, ℓ+ εp log pµ⟩+ 1

η
Dψ(v, µ)

)
.

Further, the first-order optimality condition ℓ+ εp log pµ+ 1
η (∇ψ(v)−∇ψ(µ)) = 0 implies that

log
v1:h (xh, ah)

µ1:h (xh, ah)
= − η

px1:h (xh)
[ℓ (xh, ah) + ε (xh, ah) p

x
1:h (xh) log (p

x
1:h (xh)µ1:h (xh, ah))] .
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Hence, one can see that

v1:h (xh, ah)

=µ1:h (xh, ah) exp

(
− η

px1:h (xh)
[ℓ (xh, ah) + ε (xh, ah) p

x
1:h (xh) log (p

x
1:h (xh)µ1:h (xh, ah))]

)
.

(10)

Therefore, we have

⟨µ−µ′, ℓ+ εp log(pµ)⟩ − 1

η
Dψ (µ′, µ)

=
∑

h,(xh,ah)

[
(µ1:h (xh, ah)− v1:h (xh, ah)) (ℓ (xh, ah) + ε (xh, ah) p

x
1:h (xh) log (p

x
1:h (xh)µ1:h (xh, ah)))

− 1

η

(
px1:h(xh)v1:h(xh, ah) log

v1:h(xh, ah)

µ1:h(xh)
− px1:h(xh)(v1:h(xh, ah)− µ1:h(xh, ah))

)]
=

∑
h,(xh,ah)

[
(µ1:h (xh, ah)) (ℓ (xh, ah) + ε (xh, ah) p

x
1:h (xh) log (p

x
1:h (xh)µ1:h (xh, ah)))

+
px1:h(xh)

η

(
exp

(
− η

px1:h(xh)
[ℓ(xh, ah) + ε(xh, ah)p

x
1:h(xh) log(p

x
1:h(xh)µ1:h(xh, ah))]

)
− 1

)
µ1:h(xh, ah)

]
=

∑
h,(xh,ah)

px1:h(xh)

η
µ1:h(xh, ah)

[
η

px1:h(xh)
(ℓ (xh, ah) + ε (xh, ah) p

x
1:h (xh) log (p

x
1:h (xh)µ1:h (xh, ah)))

+

(
exp

(
− η

px1:h(xh)
[ℓ(xh, ah) + ε(xh, ah)p

x
1:h(xh) log(p

x
1:h(xh)µ1:h(xh, ah))]

)
− 1

)]
⩽

∑
h,(xh,ah)

η

px1:h(xh)
µ1:h(xh, ah)ℓ

2(xh, ah)

+
∑

h,(xh,ah)

px1:h(xh)

η

[
µ1:h (xh, ah) (ℓ (xh, ah) + ε (xh, ah) p

x
1:h (xh) log (p

x
1:h (xh)µ1:h (xh, ah)))

+ µ1:h(xh, ah) exp

(
− η

px1:h(xh)
[ℓ(xh, ah) + ε(xh, ah)p

x
1:h(xh) log(p

x
1:h(xh)µ1:h(xh, ah))]

)
− µ1:h(xh, ah) exp

(
− η

px1:h(xh)
ℓ(xh, ah)

)]
=

∑
h,(xh,ah)

η

px1:h(xh)
µ1:h(xh, ah)ℓ

2(xh, ah)

+
∑

h,(xh,ah)

1

η

[
µ1:h (xh, ah) ηε (xh, ah) p

x
1:h (xh) log (p

x
1:h (xh)µ1:h (xh, ah))

+ exp

(
− η

px1:h
ℓ(xh, ah)

)
((px1:hµ1:h(xh, ah))

1−ηε(xh,ah) − px1:hµ1:h(xh, ah))

]
⩽

∑
h,(xh,ah)

η

px1:h(xh)
µ1:h(xh, ah)ℓ

2(xh, ah)

+
∑

h,(xh,ah)

1

η

[
µ1:h (xh, ah) ηε (xh, ah) p

x
1:h (xh) log (p

x
1:h (xh)µ1:h (xh, ah))

− ηε(xh, ah)(p
x
1:h(xh)µ1:h(xh, ah))

1−ηε(xh,ah) ln(px1:h(xh)µ1:h(xh, ah))
]

⩽
∑

h,(xh,ah)

[
η

px1:h(xh)
µ1:h(xh, ah)ℓ

2(xh, ah) + ηε2(xh, ah) log
2(px1:h(xh)µ1:h(xh, ah))

]
,

where in the second equality we substitute v1:h(xh, ah) with Eq. (10), in first inequality comes from
the fact that η

px1:h(xh)
ℓ (xh, ah) ⩽ (ηℓ (xh, ah) /p

x
1:h(xh))

2 − exp(ηℓ (xh, ah) /p
x
1:h(xh)) and the
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forth equality follows from

exp

(
− η

px1:h(xh)
[ℓ(xh, ah) + ε(xh, ah)p

x
1:h(xh) log(p

x
1:h(xh)µ1:h(xh, ah))]

)
=exp

(
− η

px1:h(xh)
ℓ(xh, ah)

)
((px1:h(xh)µ1:h(xh, ah))

1−ηε(xh,ah) .

The last two inequalities can be derived by following calculations:

exp

(
− η

px1:h(xh)
ℓ(xh, ah)

)
((px1:h(xh)µ1:h(xh, ah))

1−ηε(xh,ah) − px1:h(xh)µ1:h(xh, ah))

⩽(px1:h(xh)µ1:h(xh, ah))
1−ηε(xh,ah) − px1:h(xh)µ1:h(xh, ah)

⩽ηε(xh, ah)(p
x
1:h(xh)µ1:h(xh, ah))

1−ηε(xh,ah) ln(px1:h(xh)µ1:h(xh, ah)) ,

and

µ1:h (xh, ah) ηε (xh, ah) p
x
1:h (xh) log (p

x
1:h (xh)µ1:h (xh, ah))

− ηε(xh, ah)(p
x
1:h(xh)µ1:h(xh, ah))

1−ηε(xh,ah) ln(px1:h(xh)µ1:h(xh, ah))

=− ηε(xh, ah) log(p
x
1:h (xh)µ1:h(xh, ah))((p

x
1:h (xh)µ1:h(xh, ah))

1−ηε(xh,ah) − px1:h(xh)µ1:h(xh, ah))

⩽η2ε2(xh, ah)(log
2(px1:h (xh)µ1:h(xh, ah))

1−ηε(xh,ah)

⩽η2ε2(xh, ah)(log
2(px1:h (xh)µ1:h(xh, ah)) .

Lemma B.2. ∀k ⩾ 1, we have

NEGap(ξk,∗) = O
(
εkH(ln(XA) + ln(Y B)) +

XAH

k
+
Y BH

k

)
. (11)

Proof. ∀ (µ′, ν′) ∈ Πmax ×Πmin, we have

f
(
µk,⋆, ν′

)
− f

(
µ′, νk,⋆

)
=f
(
µk,⋆, ν′

)
− f

(
µk,⋆, ν

)
+
(
µk,⋆, ν

)
− f

(
µ, νk,⋆

)
+ f

(
µ, νk,⋆

)
− f

(
µ′, νk,⋆

)
.

First notice that ∀(µ, v) ∈ Πkmax ×Πkmin,

f
(
µk,⋆, ν

)
− f

(
µ, νk,⋆

)
=f
(
µk,⋆, ν

)
− fk

(
µk,⋆, ν

)
+ fk

(
µk,⋆, ν

)
− fk

(
µ, νk,⋆

)
+ fk

(
µ, νk,⋆

)
− f

(
µ, νk,⋆

)
=−

(
εkψ

(
µk,⋆

)
− εkψ(ν)

)
+
(
εkψ(µ)− εkψ

(
νk,⋆

))
⩽− εkψ

(
µk,⋆

)
− εkψ

(
νk,⋆

)
⩽εkH(ln(XA) + ln(Y B)) .

To bound f
(
µk,⋆, ν′

)
− f

(
µk,⋆, ν

)
, we have

f
(
µk,⋆, ν′

)
− f

(
µk,⋆, ν

)
⩽
〈
∇νf

(
µk,⋆, ν

)
, ν′ − ν

〉
⩽∥∇νf

(
µk,⋆, ν

)
∥1∥ν′ − ν∥∞

⩽Y B

(
1−

(
1− B − 1

Bk

)H)

⩽Y B

(
1−

(
1− B

Bk

)H)

⩽Y B

(
1−

(
1− 1

k

)H)
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=O
(
Y BH

k

)
.

Similarly, we have

f
(
µ, νk,⋆

)
− f

(
µ′, νk,⋆

)
⩽ O

(
XAH

k

)
.

Putting all the above together completes the proof.

B.1 CONVERGENCE RATE OF THE CONTRACTION OF THE BREGMAN DIVERGENCE

Lemma B.3 (Contraction on Bregman divergence).

Dψ

(
ξk+1,⋆, ξk+1

)
⩽

k∑
i=1

wikηiρi︸ ︷︷ ︸
Term 1

+

k∑
i=1

wikηiσi︸ ︷︷ ︸
Term 2

+XA (logX +H log (Ak))
2

k∑
i=1

wik (ηiεi)
2
+ Y B (log Y +H log (Bk))

2
k∑
i=1

wik (ηiεi)
2

︸ ︷︷ ︸
Term 3

+

k∑
i=1

wikη
2
i (Xτ i + Y τ̄i)︸ ︷︷ ︸
Term 4

+

k∑
i=1

wikη
2
i

(
X2A+ Y 2B

)
︸ ︷︷ ︸

Term 5

+

k∑
i=1

wikωi︸ ︷︷ ︸
Term 6

.

Proof. Recall we denote [pxµ](xh, ah) := px1:h(xh)µ1:h(xh, ah).

fk(µ
k, νk)− fk(µ

k,⋆, νk) =
(
µk − µk,⋆

)⊤
Gνk + εk

(
ψ
(
µk
)
− ψ

(
µk,⋆

))
.

For the first term in the above display, we have(
µk − µk,⋆

)⊤
Gνk

=
(
µk − µk,⋆

)⊤ (
Gνk + gk − gk

)
=
(
µk − µk,⋆

)⊤
gk +

(
µk
)⊤ (

Gνk − gk
)
−
(
µk,⋆

)⊤ (
Gνk − gk

)
=
(
µk − µk,⋆

)⊤
gk +

∑
h,xh,ah

µk1:k (xh, ah)
[
(Gνk) [(xh, ah)]− gk [(xh, ah)]

]
−

∑
h,xh,ah

µk,⋆1:h (xn, an)
[(
Gνk

)
[(xh, ah)]− gk [(xh, ah)]

]
=
(
µk − µk,⋆

)⊤
gk

+
∑

h,xh,ah

µk1:h (xh, ah)

[
(Gνk) [(xh, ah)]−

(
Ikh {xh, ah}

µk1:h (xh, ah) + γk

(
1− rkh

)
+ εkp

x
1:h (xh) log

[
pxµk

]
(xn, an)

)]

−
∑

h,xh,ah

µk,⋆1:h (xh, ah)

[
(Gνk) [(xh, ah)]−

(
Ikh {xh, ah}

µk1:h (xh, ah) + γk

(
1− rkh

)
+ εkp

x
1:h (xh) log

[
pxµk

]
(xn, an)

)]
.

For the second term, we have

ψ
(
µk
)
− ψ

(
µk,⋆

)
=

∑
h,xh,ah

[
pxµk

]
(xh, ah) log

[
pxµk

]
(xh, ah)

−
∑

h,xh,ah

[
pxµk,⋆

]
(xh, ah) log

[
pxµk,⋆

]
(xh, ah)
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=
∑

h,xh,ah

([
pxµk

]
(xh, ah)−

[
pxµk,⋆

]
(xh, ah)

)
log
[
pxµk

]
(xh, ah)

−
∑

h,xh,ah

[
pxµk,⋆

]
(xh, ah)

(
log
[
pxµk,⋆

]
(xh, ah)− log

[
pxµk

]
(xh, ah)

)
=

∑
h,xh,ah

([
pxµk

]
(xh, ah)−

[
pxµk,⋆

]
(xh, ah)

)
log
[
pxµk

]
(xh, ah)−Dψ(µ

k,⋆, µk) .

We then arrive at

fk(µk, vk)− fk(µ
⋆
k, vk)

=
(
µk − µk,⋆

)⊤
gk +

∑
h,xh,ah

µk1:k (xh, ah)

[
(Gνk) [(xh, ah)]−

(
Ikh {xh, ah}

µk1:h (xh, ah) + γk

(
1− rkh

))]
︸ ︷︷ ︸

=:ρk

−
∑

h,xh,ah

µk,⋆1:k (xh, ah)

[
(Gνk) [(xh, ah)]−

(
Ikh {xh, ah}

µk1:h (xh, ah) + γk

(
1− rkh

))]
︸ ︷︷ ︸

=:σk

−εkDψ(µ
k,⋆, µk)

⩽
1

ηk

(
Dψ(µ

k,⋆, µk)−Dψ(µ
k,⋆, µk+1)

)
− εkDψ(µ

k,⋆, µk) + ρk + σk

+
∑

h,xh,ah

ηk

(
1

px1:h(xh)
µk1:h(xh, ah)ℓ̂

k
h(xh, ah)

2 + ε2k(xh, ah) log
2(px1:h(xh)µ

k
1:h(xh, ah)

)

⩽
(1− ηkεk)Dψ

(
µk,⋆, µk

)
−Dψ

(
µk,⋆, µk+1

)
ηk

+ ρk + σk

+
∑

h,xh,ah

ηk

 1

px1:h(xh)

Ikh {xh, ah}
µk1:h (xh, ah) + γk

+ ε2k log
2( px1:h(xh)µ

k
1:h(xh, ah)︸ ︷︷ ︸

m:=minh,(xh,ah)
px1:h(xh)µk

1:h(xh,ah)

)


⩽
(1− ηkεk)Dψ

(
µk,⋆, µk

)
−Dψ

(
µk,⋆, µk+1

)
ηk

+ ρk + σk

+ ηk
∑

h,xh,ah

1

px1:h(xh)

(
Ikh {xh, ah}

µk1:h (xh, ah) + γk
− 1

)
︸ ︷︷ ︸

=:Xτk

+ηkX
2A+ ηkXA log2m

⩽
(1− ηkεk)Dψ

(
µk,⋆, µk

)
−Dψ

(
µk,⋆, µk+1

)
ηk

+ ρk + σk + ηkXτk + ηkX
2A+ ηkXA log2m.

Rearranging shows that

Dψ

(
µk+1,⋆, µk+1

)
⩽ (1− ηkεk)Dψ

(
µk,⋆, µk

)
+ ηk

(
fk
(
µk,⋆, νk

)
− fk (µk, νk)

)
+ η2kXA log2m+ η2kXAτk + η2kX

2A+ ηkρk + ηkσk +Dψ

(
µk+1,⋆, µk+1

)
−Dψ

(
µk,⋆, µk+1

)︸ ︷︷ ︸
=:ωk

.

Analogously, for the min-player, we have

Dψ

(
νk+1,⋆, νk+1

)
⩽ (1− ηkεk)Dψ

(
νk,⋆, νk

)
+ ηk

(
fk
(
µk, νk

)
− fk

(
µk, ν

k,⋆
))

+ η2kY B log2m+ η2kY τ̄k + η2kY
2B + ηkρ̄k + ηkσ̄k + w̄k ,

where

τ̄k :=
1

Y

∑
h,yh,bh

1

py1:h(yh)

(
Ikh {yh, bh}

νk1:h (yh, bh) + γk
− 1

)
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ρ̄k :=
∑

h,yh,bh

νk1:h (yh, bh)

[(
1−

(
G⊤µk

)
[(yh, bh)]

)
− Ikh {yh, bh} rkh
νk1:h (yh, bh) + γkk

]

σ̄k :=
∑

h,yh,bh

νk,⋆1:h (yh, bh)

[
Ikh {yh, bh} rkh

νk1:h (yh, bh) + γkk
−
(
1−

(
G⊤µk

)
[(yh, bh)]

)]
ω̄k := Dψ

(
νk+1,⋆, νk+1

)
−Dψ

(
νk,⋆, νk+1

)
.

Combining both sides and noticing that fk
(
µk,⋆, νk

)
− fk

(
µk, νk,⋆

)
⩽ 0, we have

Dψ

(
ξk+1,x, ξk+1

)
⩽ (1− ηkεk)Dψ

(
ξk,⋆, ξk

)
+ η2k (Xτk + Y τ̄k) + η2k

(
X2A+ Y 2B

)
+ ηkρk + ηkσk + ωk

+ η2kXAε
2
k (logX +H log (Ak))

2
+ η2kY Bε

2
k (log Y +H log (Bk))

2
.

Now expanding the recursion in the above display leads to

Dψ

(
ξk+1,⋆, ξk+1

)
⩽

k∑
i=1

wikηiρi︸ ︷︷ ︸
Term 1

+

k∑
i=1

wikηiσi︸ ︷︷ ︸
Term 2

+XA (logX +H log (Ak))
2

k∑
i=1

wik (ηiεi)
2
+ Y B (log Y +H log (Bk))

2
k∑
i=1

wik (ηiεi)
2

︸ ︷︷ ︸
Term 3

+

k∑
i=1

wikη
2
i (Xτ i + Y τ̄i)︸ ︷︷ ︸
Term 4

+

k∑
i=1

wikη
2
i

(
X2A+ Y 2B

)
︸ ︷︷ ︸

Term 5

+

k∑
i=1

wikωi︸ ︷︷ ︸
Term 6

,

where wik =
∏k
j=i+1 (1− ηjεj).

B.2 BOUNDING CONTRACTION TERMS

Lemma B.4 (Bounding Term 1).

Term 1 ⩽ (XA+ Y B) ln(k)k−αγk
+αε + k−

αk
2 +αε

2 log

(
k2

δ

)
.

Proof. Recall

Term 1 =

k∑
i=1

wikηiρi =

k∑
i=1

wikηiρi +

k∑
i=1

wikηiρ̄i .

To bound
∑k
i=1 w

i
kηiρi, note that

k∑
i=1

wikηiρi

=

k∑
i=1

wikηi

〈
µi, ℓi,x − ℓ̂i,x

〉

=XA

k∑
i=1

wikηiγki +H

√√√√2

k∑
i=1

(
wikηi

)2
log

k2

δ
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⩽XA
k∑
i=1

i−αγk
−αη

k∏
j=i+1

(
1− j−αη−αε

)+

√√√√√√log

(
k2

δ

) k∑
i=1

i−2αη

 k∏
j=i+1

(1− j−αγ−αε)

2


⩽XA
k∑
i=1

i−αγ−αη

k∏
j=i+1

(
1− j−αn−αε

)+

√√√√√log

(
k2

δ

) k∑
i=1

i−2αη

 k∏
j=i+1

(1− j−αn−αε)


⩽XA ln(k)k−αγ+αε +

√
log

(
k2

δ

)
ln(k)k−αγ+αε

⩽XA ln(k)k−αγ+αε + k−
αη
2 +αε

2 log

(
k2

δ

)
,

where the second equality is given by Lemma B.13 and the third inequality comes from Lemma E.1.

Analogously, we have
k∑
i=1

wikηiρ̄i ⩽ Y B ln(k)k−αγ+αε + k−
αk
2 +αε

2 log

(
k2

δ

)
.

Hence

Term 1 ⩽ (XA+ Y B) ln(k)k−αγ+αε + k−
αk
2 +αε

2 log

(
k2

δ

)
.

Lemma B.5 (Bounding Term 2).

Term 2 ⩽ k−αη+αγk log
k2

δ
.

Proof.

Term 2 =

k∑
i=1

wikηiσi

=

k∑
i=1

wikηiσi +

k∑
i=1

wikηiσ̄i

⩽ max
1⩽i⩽k

ηiw
i
k

γkk
log

k2

δ
(with probability 1− k2

δ
)

⩽k−αη+αγk log
k2

δ
,

where the last inequality is due to Lemma E.2.

Lemma B.6 (Bounding Term 3).

Term 3 ⩽
(
XA

(
logX +H log (Ak)

2
)
+ Y B (log Y +H log (Bk))

2
)
k−αη−αε .

Proof.
Term 3

=XA (logX +H log (Ak))
2

k∑
i=1

wik (ηiεi)
2
+ Y B (log Y +H log (Bk))

2
k∑
i=1

wik (ηiεi)
2

⩽
(
XA (logX +H log (Ak))

2
+ Y B (log Y +H log (Bk))

2
)
k−2(αη+αε)+αη+αε

=
(
XA

(
logX +H log (Ak)

2
)
+ Y B (log Y +H log (Bk))

2
)
k−αη−αε ,

where the inequality follows from Lemma E.1.
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Lemma B.7 (Bounding Term 4).

Term 4 ⩽ kαγk
−2αη (X + Y ) log

(
1

δ

)
.

Proof.
Term 4

=

k∑
i=1

wikη
2
i (Xτ i + Y τ̄i)

=

k∑
i=1

wikη
2
i

X · 1

X

∑
h,xh,ah

1

px1:h(xh)

(
Ikh {xh, ah}

µk1:h (xh, ah) + γk
− 1

)

+Y · 1

Y

∑
h,yh,bh

1

py1:h(yh)

(
Ikh {yh, bh}

νk1:h (yh, bh) + γk
− 1

)
⩽ max

1⩽i⩽k

wikη
2
i (X + Y )

γk
log(

1

δ
)

⩽kαγ−2αη (X + Y ) log

(
1

δ

)
,

where the first inequality follows from that 1
X

1
px1:h(xh)

⩽ 1 for all (xh, ah) guaranteed by Lemma
A.1 together with the use of Lemma B.15.

Lemma B.8 (Bounding Term 5).
Term 5 =

(
X2A+ Y 2B

)
k−αη+αε .

Proof.

Term 5 =

k∑
i=1

wikη
2
i

(
X2A+ Y 2B

)
⩽
(
X2A+ Y 2B

)
k−2αη+αη+αε

=
(
X2A+ Y 2B

)
k−αη+αε ,

where the inequality is given by Lemma E.1.

Lemma B.9 (Bounding Term 6).

Term 6 ⩽(X + Y )
1
2 (H log (Ak) +H log (Bk)) · log(k)k−min{1, 32−αε

2 }+αη+αϵ .

Proof. To begin with, note that min(xh,ah)∈Xh×A,h∈[H] µ
k
1:h(xh, ah) ≥ 1

(Ak)H
due to the definition

of Πmax in Algorithm 1. Similarly, min(yh,bh)∈Yh×B,h∈[H] ν
k
1:h(yh, bh) ≥ 1

(Bk)H
holds for the

min-player. Further,
Term 6

=

k∑
i=1

wikωi

⩽(X + Y )
1
2 log

(
1

(Ak)H

)
log

(
1

(Bk)H

) k∑
i=1

wiki
−min{1, 32−αε

2 }

⩽(X + Y )
1
2 log

(
1

(Ak)H

)
log

(
1

(Bk)H

)
log(k)k−min{1, 32−αε

2 }+αη+αϵ

⩽(X + Y )
1
2 (H log (Ak) +H log (Bk)) log(k)k−min{1, 32−αε

2 }+αη+αϵ ,

where the first inequality is due to Lemma B.10 and the second inequality comes from Lemma
E.1.
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B.3 BOUNDING THE NE GAP OF (µk,⋆, νk,⋆)

Lemma B.10 (Bounding divergence difference).

|wk| = O

(
(X + Y )

1
2

(
ln
(
(Ak)H

)
+ ln

(
(Bk)H

))2
kmin{1, 32−αε

2 }

)
.

Proof. Again, note that min(xh,ah)∈Xh×A,h∈[H] µ
k
1:h(xh, ah) ≥ 1

(Ak)H
and

min(yh,bh)∈Yh×B,h∈[H] ν
k
1:h(yh, bh) ≥ 1

(Bk)H
. Therefore, it holds that

|wk|
⩽
∣∣Dψ

(
µk+1,⋆, µk+1

)
−Dψ

(
µk,⋆, µk+1

)∣∣+ ∣∣Dψ

(
νk+1,⋆, νk−1

)
−Dψ

(
νk,⋆, νk+1

)∣∣
⩽
(
ln
(
(Ak)H

)
+ ln

(
(Bk)H

)) (∥∥pxµk+1,⋆ − pxµk,⋆
∥∥
1
+
∥∥pyνk+1,⋆ − pyνk,⋆

∥∥
1

)
⩽O

(
(X + Y )

1
2

(
ln
(
(Ak)H

)
+ ln

(
(Bk)H

))2
kmin{1, 32−αε

2 }

)
,

where the second inequality is due to Lemma B.11 and the last inequality comes from Lemma
B.12.

Lemma B.11 (Bounding divergence using ℓ1-norm). ∀µ, µ1, µ2 ∈ Πkmax, it holds that

|Dψ (µ′, µ)−Dψ

(
µ2, µ

)
| ⩽ O

(
ln
(
(Ak)H

) ∥∥pxµ1 − pxµ2
∥∥
1

)
.

Proof.

Dψ (µ′, µ)−Dψ

(
µ2, µ

)
=

∑
h,(xh,ah)

px1:h (xh)

(
µ1
1:h (xh, ah) log

µ1
1:h (xh, ah)

µ1:h (xh · ah)
− µ2

1:h (xh, ah) log
µ2
1:h (xh · ah)
µ1:h (xh, ah)

)

=
∑

h,(xh,ah)

px1:h (xh)

(
(µ1

1:h (xh, ah)− µ2
1:h (xh, ah)) log

µ1
1:h (xh, ah)

µ1:h (xh · ah)

)

+
∑

h,(xh,ah)

px1:h (xh)µ
1
1:h (xh, ah)

(
log

µ1
1:h (xh, ah)

µ1:h (xh · ah)
− log

µ2
1:h (xh, ah)

µ1:h (xh · ah)

)
⩽O

(
ln
(
(Ak)H

) ∥∥pxµ1 − pxµ2
∥∥
1

)
−Dψ(µ

2, µ1)

⩽O
(
ln
(
(Ak)H

) ∥∥pxµ1 − pxµ2
∥∥
1

)
.

Lemma B.12 (Bounding ℓ1-norm of the difference between µk,⋆ and µk+1,⋆). The ℓ1-norm of the
difference between µk,⋆ and µk+1,⋆ satisfies

∥∥pzξk+1,⋆ − pzξk,⋆
∥∥
1
= O

(
(X + Y )

1
2

(
ln
(
(Ak)H

)
+ ln

(
(Bk)H

))
kmin{1, 32−αε

2 }

)
.

Proof. First note that, ∀k, ∀(µ, ν) ∈ Πkmax ×Πkmin, we have

fk
(
µ, νk,⋆

)
− fk

(
µk,⋆, ν

)
=fk

(
µ, νk,⋆

)
− fk

(
µk,⋆, νk,⋆

)
+ fk

(
µk,⋆, νk,⋆

)
− fk

(
µk,⋆, ν

)
⩾fk

(
µ, νk,⋆

)
− fk

(
µk,⋆, νk,⋆

)
−∇µfk

(
µk,⋆, νk,⋆

)⊤ (
µ− µk,⋆

)
− fk

(
µk,⋆, ν

)
−
(
−fk

(
µk,⋆, νk,⋆

))
−
(
−∇νfk

(
µk,⋆, νk,⋆

)⊤ (
ν − νk,⋆

))
⩾εkDψ

(
µ, µk,⋆

)
+ εkDψ

(
ν, νk,⋆

)
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=εk KL
(
pxµ, pxµk,⋆

)
+ εk KL

(
pyν, pyνk,⋆

)
⩾
1

2
εk

(∥∥pxµ− pxµk,⋆
∥∥2
1
+
∥∥pyν − pyνk,⋆

∥∥2
1

)
⩾
1

4
εk
∥∥pzξ − pzξk,⋆

∥∥2
1
.

Let µk+1,′ = pk+1µ̄+ (1− pk+1)µ
⋆
k+1. Then ∀h, (xh, ah),

µk+1,′ (ah | xh) ⩾ pk+1
1

A
+ (1− pk+1)

1

A(k + 1)2
⩾

1

Ak2
,

which means that µk+1,′ ∈ Πkmax. Similarly, we define νk+1,′, which is such that νk+1,′ ∈ Πkmin.
By previous analysis, we have

fk
(
µk+1,′, νk,⋆

)
− fk

(
µk,⋆, νk+1,′) ⩾ 1

4
εk
∥∥pzξk+1,′ − pzξk,⋆

∥∥2
1
. (12)

On the other hand, since
(
µk,⋆, νk,⋆

)
∈ Πk+1

max ×Πk+1
min , we have

fk+1

(
µk,⋆, νk+1,⋆

)
− fk+1

(
µk+1,⋆, νk,⋆

)
⩾

1

4
εk+1

∥∥pzξk,⋆ − pzξk+1,⋆
∥∥2
1
. (13)

Combing both sides, we have

fk
(
µk+1,⋆, νk,⋆

)
− fk

(
µk,⋆, νk+1,⋆

)
=fk

(
µk+1,′, νk,⋆

)
− fk

(
µk,⋆, νk+1,′)+ fk

(
µk+1,⋆, νk,⋆

)
− fk

(
µk+1,′, νk,⋆

)
+ fk

(
µk,⋆, νk+1,′)− fk

(
µk,⋆, νk+1,⋆

)
⩾
1

4
εk
∥∥pzξk+1,′ − pzξk,⋆

∥∥2
1
+
〈
∇µfk

(
µk+1,′, νk,⋆

)
, µk+1,⋆ − µk+1,⋆

〉
+
〈
∇νfk

(
µk,⋆, νk+1,′) , νk+1,′ − νk+1,⋆

〉
⩾
1

4
εk
∥∥pzξk+1,′ − pzξk,⋆

∥∥2
1
− sup
µ∈Πk+1

max

∥∥∇µfk
(
µ, νk,⋆

)∥∥
∞

∥∥µk+1,⋆ − µk+1,′∥∥
1

− sup
ν∈Πk+1

min

∥∇νfk(µ
k,⋆, ν)∥∞∥νk+1,′ − νk+1,⋆∥1 .

Further using the fact that∥∥∇µfk
(
µ, νk,⋆

)∥∥
∞

= max
h,(xh,ah)

∣∣Gνk,⋆ [(xh, ah)] + εkp
x
1:h (xh) log [p

xµ] [(xh, ah)]
∣∣

⩽ max
h,(xh,ah)

∣∣Gνk,⋆ [(xh, ah)]∣∣+ |εkpx1:h (xh) log [pxµ] [(xh, ah)]|

⩽1 + k−αε
(
ln
(
(Ak)H

)
+ ln

(
(Bk)H

))
= O(1) ,

and

∥µk+1,⋆ − µk+1,′∥1 =∥pk+1

(
µ̄− µ⋆k+1

)
∥1 ⩽ ∥pk+1µ̄∥1 +

∥∥pk+1µ
⋆
k+1

∥∥
1

⩽pk+12X = O
(
X + Y

k2

)
,

one can deduce that

fk
(
µk+1,⋆, νk,⋆

)
− fk

(
µk,⋆, νk+1,⋆

)
⩾
1

8
εk
∥∥pzξk+1,⋆ − pzξk,⋆

∥∥2
1
− 1

4
εk
∥∥pzξk+1,⋆ − pzξk+1,⋆

∥∥2
1
−O

(
X + Y

k3

)
⩾
1

8
εk
∥∥pzξk+1,⋆ − pzξk,⋆

∥∥2
1
− 1

4
εk

(
2
(∥∥pxµk+1,′ − pxµk+1,⋆

∥∥2
1
+
∥∥pyνk+1,′ − pyνk+1,⋆

∥∥2
1

))
−O

(
X + Y

k3

)
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⩾
1

8
εk
∥∥pzξk+1,⋆ − pzξk,⋆

∥∥2
1
−O

(
X + Y

k3

)
− 1

4
εk

(
4
(
∥pk+1p

xµ̄∥21 +
∥∥pk+1p

xµk+1,⋆
∥∥2
1

)
+ 4

(
∥pk+1p

y ν̄∥21 +
∥∥pk+1p

yνk+1,⋆
∥∥2
1

))
=
1

8
εk
∥∥pzξk+1,⋆ − pzξk,⋆

∥∥2
1
−O

(
X + Y

k3

)
−O

(
1

k6

)
⩾
1

8
εk+1

∥∥pzξk+1,⋆ − pzξk,⋆
∥∥2
1
−O

(
X + Y

k3

)
.

Combining with Eq. (13), we have
3

8
εk+1∥pzξk+1,⋆ − pzξk,⋆∥21

⩽fk+1

(
µk,⋆, νk+1,⋆

)
− fk

(
µk,⋆, νk+1,⋆

)
− fk+1

(
µk,⋆, νk+1,⋆

)
+ fk

(
µk+1,⋆, νk,⋆

)
+O

(
X + Y

k3

)
=f̄k

(
µk,⋆, νk+1,⋆

)
− f̄k

(
µk+1,⋆, νk,⋆

)
+O

(
X + Y

k3

)
(f̄k(µ, ν) := fk+1(µ, ν)− fk(µ, ν))

=f̄k
(
µk,⋆, νk+1,⋆

)
− f̄k

(
µk+1,⋆, νk+1,⋆

)
+ f̄k

(
µk+1,⋆, νk+1,⋆

)
− f̄k

(
µk+1,⋆, νk,k

)
+O

(
X + Y

k3

)
⩽
〈
∇µf̄k

(
µk,⋆, νk+1,⋆

)
, µk,⋆ − µk+1,⋆

〉
+
〈
∇ν f̄k

(
µk+1,⋆, νk,⋆

)
, νk+1,⋆ − νk,⋆

〉
+O

(
X + Y

k3

)
=
〈
∇µf̄k

(
µk,⋆, νk+1,⋆

)
/px, px

(
µk,⋆ − µk+1,⋆

)〉
+
〈
∇ν f̄k

(
µk+1,⋆, νk,⋆

)
/py, py

(
νk+1,⋆ − νk,⋆

)〉
+O

(
X + Y

k3

)
⩽
∥∥∇µf̄k

(
µk,⋆, νk+1,⋆

)
/px ∥∞∥ px

(
µk,⋆ − µk+1,⋆

)
∥1+∥∇ν f̄k

(
µk+1,⋆, νk,⋆

)
/py
∥∥
∞

∥∥py (νk+1,⋆ − νk,⋆
)∥∥

1

+O
(
X + Y

k3

)
⩽

(
sup

µ∈Πk
max

∥∥∇µf̄k
(
µ, νk+1,⋆

)
/px
∥∥
∞ + sup

ν∈Πk
min

∥∥∇ν f̄k
(
µk+1,⋆, ν

)/
py∥∞

)∥∥pzξk+1,⋆ − pzξk,⋆
∥∥
1
+O

(
X + Y

k3

)

⩽

(
sup

µ∈Πk
max

max
h,(xh,ah)

|(εk − εk+1) log[p
xµ][(xh, ah)]|+ sup

ν∈Πk
min

max
h,(yh,bh)

|(εk − εk+1) log[p
yν][(yh, bh)]|

)

·
∥∥pzξk+1,⋆ − pzξk,⋆

∥∥
1
+O

(
X + Y

k3

)
=O

(
(εk − εk+1)

(
ln
(
(Ak)H

)
+ ln

(
(Bk)H

)) ∥∥pzξk+1,⋆ − pzξk,⋆
∥∥
1
+
X + Y

k3

)
.

In what follows, we slightly abuse the notations by denoting mk = (Ak)H(Bk)H . Solving the
above equation leads to∥∥pzξk+1,⋆ − pzξk,⋆

∥∥
1

⩽
(εk − εk+1) log (mk) +

√
(εk − εk+1)

2
log2 (mk) + εk+1

X+Y
k3

εk+1

⩽
(εk − εk+1)

εk+1
log (mk) +

√
X + Y

εk+1k3

⩽
log (mk)

k
+

√
X + Y

εk+1k3
= O

(
(X + Y )

1
2 log (mk)

kmin{1, 32−α
2 }

)
.

In the last inequality of the above display, we use the fact that
(εk − εk+1)

εk+1
=

k−αϵ

(k + 1)−αϵ
= (1 +

1

k
)αϵ − 1 = O

(αϵ
k

)
,

by Taylor expansion.
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Lemma B.13. Let {ci}ki=1 be fixed positive numbers. Then with probability at least 1− δ, it holds
that

k∑
i=1

ci

〈
µi, ℓi,x − ℓ̂i,x

〉
⩽ XA

k∑
i=1

ciγki +H

√√√√2

k∑
i=1

c2i log
1

δ
.

Proof. To begin with, notice that

k∑
i=1

ci

〈
µi, ℓi,x − ℓ̂i,x

〉
=

k∑
i=1

ci

〈
µi, ℓi,x − Ei−1

[
ℓ̂i,x
]〉

+

k∑
i=1

ci

〈
µi,Ei−1

[
ℓ̂i,x
]
− ℓ̂i,x

〉
.

For the first part, we have

k∑
i=1

ci

〈
µi, ℓi,x − Ei−1

[
ℓ̂i,x
]〉

=

k∑
i=1

ci
∑

h,xh,ah

µi1:h (xh, ah) ℓ
i,x
[(xh,ah)]

(
1− µi1:h (xh, ah)

µi1:h (xh, ah) + γki

)

⩽
k∑
i=1

ciγki
∑

h,xh,ah

ℓi,x[(xh,ah)]

⩽
k∑
i=1

ciγkiXA ,

where the last inequality comes from ℓ[(xh, ah)]
i,x ⩽ 1 for all (xh, ah) ∈ X ×A.

For the second part, taking δ = exp
(

−ε2
2
∑k

i=1 c
2
iH

2

)
, ε =

√
2
∑k
i=1 c

2
iH

2 log
(
1
δ

)
and using Azuma-

Hoeffding inequality, it holds with probability at least 1− δ that

k∑
i=1

ci

〈
µi,Ei−1

[
ℓ̂i,x
]
− ℓ̂i,x

〉
⩽

√√√√2

k∑
i=1

c2iH
2 log

(
1

δ

)
.

The proof is concluded by combining the upper bounds of the two parts above.

Lemma B.14. Let δ ∈ (0, 1) and {γki}
k
i=1 ∈ (0,+∞)k. Fix h ∈ [H]. For any coefficient sequence{

ci
}k
i=1

s.t. ci ∈
[
0, 2γk

i
]XA

is Fi−1 - measurable, with probability 1− δ, we have

k∑
i=r

wi

〈
ci, ℓ̂i − ℓi

〉
⩽ max

1⩽i⩽k
wi log

1

δ
.

Proof. Define w = max1⩽i⩽k wi. Hence

wiℓ̂i (xh, ah)

=
wiIi,h {xh, ah}

(
1− rih

)
µi1:h (xh, ah) + ri

⩽
wiIi,h {xh, ah}

(
1− rih

)
µii,h (xh, ah) + ri

wi(1−rih)Ii,h{xh,ah}
w

=
w

2γki

2γkiwi(1−rih)Ii,h{xh,ah}
wµi

i:h(xh,ah)

1 +
γkiwi(1−rih)Ii,h{xh,ah}

wµi
i:h(xh,ah)
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⩽
w

2γki
log

(
1 +

2γkiwi
(
1− rih

)
Ii,h {xh, ah}

wµii:h (xh, ah)

)
.

Denote by Ŝih = wi

w

〈
ci, ℓ̂ih

〉
, Sih = wi

w

〈
ci, ℓih

〉
. Then

Ei−1[exp(Ŝ
i)]

⩽Ei−1

exp
 ∑

(xh,ah)∈X×A

ci(xh, ah)

2γki
log

(
1 +

2γkiwi
(
1− rih

)
Ii,h {xh, ah}

wµii:h (xh, ah)

)
⩽Ei−1

 ∏
(xh,ah)∈X×A

(
1 +

ci(xh, ah)wi
(
1− rih

)
Ii,h {xh, ah}

wµii:h (xh, ah)

)
=Ei−1

1 + ∑
(xh,ah)∈X×A

ci (xh, ah)wi
(
1− rih

)
Ii,h {xh, ah}

wµii:h (xh, ah)


=1 + Sih ⩽ exp

(
Sih
)
.

Finally, one can see that

E

[
k∑
i=1

(
Ŝih − Sih

)
⩾ log

1

δ

]

=E

[
exp

(
k∑
i=1

(
Ŝih − Sih

))
⩾

1

δ

]

⩽δE

[
exp

(
k∑
i=1

(
Ŝih − Sih

))]

=δE

[[
Ek−1

[
exp

(
k∑
i=1

(
Ŝih − Sih

))]]

=δE

[
exp

(
k−1∑
i=1

(
Ŝih − Sih

))[
Ek−1

[
exp

(
Ŝkh − Skh

)]]
⩽ . . . ⩽ δ .

Lemma B.15. Let {ci}ki=1 be fixed positive numbers. Fix h ∈ [H]. Then ∀ sequence {qi}ki=1 ∈
[0, 1]XA s.t. qi is Fi−1 - measurable, with probability at least 1− δ,

k∑
i=1

ci

〈
qi, ℓ̂

i
h − ℓih

〉
⩽ max

1⩽i⩽k

ci
γki

log

(
1

δ

)
.

Proof. Noticing that {γki}ki=1 is decreasing and ∥qi∥∞ ⩽ 1, applying Lemma B.14, we arrive at

k∑
i=1

ci

〈
qi, ℓ̂ih − ℓih

〉
=

k∑
i=1

ci
2γki

〈
2γkiq

i, ℓ̂ih − ℓih

〉
⩽ max

1⩽i⩽k

ci
γki

log

(
1

δ

)
.

B.4 PROOF OF THEOREM 5.1

We are now ready to present the proof of our main result.
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Proof of Theorem 5.1. Putting Lemma B.3, B.4, B.5, B.6, B.7, B.8, B.9 together, we have

Dψ

(
ξk+1,⋆, ξk+1

)
=O

(
(XA+ Y B) ln(k)k−αγk

+αε + k−
αη
2 +αε

2 log

(
k2

δ

)
+ k−αη+αγk log

(
k2

δ

)
+
(
XA

(
logX +H log (Ak)

2
+ Y B (log Y +H log (Bk))

2
)
k−αη−αε

+ kαγk
−2αη (X + Y ) log

(
1

δ

)
+ (X2A+ Y 2B)k−αη+αϵ

+ (X + Y )
1
2 (H log (Ak) +H log (Bk)) (logX +H log (k) + log Y +H log (Bk))

· log(k)k−min{1, 32−αε
2 }+αη+αϵ

=O
([
k−

1
4 (XA+ Y B) + k−

1
4 + k−

1
4 + (XA+ Y B)H2k−

3
4 + (X + Y )k−

7
8 +

(
X2A+ Y 2B

)
k−

1
2

+(X + Y )
1
2H2K− 1

4

] (
log2 (XAk/δ) + log2 (Y Bk/δ)

)
log(K)

)
.

Moreover, note that

NEGap
(
ξk
)

= sup
µ∈Πmax,ν∈Πmin

f
(
µk, ν

)
− f

(
µ, νk

)
=f
(
µk,⋆, ν

)
− f

(
µk,⋆, ν

)
+ f

(
µk, ν

)
− f

(
µ, νk

)
+ f

(
µ, νk,⋆

)
− f

(
µ, νk,⋆

)
⩽NEGap

(
ξk,⋆

)
+
(
µk − µk,⋆

)⊤
Gν + µ⊤G

(
νk,⋆ − νk

)
⩽NEGap

(
ξk,⋆

)
+
〈
px
(
µk − µk,⋆

)
,Gν/px

〉
+
〈
py
(
νk − νk,⋆

)
,G⊤µ/py

〉
⩽NEGap

(
ξk,⋆

)
+
∥∥px (µk − µk·⋆

)∥∥
1
∥Gν/px∥∞ +

∥∥py (νk − νk,⋆
)
∥1∥G⊤µ/py

∥∥
∞

⩽NEGap
(
ξk,⋆

)
+X

∥∥px (µk − µk,⋆
)∥∥

1
+ Y

∥∥py (νk − νk,⋆
)∥∥

1

⩽εkH (ln(XA) + ln(Y B)) +O
(
XAH

k
+
Y BH

k

)
+O

(
X
√
KL (pxµk,⋆, pxµk) + Y

√
KL (pyνk,⋆, pyνk)

)
⩽εkH (ln(XA) + ln(Y B)) +O

(
XAH

k
+
Y BH

k

)
+O

(
(X + Y )

√
KL (pxµk,⋆, pxµk) + KL (pyνk,⋆, pyνk)

)
⩽εkH (ln(XA) + ln(Y B)) +O

(
XAH

k
+
Y BH

k

)
+O

(
(X + Y )

√
KL (pzξk,⋆, pzξk)

)
⩽εkH (ln(XA) + ln(Y B)) +O

(
XAH

k
+
Y BH

k

)
+O

(
(X + Y )

√
Dψ (ξk,⋆, ξk)

)
,

where Gν/px ∈ RXA is defined as (Gν/px)[(xh, ah)] = (Gν)[(xh, ah)]/p
x
1:h(xh) and similarly

for G⊤µ/py .

Therefore, we can see that

NEGap(µk, νk)

=O
(
(X + Y )

[
k−

1
8 (XA+ Y B)

1
2 + (XA+ Y B)

1
2Hk−

3
8 +

(
X2A+ Y 2B

) 1
2 k−

1
4 + (X + Y )

1
4HK− 1

8

]
· (log (XAk/δ) + log (Y Bk/δ)) log

1
2 (k) + k−

1
8H(ln(XA) + ln(Y B)) +

XAB

k
+
Y BH

k

)
=Õ

(
(X + Y )

[
k−

1
8 (XA+ Y B)

1
2 + (XA+ Y B)

1
2HK− 3

8 +
(
X2A+ Y 2B

) 1
2 k−

1
4 + (X + Y )

1
4Hk−

1
8

]
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+
(XAH + Y BH)

k

)
=Õ

(
(X + Y )k−

1
8

[
(XA+ Y B)

1
2 + (X + Y )

1
4H
])

,

where the last equality holds when k ⩾ max{H4, (X
2A+Y 2B)

4

/(XA+Y B)4, (XA+Y B)
8/7
/(X+Y )

10/7}.

C LAST-ITERATE CONVERGENCE RATE IN EXPECTATION

Theorem C.1. With the same condition as in Theorem 5.1, Algorithm 1 guarantees that

E
[
NEGap(µk, νk)

]
= Õ

((
(X + Y )

1
4H +

√
(X2A+ Y 2B)

)
k−

1
6

)
.

Proof. With the same arguments as in the proof of Theorem 5.1, we have

Dψ

(
ξk+1,x, ξk+1

)
⩽ (1− ηkεk)Dψ

(
ξk,⋆, ξk

)
+ η2k (Xτk + Y τ̄k) + η2k

(
X2A+ Y 2B

)
+ ηkρk + ηkσk + ωk

+ η2kXAε
2
k (logX +H log (Ak))

2
+ η2kY Bε

2
k (log Y +H log (Bk))

2
.

Taking conditional expectation Ek−1[·] on both sides and by noticing the fact that Ek−1 [τk] < 0,
Ek−1 [ρk] = 0, and Ek−1 [σk] = 0, we have

Ek−1

[
Dψ

(
ξk+1,x, ξk+1

)]
⩽ (1− ηkεk)Dψ

(
ξk,⋆, ξk

)
+ η2k

(
X2A+ Y 2B

)
+ Ek−1 [ωk]

+ η2kXAε
2
k (logX +H log (Ak))

2
+ η2kY Bε

2
k (log Y +H log (Bk))

2
.

Expanding the recursion in the above display leads to

E
[
Dψ

(
ξk+1,⋆, ξk+1

)]
⩽E

[
k∑
i=1

wikωi

]
+XA (logX +H log (Ak))

2
k∑
i=1

wik (ηiεi)
2
+ Y B (log Y +H log (Bk))

2
k∑
i=1

wik (ηiεi)
2

+

k∑
i=1

wikη
2
i

(
X2A+ Y 2B

)
⩽(X + Y )

1
2 (H log(Ak) +H log(Bk))(logX +H log(Ak) + log Y +H log(Bk))

· log(k)k−min{1, 32−
αε
2 }−αη+αε

+
(
XA (logX +H log (Ak))

2
+ Y B (log Y +H log (Bk))

2
)
k−αη−αε +

(
X2A+ Y 2B

)
k−αη+αε

=Õ
(
(X + Y )

1
2H2k−min{1, 32−αε

2 }+αη+αε + (XA+ Y B)H2k−αη−αε +
(
X2A+ Y 2B

)
k−αη+αε

)
.

Hence,

NEGap(µk, νk)

=Õ
(
εkH +

XAH

k
+
Y BH

k

+ (X + Y )
[
(X + Y )

1
4Hk(−min{1, 32−αε

2 }+αη+αε)/2 +
√

(XA+ Y B) +Hk
−αη−αε

2

+
√
(X2A+ Y 2B)k

−αη+αε
2

])
=Õ

(
k−

1
6H +

XAH

k
+
Y BH

k
+ (X + Y )

[
(X + Y )

1
4Hk−

1
6 +

√
(XA+ Y B)Hk−

1
3
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+
√
X2A+ Y 2Bk−

1
6

])
=Õ

(
(X + Y )

[
(X + Y )

1
4H +

√
(X2A+ Y 2B)

]
k−

1
6

)
.

D PROOF OF LOWER BOUND OF LAST-ITERATE CONVERGENCE

Proof of Theorem 5.3. Let NEGapk := NEGap
(
µk, νk

)
with

(
µk, νk

)
as the policy profile gener-

ated by some algorithm Alg. Suppose that Alg leans the IIEFG with the last-iterate convergence rate
of NEGapk = Θ(f(X,A)k−α) for some α ∈ (0, 1), where fAlg(X,A) denotes the polynomial
dependence on X and A of NEGapk.

Fix some K ⩾ max(XA,Y B). Consider the regret defined as follows (Kozuno et al., 2021; Bai
et al., 2022; Fiegel et al., 2023):

RegK(Alg) = sup
µ∈Πmax

K∑
k=1

〈
µk − µ,Gνk

〉
,

where {νk}k∈[K] is potentially generated by an adversary. Then, one can deduce that

RegK(Alg) = sup
µ∈Πmax

K∑
k=1

⟨µk − µ,Gνk⟩ (14)

⩽
K∑
k=1

sup
µ∈Πmax

⟨µk − µ,Gνk⟩

=

K∑
k=1

supµ∈Πmax
µ⊤
kGνk − µ⊤Gνk

⩽
K∑
k=1

supµ∈Πmax,ν∈Πmin
µ⊤
kGν − µ⊤Gνk

=

K∑
k=1

NEGapk

=Θ

(
f(X,A)

K∑
k=1

k−α

)
=Θ

(
f(X,A)K1−α) . (15)

On the other hand, by Theorem 6 of Bai et al. (2022) (see also Theorem 3.1 fo Fiegel et al. (2023)),
we have

RegK(Alg) ⩾ Ω(
√
AXK) . (16)

Combining Eq. (14) and Eq. (16), we have

Ω(
√
AXK) ⩽ Θ

(
f(X,A)K1−α) .

We now further consider the following three cases:

• If α > 1
2 , then

√
AX ⩽ f(X,A)K

1
2−α. However, this does not hold for any f , when K is large

enough;

• If α = 1
2 , it must hold that

√
AX ⩽ f(X,A);

• If α < 1
2 , then

√
AX ⩽ f(X,A)K

1
2−α. This holds for all f , including f(X,A) = 1 when K is

large enough. In this case, the “minimal” f is f(X,A) = 1, implying that the minimal possible
convergence rate of NEGapk in this case is NEGapk = Θ(k−α).
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Taking the above three cases into account, the minimal possible convergence rate is

min
{
Θ
(√

XAk−
1
2

)
,Θ
(
k−α

)}
(α >

1

2
)

=Θ
(√

XAk−
1
2

)
.

Analogously, we can prove that NEGapk ≥ Θ(
√
Y Bk−

1
2 ). Therefore, we have

NEGapk ≥ Θ
((√

XA+
√
Y B

)
k−

1
2

)
.

The proof is concluded by noticing that the above holds for all algorithms.

E AUXILIARY LEMMAS

Lemma E.1 (Lemma 1 of Cai et al. (2023)). Let 0 < h < 1, 0 ⩽ k ⩽ 2, and let t ⩾(
24
1−h ln

12
1−h

) 1
1−h

. Then

t∑
i=1

i−k t∏
j=i+1

(
1− j−h

) ⩽ 9 ln(t)t−k+h .

Lemma E.2 (Lemma 2 of Cai et al. (2023)). Let 0 < h < 1, 0 ⩽ k ⩽ 2, and let t ⩾(
24
1−h ln

12
1−h

) 1
1−h

. Then

max
1⩽i⩽t

i−k t∏
j=i+1

(
1− j−h

) ⩽ 4t−k .

Lemma E.3 (Lemma 20 of Bai et al. (2020)). Let c1, c2, . . . , ct be fixed positive numbers. Then
with probability at least 1− δ,

t∑
i=1

ci

〈
xi, ℓi − ℓ̂i

〉
= O

A t∑
i=1

βici +

√√√√ln(A/δ)

t∑
i=1

c2i

 .

F OPTIMIZATION PROBLEM IN EQ. (3)

Algorithm 3 Frank-Wolfe-type Algorithm for Solving Eq. (3) (max-player)
1: Input: Policy µk used in episode k, constrained policy space Πk+1

max, learning rate ηk+1, regu-
larizer ψ, loss estimator ℓ̂k, number of iterations T .

2: Initialize: µ(1) = µk, ϕ(µ) = ηk+1⟨µ, ℓ̂k⟩+Dψ(µ, µ
k).

3: for t = 1, . . . , T do
4: Compute g(t) = ∇ϕ(µ(t)).
5: Compute µ̂(t) = argminµ∈Πk+1

max
⟨µ, g(t)⟩ by Algorithm 4.

6: Let δ = 2
1+t .

7: Update µ(t+1) = (1− δ)µ(t) + δµ̂(t).
8: end for
9: Return µ(T ).

In this section, we provide Algorithm 3 and Algorithm 4, which compute an approximate solution
to Eq. (3).
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Algorithm 4 Computing Linear Minimizer in Algorithm 3 (max-player)

1: Input: Πk+1
max, g(t).

2: Initialize: G(t)(xh, ah) = 0, µ(ah|xh) = 0, ∀(xh, ah) ∈ Xh ×A, ∀h ∈ [H].
3: for h = H, . . . , 1 do
4: for xh ∈ XH do
5: Compute

G(t)(xh, ah) =
∑

xh+1∈C(xh,ah),ah+1∈A

µ(ah+1|xh+1)
(
g(t)(xh+1, ah+1) +G(t)(xh+1, ah+1)

)
.

6: Set µ(ah|xh) = 1
A(k+1) , ∀ah ∈ A.

7: Set µ(a′h|xh) = 1− A−1
A(k+1) , where a′h = argmina∈A g

(t)(xh, a) +G(t)(xh, a).
8: end for
9: end for

10: Return µ.

Computation Complexity Suppose there are K episodes. Let w =
maxh∈[H],(xh,ah)∈Xh×A |C(xh, ah)|, where C(xh, ah) is the set of immediate descendant in-
fosets of (xh, ah) as defined in Section 3. Then the computation complexity of our Algorithm 2 and
Algorithm 1 will be of O(wXA) and of O(wXA+K(XA+Oracle)), where Oracle denotes the
computation complexity of an oracle algorithm to solve our Eq. (3). If Algorithm 3 and Algorithm
4 are adopted to solve an approximate solution to Eq. (3), then Oracle will be of O(wXAT ) where
T is the number of iterations in Algorithm 3 and the total computation complexity of our Algorithm
1 will be of O(wXATK).

G EXPERIMENTS

In this section, we present the empirical evaluations of our Algorithm 1. Since we are not aware of
any other algorithm that can also learn the (approximate) NE policy profile in IIEFGs with provable
last-iterate convergence guarantees under bandit feedback, we compare our algorithm against pre-
vious algorithms that converge to the (approximate) NE policy profile in IIEFGs with only average-
iterate convergence guarantees including IXOMD (Kozuno et al., 2021), BalancedOMD (Bai et al.,
2022) and BalancedFTRL (Fiegel et al., 2023). Since these algorithms are only devised to obtain the
average-iterate convergence for learning IIEFGs, the last-iterate convergence of these algorithms for
learning IIEFGs is not theoretically guaranteed.

Environments We consider four standard IIEFG instances including Lewis Signaling, Kuhn Poker
(Kuhn, 1950), Leduc Poker (Southey et al., 2012) and Liars Dice. All the implementation of these
games are from the OpenSpiel library (Lanctot et al., 2019).

Implementation Details For our algorithm, to save the computation costs, instead of using our
Algorithm 3 and Algorithm 4 to solve Eq. (3) in Algorithm 1, we use a lazy update of our Algo-
rithm 1, where only the policy of the experienced trajectory of infoset action pairs {(xkh, akh)}h∈[H]

in each episode k are updated. For the remaining infoset action pairs that are not experienced by the
max-player in episode k, the losses contributed by the entropy regularization (i.e., the second term
in our constructed entropy regularized loss estimator) of these infoset action pairs will be accumu-
lated and will be used to update these infoset action pairs once they are experienced in some future
episode, coming from the observation that the losses contributed by the entropy regularization are
much smaller than the importance-weighted losses constructed using the rewards in the game (i.e.,
the first term in our constructed entropy regularized loss estimator). In this way, the resulting com-
putation complexity of our algorithm will only be of O(wXA +KXA) for running our algorithm
in K episodes where w = maxh∈[H],(xh,ah)∈Xh×A |C(xh, ah)| (C(xh, ah) is the set of immediate
descendant infosets of (xh, ah) as defined in Section 3). We adopt the implementation of all the
baselines by Fiegel et al. (2023).2 Besides, we consider a (logarithmic) grid search on the learning

2https://github.com/anon17893/IIG-tree-adaptation.

35

https://github.com/anon17893/IIG-tree-adaptation


1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

101 103 105 107

Episode

10 9

10 7

10 5

10 3

10 1
NE

 G
ap

 Lewis Signaling
Ours
IXOMD
BalancedOMD
BalancedFTRL

101 103 105 107

Episode

10 1

NE
 G

ap

 Kuhn Poker

Ours
IXOMD
BalancedOMD
BalancedFTRL

101 103 105 107

Episode

10 1

NE
 G

ap

 Leduc Poker

Ours
IXOMD
BalancedOMD
BalancedFTRL

100 101 102 103 104 105 106 107

Episode

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

NE
 G

ap

 Liars Dice

Ours
IXOMD
BalancedOMD
BalancedFTRL

Figure 2: Experiment results of our Algorithm 1 against IXOMD (Kozuno et al., 2021), Balance-
dOMD (Bai et al., 2022) and BalancedFTRL (Fiegel et al., 2023). The curves show the last-iterate
convergence results of the NE gap defined in Eq. (2) against the number of episodes and are aver-
aged over 5 different seeds.

rates for all the algorithms, following Fiegel et al. (2023). All the experiments are conducted on a
server with an Intel Xeon Gold CPU and 251GiB system memory. The running of all the algorithms
including our algorithm costs approximately 10 hours, 12 hours, 13 hours, and 16 hours on Lewis
Signaling, Kuhn Poker, Leduc Poker, and Liars Dice, respectively.

Results The experimental results are shown in Figure 2. Our algorithm obtains the best or the
competitive performance across all four IIEFG instances. In particular, our algorithm converges
faster than all the baseline algorithms on Kuhn Poker and Liars Dice and also converges as fast as
the empirically best baseline algorithm on Lewis Signaling and Leduc Poker. Though some baseline
algorithms work relatively well on some game instances, we would like to note again that these
algorithms are not theoretically guaranteed to converge to the NE policy profile with the last-iterate
convergence. We speculate that this might also be the reason why some baseline algorithms perform
relatively well in some instances but poorly in the remaining ones. For instance, the BalancedFTRL
algorithm performs well on Leduc Poker while converging very slowly on Kuhn Poker. Analogously,
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BalancedOMD converges relatively well on Kuhn Poker and Leduc Poker but converges the most
slowly on Liars Dice.

Moreover, in general, it appears that the advantage of our algorithm becomes more pronounced
in IIEFG instances with larger infoset spaces X (and action spaces A) over previous algorithms.
This observation aligns with the intuition that in such instances, the baseline algorithms, which
solely have average-iterate convergence theoretical guarantees, face greater difficulty in achieving
last-iterate convergence to the NE. This challenge may arise because these algorithms are more
susceptible to getting stuck in suboptimal policy profiles, due to lack of the last-iterate convergence
theoretical guarantees.
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