
Under review as a conference paper at ICLR 2024

8 APPENDIX

8.1 IMPLEMENTATION DETAILS

8.1.1 HYPERNETWORK ARCHITECTURE

The hypernetwork takes the encoder-decoder T5 Transformer architecture (Raffel et al., 2020). T5-
Large and T5-XL models each consists of a 24-layer encoder and a 24-layer decoder. T5-Large has
a hidden dimension of 1024 and T5-XL has a hidden dimension of 2048. For training efficiency, we
adopt the first 8 layers of the decoder to initialize the hypernetwork’s decoder.

8.1.2 PARAMETER GENERATION IN DETAILS

In Sections 2 and 3, We introduce the parameter generation schemes for HyperTuning (Phang et al.,
2022) and HART with some simplifications for presentation clarity. In this section, we provide the
full details in their prefix generation schemes.

Notations. We denote the length of the prefix to be generated as p, which is set to be 32 in both
methods. We denote the hidden dimension of both the hypernetwork and the main model as dm,
which is 1024 in T5-Large and 2048 in T5-XL. We denote the number of layers in both the main
model’s encoder and decoder as L, which is 24 in both T5-Large and T5-XL.

Parameter Generation in HyperTuning. In HyperTuning, the input to the hypernetwork’s de-
coder is a learnable embedding with 2p as the sequence length, denoted as z ∈ R2p×dm . At each
forward pass, the decoder takes in z and generates a hidden state h ∈ R2p×dm using bi-directional
self-attention following Eq. 3. The decoder conditions on the few-shot demonstration examples by
crossly attending to the hypernetwork’s encoder’s output representation.

For each layer of the main model, two layer-specific MLPs would be learned to project the hidden
state h to the key and value prefixes, respectively. In other words, for a 2L-layer main model,
there are 4L MLPs. Each MLP consists of a layer normalization, 2 linear projections each with a
dimension of Rdm×dm , and a tanh non-linear activation.

We denotes the MLP that learns the key/value prefix for the l-th layer of the encoder/decoder as
MLPl

enc,key(·), MLPl
enc,value(·), MLPl

dec,key(·), and MLPl
dec,value(·), respectively. MLPl

enc,key(·) and
MLPl

enc,value(·) would take h[: p, :] ∈ Rp×dm as input and produce ϕl
enc,key and ϕl

enc,value, both in
Rp×dm , as the key and value prefixes for the l-th layer of the encoder. Similarly, MLPl

dec,key(·) and
MLPl

dec,value(·) would take h[−p :, :] ∈ Rp×dm as input and produce ϕl
dec,key and ϕl

dec,value as the
key and value prefixes for the l-th layer of the decoder.

For training efficiency, {MLPl
enc,key}Ll=1 share the weights of their first linear projections.

{MLPl
enc,value}Ll=1, {MLPl

dec,key}Ll=1 and {MLPl
dec,value}Ll=1 share their weights in a similar fash-

ion.

Parameter Generation in HART. In HART, the input to the hypernetwork’s decoder is a learnable
embedding with 2 as the sequence length, denoted as z ∈ R2×dm . At each forward pass, the decoder
takes in z and autoregressively decodes a sequence of hidden states h1, ..., hL, each with dimension
R2×dm . The decoder conditions on the few-shot task-specific demonstration examples by crossly
attending to the hypernetwork’s encoder’s output representation.

For each layer of the main model, two layer-specific MLPs would be learned to project the hidden
state h to the key and value prefixes, respectively. Each MLP consists of a layer normalization,
2 linear projections and a tanh non-linear activation. The first linear projection is of dimension
Rdm×pdm and the second is of dimension Rdm×dm .

Following the same notations from HyperTuning, MLPl
enc,key(·) and MLPl

enc,value(·) would take
h[: 1, :] ∈ Rdm as input. After their first linear projections, the intermediate outputs are of dimen-
sion Rpdm . We further reshape the intermediate outputs into the dimension Rp×dm , which is then
projected by their second linear projections into ϕl

enc,key and ϕl
enc,value, the key and value prefixes

for the l-th layer of the encoder. Both prefixes are of dimension Rp×dm . Similarly, MLPl
dec,key(·)

and MLPl
dec,value(·) would take h[−1 :, :] ∈ Rdm as input and produce ϕl

dec,key and ϕl
dec,value as the

key and value prefixes for the l-th layer of the decoder.

13



Under review as a conference paper at ICLR 2024

For training efficiency, {MLPl
enc,key}Ll=1 share the weights of their first linear projections.

{MLPl
enc,value}Ll=1, {MLPl

dec,key}Ll=1 and {MLPl
dec,value}Ll=1 share their weights in a similar fash-

ion.

Remark regarding Weight Sharing and Input Sharing in MLPs. We remark that in HyperTun-
ing and HART, the MLPs are not completely independent across layers because they share the same
input hidden state and the first linear projection layers. Such input and weight sharing indeed al-
low MLPs to learn the pattern of layerwise dependency through training, but they need to learn it
from scratch. In contrast, autoregressive decoding allows the hypernetwork to directly exploit the
layerwise pattern without learning. This pattern is an useful inductive bias that improves the sample
efficiency during training.

8.1.3 TRAINING DETAILS

Multi-task Training Data Sampling. We follow the multi-task in-context fine-tuning setting from
MetaICL (Min et al., 2021). At each training iteration, we first randomly sample a task from the
training task pool, and then randomly sample K shot demonstration examples and one training ex-
ample from this task. During inference, for each task, we use a fixed set of demonstration examples
for all test queries. For P3 training data, we exclude tasks with average sequence lengths longer than
320 tokens to fit more prompts into the input following Phang et al. (2022).

Fusion-in-decoder. We further adopt a fusion-in-decoder strategy, originally designed for question
answering tasks (Izacard & Grave, 2020; Ye et al.). This strategy requires the decoder to attend to
concatenated representations of multiple encoded input contexts. Ivison et al. (2022) has validated its
effectiveness for hypernetworks. Specifically, at each forward pass, we prepend the hypernetwork’s
encoder output to the main model’s encoder output, and require the main model’s decoder to attend
to such a fused representation in the cross attention module. This approach is adopted in both the
training and inference stages.

Hyperparameters. We fine-tune the hypernetwork for 10k steps in T5-Large experiments and 20k
steps in T5-XL experiments. For both model experiments, we use the Adam-8bit optimizer (Kingma
& Ba, 2014; Dettmers et al., 2021) with a learning rate of 5 × 10−5 and a batch size of 256. We
adopt a linear decay learning rate schedule. We select α ∈ {1, 10, 20}. We set the maximum input
sequence length for the hypernetwork as 1024 and the prefix length as 32. For the main model,
we set the maximum input and target sequence length as 384 and 128. We adopt the same input
sequence length and target sequence length during inference.

We use deepspeed library for distributed training and inference. The T5-Large experiments are
conducted on 8 Nvidia 32G V100 GPUs and T5-XL experiments are conducted on 8 Nvidia 80G
A100 GPUs.

8.2 ADJACENT LAYERS EXHIBIT STRONGER DEPENDENCY

Table 7 shows the evaluation results under different decoding schemes: 1) generate a single
layer-shared state (HyperTuning); 2) generate layer-specific states autoregressively for a randomly-
chosen, fixed order of layers; 3) generate layer-specific states autoregressively from the top layer to
the bottom layer; 4) generate layer-specific states autoregressively from the bottom layer to the top
layer (HART). All experiments are conducted without regularizing the local consistency. We can
observe that 2), 3) and 4) achieve noticeable improvements upon 1), demonstrating the benefit of
utilizing the capabilities of the decoder. Furthermore, 5) outperforms 3), suggesting that exploiting
the underlying problem structure improves the sample efficiency.

8.3 VISUALIZING CONSISTENCY REGULARIZED PARAMETERS

Figure 5 (Left) showcases the value of Lcst with and without local consistency regularization on
the S-NI training set. We can observe that the generated parameters no longer change drastically
across iterations after applying local consistency regularization. Figure 5 (Right) shows the t-SNE
plot of the hidden states generated for different layers with and without applying local consistency
regularization on four P3 held-out test tasks. One observation is that, with or without regularization,
the states generated for different tasks are clustered, while the states generated for different layers are
scattered. This suggests that layer-specific weight structure maybe more distinct than task-specific
weight structure. Another observation is that, after applying consistency regularization, the states
generated for different layers become more diverse.

14



Under review as a conference paper at ICLR 2024

Table 7: Evaluation results of the T5-Large model on S-NI test set with PEFT parameters generated
under different layerwise dependencies. ∗The result is obtained by averaging over three different
randomly-chosen orders.

Generate Multiple Layerwise S-NI
Layer-specific States? Dependency Avg. ROUGE-L

No N/A (HyperTuning) 45.2

Yes, autoregressively Depend on one random, fixed layer∗ 45.5
Yes, autoregressively Depend on the next layer 45.8
Yes, autoregressively Depend on the previous layer (HART) 46.4

500 1000 1500 2000
Training Steps

0.0

0.1

0.2

0.3

C
on

si
st

en
cy

 L
os

s

S-NI, T5-Large
Method

w/o Cst. Reg. 
with Cst. Reg.

20 10 0 10 20
Generated PEFTs at All Layers

20

10

0

10

20
P3, T5-Large

Method

w/o Cst. Reg. 
with Cst. Reg.

Task
ANLI 
Hellaswag
WiC
Winograde

Figure 5: Left: The value of Lcst with and without local consistency regularization on the S-NI
training set. Right: The t-SNE plot of the hidden states generated for different layers with and
without applying local consistency regularization on four P3 held-out test tasks.

15


	Appendix
	Implementation Details
	Hypernetwork Architecture
	Parameter Generation in Details
	Training Details

	Adjacent Layers Exhibit Stronger Dependency
	Visualizing Consistency Regularized Parameters


