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The supplementary material is structured as follows: Section S1 includes additional assumptions for the likelihood and
density functions. Section S2 provides proofs for the main theorems. Section S3 presents the toy example mentioned in
Section 2. Section S4 displays additional figures for the first simulation study in this section. The simulation codes are in the
https://github.com/yuwen997/simulation-codes.

S1 REGULARITY CONDITIONS

In this section, we provide the same assumptions on likelihood functions and density functions as those in Fan and Peng
[2004], White [1982]. For a better understanding of these conditions, an informal summary of assumptions S1–S9 is
provided here. Assumptions S1–S7 align with A1–A7 in White [1982], ensuring MLE estimator consistency and asymptotic
normality in both misspecified and correct models. S8–S9 resemble F–G in Fan and Peng [2004], bounding f moments.

Assumption S1 The independent random vectors (pi, Yi), i = 1, . . . , N, have common joint distribution function G on Υ,
a measurable Euclidean space, with measurable Radon-Nikodym density g = dG/dµ.

Assumption S2 The family of distribution functions F (Y1, p, θ) has Radon-Nikodym densities f(y, p, θ) = dF (y, p, θ)/dµ
which are measurable in (y, p) for every θ in Θ, a compact subset of Euclidean space, and continuous in θ for every (y, p)
in Υ.

Assumption S3 (a) E{log g(Y, p)} exists and | log f(y, p, θ)| ≤ m(y, p) for all θ in Θ, where m is integrable with respect
to G; (b) KLIC(g : f, θ) has a unique minimum at θ∗ in Θ.

Assumption S4 ∂ log f(y, p, θ)/∂θj , j = 1, . . . ,K, are measurable functions of (y, p) for each θ in Θ and continuously
differentiable functions of θ for each (y, p) in Υ.

Assumption S5 |∂2 log f(y, p, θ)/∂θi∂θj | and |∂ log f(y, p, θ)/∂θi ·∂ log f(y, p, θ)/∂θj |, i, j = 1, . . . ,K are dominated
by functions integrable with respect to G for each θ in Θ and (y, p) in Υ.

Assumption S6 Define matrix

A (θ) = −E
{
∂2 log f (Y1, p1, θ)

∂θj∂θk

}
> 0,

B(θ) = E

[{
∂ log f (Y1, p1, θ)

∂θ

}{
∂ log f (Y1, p1, θ)

∂θ

}T
]
,

and (a) θ∗ is interior to Θ; (b) B(θ∗) is nonsingular; (c) θ∗ is a regular point of A(θ).
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Assumption S7 |∂ {∂f(y, p, θ)/∂θi · f(y, p, θ)} /∂θj |, i, j = 1, . . . ,K are dominated by functions integrable with respect
to µ for all θ in Θ and the minimal support of f(y, p, θ) does not depend on θ.

Assumption S8 Define matrix

C(θ) = A(θ)B−1(θ)A(θ).

Assume matrix A(θ) and B(θ) satisfy conditions

0 < C1 < λmin {A (θ)} ≤ λmax {A (θ)} < C2 < ∞ for all N,

0 < C∗
1 < λmin {B (θ)} ≤ λmax {B (θ)} < C∗

2 < ∞ for all N,

and for j, k = 1, . . . ,K,

Eθ

{
∂ log f (Y1, p1, θ)

∂θj

∂ log f (Y1, p1, θ)

∂θk

}2

< C3 < ∞

and

Eθ

{
∂2 log f (Y1, p1, θ)

∂θj∂θk

}2

< C4 < ∞.

Assumption S9 There is a large enough open subset ωN of Θ ∈ RK which contains the parameter point θ∗, such that for
almost all (pi, Yi) the density admits all third derivatives ∂f(Yi, pi, θ)/∂θjθkθl for all θ ∈ ωN . Furthermore, there are
functions Mjkl such that

|∂ log f (Yi, pi, θ)

∂θj∂θk∂θl
| ≤ Mjkl (Yi, pi)

for all θ ∈ ωN , and
Eθ

{
M2

jkl (Yi, pi)
}
< C5 < ∞

for all K,N, j, k and l.

Assumption S10 Define h(A,X, S | β, δ) = βint + βAA+ βT
Xpµ(X) + (1− S)δTpb(X). f, g satisfy that the minimizers

β∗, δ∗ of E{Y −h(A,X, S | β, δ)}2 are also the minimizers β∗, δ∗ of KLIC(g : f, β, δ) = E [log {g(Y, p)/f(Y, p, β, δ)}] .

S2 PROOF

In this section, we provide proof of Theorems 1-4. Define L (θ) = L(β, δ) =
∑N

i=1 {ln f (Yi, pi,β, δ)} . Subsequently, the

penalized likelihood function is Q(θ) = L(θ)−N
∑K1

i=1 Pλ1,i (|β|)−N
∑K2

i=1 Pλ2,i (|δ|) . Assume β∗ =

(
β∗1
β∗2

)
, δ∗ =(

δ∗1
δ∗2

)
where β∗1 ̸= 0 with s1 dimensions, δ∗1 ̸= 0 with s2 dimensions, β∗2 = 0 with K1 − s1 dimensions and δ∗2 = 0

with K2 − s2 dimensions. Further, let θ∗ =

(
θ∗1
θ∗2

)
, where θ∗1 =

(
β∗1
δ∗1

)
̸= 0 with s = s1 + s2 dimensions and

θ∗2 =

(
β∗2
δ∗2

)
= 0 with K − s dimensions.

S2.1 THEOREM S1

Theorem S1 was previously demonstrated in Lorentz [1966] and Chen [2007], and we restate it here.

Theorem S1 For any unknown function f :Rd → R, assuming function f (·) is t times continuously differentiable. Let
K = (q + 1)d where x1, . . . , xd are at least up to power q, and let rK(x) be the K-dimension power series basis function,
R (x) = AKrK (x) where AK is the matrix such that E

{
R (X)RT (X)

}
= I where I is the identity matrix. Then there is

a K-vector θ such that on the compact set X , supx∈X |f (x)−RT (x) θ| = O
(
K−t/d

)
.



S2.2 PROOF FOR THEOREM 1

Under the combined dataset, the ANCOVA working model is

Y = βint + βAA+ βT
Xpµ(X) + (1− S)b0(X).

We can rewrite the models as

Ỹ = βint + βAA+ βT
Xpµ(X)

= βTpµ

= µ̄A,1(X;β),

where Ỹ := Y − (1− S)b0(X). Note, µ̄A,1(X;β) = βTpµ. Remember µ̄A,1(X) = β0 + βAA+ βT
Xpµ(X). The same in

Proof of Theorem for Linear Models in Rosenblum and Van Der Laan [2009], the ordinary least squares estimate of β is
asymptotically normal and converges in probability to the minimizer β∗ of E{Ỹ − µ̄A,1(X;β)}2 . Then

E{Ỹ − µ̄A,1(X;β)}2 = E{Ỹ − E
(
Ỹ | A,X, S

)
+ E

(
Ỹ | A,X, S

)
− µ̄A,1(X;β)}2

= E{Ỹ − E
(
Ỹ | A,X, S

)
}2 + E

{
E
(
Ỹ | A,X, S

)
− µ̄A,1(X;β)

}2

= E{Ỹ − E
(
Ỹ | A,X, S

)
}2 + E

[
E
{
E
(
Ỹ | A,X, S

)
− µ̄A,1(X;β)

}2

| S
]

= E{Ỹ − E
(
Ỹ | A,X, S

)
}2 + E

[{
E
(
Ỹ | A,X, S = 1

)
− µ̄A,1(X;β)

}2

| S = 1

]
P(S = 1)

+ E
[{

E
(
Ỹ | A = 0, X, S = 0

)
− µ̄0,1(X;β)

}2

| S = 0

]
P(S = 0).

Under HCs, by the definition of b0(X), we have

E
(
Ỹ | A = 0, X, S = 0

)
− µ̄0,1(X;β) = E {Y − b0(X) | A = 0, X, S = 0} − µ̄0,1(X;β)

= E {Y − E (Y | A = 0, X, S = 0) + µ̄0,1(X;β) | A = 0, X, S = 0} − µ̄0,1(X;β)

= E (Y | A = 0, X, S = 0)− E (Y | A = 0, X, S = 0) + µ̄0,1(X;β)− µ̄0,1(X;β)

= 0.

Similar in [Wang et al., 2023], the β∗ minimizing

E
[{

E
(
Ỹ | A,X, S = 1

)
− µ̄A,1(X;β)

}2

| S = 1

]
= E

[
{E (Y | A,X, S = 1)− µ̄A,1(X;β)}2 | S = 1

]
= E

[
{µA,1(X)− µ̄A,1(X;β)}2 | S = 1

]
.

By the first formula of taking the first derivative of E
[
{µA,1(X)− µ̄A,1(X;β)}2 | S = 1

]
, β∗ satisfies

E {µA,1(X)− µ̄A,1(X;β) | S = 1} = 0. That is, β∗ satisfies τ = E {µ1,1(X)− µ0,1(X) | S = 1} =
E {µ̄1,1(X)− µ̄0,1(X) | S = 1} = βA∗. Similarly, in the REs, we have τ = βA∗.

S2.3 PROOF FOR THEOREM 2

Assume g(Y, p) is the true density function, f(Y, p, θ) is our working density function. From Assumption S10, the selected
f makes minimizing the KLIC equivalent to minimizing the least square to E{Y − h(A,X, S | β, δ)}2, therefore,
θ∗ = (βT

∗ , δ
T
∗ )

T is also the parameter which minimizes the Kullback-Leibler Information Criterion (KLIC),

KLIC(g : f, θ) = E [log {g(Y, p)/f(Y, p, θ)}] .



We follow the similar proofs inFan and Peng [2004], let aN =
√
K
(
N−1/2 + αN

)
and set ∥u∥2 = C, where C is a large

enough constant, our aim is to show that for any given ϵ there is a large constant C such that, for large N we have

P

{
sup

∥u∥2=C

Q(θ∗ + aNu) < Q(θ∗)

}
≥ 1− ϵ.

This implies that with probability tending to 1 there is a local maximum θ̂ in the call {θ∗ + aNu : ∥u∥2 ≤ C} such that
∥θ̂ − θ∗∥2 = Op (aN ) . Because Pλ1(0) = Pλ2(0) = 0, We have

D(u) = Q(θ∗ + aNu)−Q(θ∗)

≤ L(θ∗ + aNu)− L(θ∗)︸ ︷︷ ︸
(I)

−N

s1∑
j=1

{Pλ1
(|β∗,j + aNu1j |)− Pλ1

(||β∗,j |)}︸ ︷︷ ︸
(II)

−N

s2∑
j=1

{Pλ2
(|δ∗,j + aNu2j |)− Pλ2

(|δ∗,j |)}︸ ︷︷ ︸
(III)

:= (I) + (II) + (III) ,

where uT = (uT
1 ,u

T
2 ) with u1 as K1 dimensions and u2 as K2 dimensions. First for (II) we have

(II) = −
s1∑
j=1

[
NaNP

′

λ1
(|β∗,j |) sgn(β∗,j)u1j +Na2NP

′′

λ1
(β∗,j)u

2
1j {1 + o(1)}

]
:= I1 + I2,

|I1| ≤
s1∑
j=1

|NaNP
′

λ1
(|β∗,j |) sgn(β∗,j)u1j | ≤

√
s1NaNαN∥u1∥2 ≤ Na2N∥u∥2,

|I2| =
s1∑
j=1

Na2NP
′′

λ1
(|β∗,j |)u2

1j {1 + o(1)} ≤ 2 max
1≤j≤s1

P
′′

λ1
(|β∗,j |)Na2N∥u∥22.

Similarly for (III). Then for (I) we have

(I) = aN∇TL(θ∗)u+
1

2
uT∇2L(θ∗)ua

2
N +

1

6
∇T

{
uT∇2L(θ∗)u

}
ua3N

:= I3 + I4 + I5,

with the same proof in Theorem 1 in Fan and Peng [2004], by condition S8, we have

|I3| = |aN∇TL(θ∗)u| ≤ aN∥∇TL(θ∗)∥2∥u∥2 = Op(a
2
NN)∥u∥2.

I4 =
1

2
uT

{
1

N

([
∇2L(θ∗)− E

{
∇2L(θ∗)

}])}
uNa2N

− 1

2
uTA(θ∗)uNa2N

= −Na2N
2

uTA(θ∗)u+ op(1)Na2N∥u∥22.



By condition S9 and K4/N → 0 and K2αN → 0 as N → ∞, we have

|I5| = |1
6

K∑
i,j,k=1

∂L(θ∗)

∂θi∂θj∂θk
uiujuka

3
N |

≤ 1

6

N∑
l=1


K∑

i,j,k=1

M2
ijk(Yi, pi)


1/2

∥u∥32a3N

= op(Na2N )∥u∥22.

Therefore, by Assumption 5 and allowing ∥u∥2 to be large enough, all I1, I2, I3, I5 and (III) are dominated by I4, which
is negative, therefore proves ∥θ̂ − θ∗∥2 = Op

{√
K
(
N−1/2 + aN

)}
. Further we have max

{
∥β̂ − β∗∥2, ∥δ̂ − δ∗∥2

}
≤

∥θ̂ − θ∗∥2 = Op

{√
K
(
N−1/2 + aN

)}
. For the SCAD penalty, it is clear that aN = Op

(
N−1/2

)
, therefore β̂ and δ̂ are

root-(N/K)-consistent penalized likelihood estimators exist with probability tending to 1, and no requirements are imposed
on the convergence rate of λ1 and λ2.

S2.4 PROOF FOR THEOREM 3

We follow the similar proofs in Fan and Peng [2004]. we first show that the nonconcave penalized estimator possesses the
sparsity property θ̂2 = 0 by the following lemma.

Lemma 1 Assume Assumption 5, Assumption S1–S9 are satisfied, if λ1, λ2 → 0,
√
N/Kλ1 → ∞,

√
N/Kλ2 → ∞, and

K5/N → 0 as N → ∞, then first show that with probability tending to 1, for any given θ1 satisfying ∥θ1 − θ∗1∥2 =

Op

(√
K/N

)
and any constant C,

Q
{
(θT1 , 0)

T
}
= max

∥θ2∥2≤C(K/N)1/2
Q
{
(θT1 , θ

T
2 )

T
}
.

Proof: Let ϵ = C
√
K/N. It is sufficient to show that with probability tending to 1 as N → ∞, for any θ1 − θ∗1 =

Op

(√
K/N

)
we have for j = s+ 1, . . . ,K,

∂Q(θ)
∂θj

< 0 for 0 < θj < ϵ,
∂Q(θ)
∂θj

> 0 for − ϵ < θj < 0.

By Taylor expansion,

∂Q(θ)

∂θj
=

∂L(θ)

∂θj
−NP

′

λ(|θj |)sgn (θj)

=
∂L(θ∗)

∂θj
+

K∑
l=1

∂2L(θ∗)

∂θj∂θl
(θl − θ∗,l)

+

K∑
l,k=1

∂3L(θ∗)

∂θj∂θl∂θk
(θl − θ∗,l) (θk − θ∗,k)

−NP
′

λ(|θj |)sgn (θj)
:= I1 + I2 + I3 + I4,

where θ∗ lies between θ and θ∗, and P
′

λ(|θj |) = P
′

λ1
(|βj |) for j = s+ 1, . . . ,K1 − s1 + s, and P

′

λ(|θj |) = P
′

λ2
(|δj |) for

j = K1 − s1 + s+ 1, . . . ,K.



Following the same proof in Fan and Peng [2004], we prove I1 + I2 + I3 = Op

(√
NK

)
. First, I1 = Op

(√
N
)
=

Op

(√
NK

)
. Also,

I2 =

K∑
l=1

(
∂2L(θ∗)

∂θj∂θl
− E

{
∂2L(θ∗)

∂θj∂θl

})
(θl − θ∗,l)

+

K∑
l=1

E
{
∂2L(θ∗)

∂θj∂θl

}
(θl − θ∗,l)

:= S1 + S2.

Using the Cauchy-Schwarz inequality and ∥θ − θ∗∥2 = Op (K/N) , we have

|S2| = |N
K∑
l=1

A(θ∗)(j, l)(θl − θ∗,l)|

≤ NOp

(√
K

N

){
K∑
l=1

A2(θ∗)(j, l)

}1/2

.

By Assumption S8, as the eigenvalues of the A(θ) are bounded, we have S2 = Op

(√
NK

)
. On the other hand,

|S1| ≤ ∥θ − θ∗∥2

(
K∑
l=1

[
∂2L(θ∗)

∂θj∂θl
− E

{
∂2L(θ∗)

∂θj∂θl

}]2)1/2

.

By Assumption S8, we have (
K∑
l=1

[
∂2L(θ∗)

∂θj∂θl
− E

{
∂2L(θ∗)

∂θj∂θl

}]2)1/2

= Op

(√
NK

)
.

Therefore S1 = Op

(√
NK

)
and I2 = Op

(√
NK

)
. Further,

I3 =

K∑
l,k=1

[
∂3L(θ∗)

∂θj∂θl∂θk
− E

{
∂3L(θ∗)

∂θj∂θl∂θk

}]
(θl − θ∗,l) (θk − θ∗,k)

+

K∑
l,k=1

E
{

∂3L(θ∗)

∂θj∂θl∂θk

}
(θl − θ∗,l) (θk − θ∗,k)

:= S3 + S4.

By Assumption S9, |S4| ≤ C
1/2
5 NK∥θ − θ∗∥22 = Op(K

2) = op

(√
NK

)
. Further,

S2
3 ≤

K∑
l,k=1

[
∂3L(θ∗)

∂θj∂θl∂θk
− E

{
∂3L(θ∗)

∂θj∂θl∂θk

}]2
∥θ − θ∗∥42,

where under the Assumption S9 and Assumption 5, S3 = Op

{(
NK2K2

N2

)1/2}
= op

(√
NK

)
. Then

I1 + I2 + I3 = Op

(√
NK

)
.

Because we focus on the SCAD penalty, Fan and Peng [2004] illustrates that under Assumption 5, the SCAD penalty
satisfies that

lim inf
N→+∞

lim inf
β→0+

P
′

λ1
(β)/λ1 > 0

lim inf
N→+∞

lim inf
δ→0+

P
′

λ2
(δ)/λ2 > 0,



therefore from
∂Q(θ)

∂θj
= Nλ

{
−P

′

λ (|θj |)
λ

sgn(θj) +Op

(√
K

N
/λ

)}
,

where λ = λ1 if j = s + 1, . . . ,K1 − s1 + s and λ = λ2 if j = K1 − s1 + s + 1, . . . ,K, and P
′

λ(|θj |) = P
′

λ1
(|βj |)

for j = s + 1, . . . ,K1 − s1 + s, and P
′

λ(|θj |) = P
′

λ2
(|δj |) for j = K1 − s1 + s + 1, . . . ,K, the sign of θj completely

determines the sign of ∂Q(θ)/∂θj . We complete the proof of Lemma 1.

By Lemma 1 we prove θ̂2 =

(
β̂2

δ̂2

)
= 0. Then we prove the part 2.

Let

Σ = diag
{
P

′′

λ (θ∗,1) , . . . , P
′′

λ (θ∗,s)
}

= diag
{
P

′′

λ1
(β∗,1) , . . . , P

′′

λ1
(β∗,s1) , P

′′

λ2
(δ∗,1) , . . . , P

′′

λ2
(δ∗,s2)

}
and

b =
{
P

′

λ (|θ∗,1|) sgn (θ∗,1) , . . . , P
′

λ (|θ∗,s|) sgn (θ∗,s)
}T

=
{
P

′

λ1
(|β∗,1|) sgn (β∗,1) , . . . , P

′

λ1
(|β∗,s1 |) sgn (β∗,s1) , P

′

λ2
(|δ∗,1|) sgn (δ∗,1) , . . . , P

′

λ2
(|δ∗,s2 |) sgn (δ∗,s2)

}T

.

If we can show that
{A(θ∗1) + Σ}

(
θ̂1 − θ∗1

)
+ b =

1

N
∇L(θ∗1) + op(N

−1/2),

then
√
NWA−1/2(θ∗1) {A(θ∗1) + Σ}

[
θ̂1 − θ∗1 + {A(θ∗1) + Σ}−1

b
]

=
1√
N

WA−1/2(θ∗1)∇L(θ∗1) + op

{
WA−1/2(θ∗1)

}
=

1√
N

WA−1/2(θ∗1)∇L(θ∗1) + op(1).

Let Ri =
1√
N
WA−1/2(θ∗1)∇Li(θ∗1), i = 1, . . . , N. Following the same proof in Fan and Peng [2004], for any ϵ, we have

N∑
i=1

E∥Ri∥221 {∥Ri∥2 > ϵ} = NE∥R1∥221 {∥R1∥2 > ϵ} ,

≤ N(E∥R1∥42)1/2 {P (∥R1∥2 > ϵ)}1/2 .

By Assumption S8 and WWT → G, we obtain

P (∥R1∥2 > ϵ) ≤ E∥WA−1/2(θ∗1)∇L1(θ∗1)∥22
Nϵ2

= O(N−1)

and

E∥R1∥42 =
1

N2
E∥WA−1/2(θ∗1)∇L1(θ∗1)∥42

≤ 1

N2
λmax(WWT)λmax

{
A−1(θ∗1)

}
E∥∇TL1(θ∗1)∇L1(θ∗1)∥22

≤ O(
K2

N2
).

Thus, we have
N∑
i=1

E∥Ri∥221 {∥Ri∥2 > ϵ} = O(N
K

N

1√
N

) = o(1).



and

N∑
i=1

cov(Ri) = cov
{
WA−1/2(θ∗1)∇L1(θ∗1)

}
= WA−1/2(θ∗1)B(θ∗1)A

−1/2(θ∗1)W
T,

so that the Ri satisfies the conditions of the Lindeberg-Feller central limit theorem. Further, using the Taylor expansion on
∇Q(θ̂1) at the point θ∗1, we have

1

N

[{
∇2L(θ∗1)−∇2Pλ(θ

∗∗
1 )
}(

θ̂1 − θ∗1

)
−∇Pλ (θ∗1)

]
=− 1

N

[
∇L(θ∗1) +

1

2

(
θ̂1 − θ∗1

)T
∇2
{
∇L (θ∗1)

(
θ̂1 − θ∗1

)}]
,

where θ∗1 and θ∗∗1 lie between θ̂1 and θ∗1. Now define

L := ∇2L(θ∗1)−∇2Pλ(θ
∗∗
1 )

and
C :=

1

2

(
θ̂1 − θ∗1

)T
∇2
{
∇L (θ∗1)

(
θ̂1 − θ∗1

)}
.

Following the proof in Fan and Peng [2004], under Assumption S9 and Assumption 5 and by the Cauchy–Schwarz inequality,
we have ∥1/NC∥22 = op (1/N) . Further, we have

λi

{
1

N
L+A(θ∗1) + Σ

}
= op

(
1√
K

)
, i = 1, . . . , s,

where λi(M) is the ith eigenvalue of a symmetric matrix M . Therefore,{
1

N
L+A(θ∗1) + Σ

}(
θ̂1 − θ∗1

)
= op

(
1√
N

)
.

Then, we have {A(θ∗1) + Σ}
(
θ̂1 − θ∗1

)
+ b = 1

N∇L(θ∗1) + op(N
−1/2), and finally we have

√
NWA−1/2(θ∗1) {A(θ∗1) + Σ}

[
θ̂1 − θ∗1 + {A(θ∗1) + Σ}−1

b
]

→ N (0,WA−1/2(θ∗1) [B(θ∗1)− E {∇L1(θ∗1)}]A−1/2(θ∗1)W
T.

Further, based on the SCAD penalty, Σ = 0 and b = 0, therefore, we have

√
NWA1/2 (θ∗1)

(
θ̂1 − θ∗1

)
→ N

(
0,WA−1/2(θ∗1)B(θ∗1)A

−1/2(θ∗1)W
T
)
.

If the model is correctly specified, i.e., g(Y, pi) = f(Y, pi, θ) for some θ ∈ Θ, then θ0 = θ∗, and

√
NWI1/2 (θ01)

(
θ̂1 − θ01

)
→ N

(
0,WWT

)
.

We finish the second part.

S2.5 COMMENTS ON THEOREM 2 AND THEOREM 3

It’s important to clarify that if our focus isn’t primarily on the least square loss, we can adjust the assumptions on f and g
from S1–S10 to only satisfy Assumptions S1–S9 for Theorem 2 and Theorem 3. The critical point is that for any other f and
g fulfilling Assumptions S1–S9, a local maximizer θ̂ of the Q(θ) exists such that θ̂ converges to θ∗, where θ∗ minimizes
the KLIC between f and g, and also exhibits the oracle property and asymptotic normality. However, in the main paper,
our primary concern is the least square loss, and we further constrain f to meet assumption S10 in addition to assumptions
S1–S9. Assumption S10 implies that the parameters minimizing the KLIC also minimize a specific form: the least square
form. This is because in the main paper, we are particularly interested in ANCOVA least square estimates.



S2.6 PROOF FOR THEOREM 4

The consistency and the asymptotic normality of the estimator τ̂ are from Theorem 2 and Theorem 3. Here we only prove
the calculation of the variance. If V(ϵ) = σ2, then the influence function of θ is

ϕθ(x, y, s) = E
{(

pµ
(1− S)pb(X)

)(
pTµ , (1− S)pTb (X)

)}−1(
pµ

(1− s)pb(x)

)
(y − pTθ).

Then the asymptotic variance of β̂ is

V(β̂) = E
{
ϕθ(X,Y, S)ϕT

θ (X,Y, S)
}
11

= σ2E
{(

pµp
T
µ (1− S)pµp

T
b (X)

(1− S)pb(X)pTµ (1− S)pb(X)pTb

)}−1

11

= σ2E
[
Spµp

T
µ + (1− S)pµp

T
µ − (1− S)

{
pµp

T
b (X)

}{
pb(X)pTb (X)

}−1 {
pb(X)pTµ

}]−1

.

On the other hand, under the RE data, the ANCOVA working model is

Y = βint + βAA+ βT
Xpµ(X) + ϵ, ϵ ∼ (0, σ2),

Similarly, the asymptotic variance of β̂RE is

V(β̂RE) = σ2E
(
Spµp

T
µ

)−1
.

Then by Holder inequality,

E
{
(1− S)pµp

T
µ

}
− E

[
(1− S)

{
pµp

T
b (X)

}{
pb(X)pTb (X)

}−1 {
pb(X)pTµ

}]
≥ 0,

where the equality holds iff pµ = Mpb(X) for some matrix M . Therefore, we have V
{
β̂
}
≤ V

{
β̂RE

}
, and the equality

holds iff pµ = Mpb(X) for some matrix M . Therefore V(τ̂RE) ≥ V(τ̂).

S3 TOY EXAMPLE

Consider the case y = xTβ+(1−s)xTδ+ϵ, x = (x1, . . . , x50)
T ∈ R50, βT = (1, . . . , 50)/10, δT = (1, . . . , 50)×30, ϵ ∼

N (0, 1), where s denotes the zero-one indicator variable that determines whether the observation belongs to the REs, for
simplicity, we assume xTβ is the correct outcome mean function of the REs, and xTδ is the bias function reflecting the
difference between ECs and REs, i.e., if δ = 0, then the observed covariates capture all confounders in the ECs and
REs and thus the exchangeability assumption is valid. For didactic purposes, the magnitude of δ is much larger than the
magnitude of β. Using the same regularization parameter appears to assign the same weight for β and δ, thus any penalty
regularization methods tend to omit small signals β and only pick up big signals δ. Therefore, in order to make penalizations
between different parameters comparable, it is crucial to add regularizations to β and δ separately. Figure S1 shows the
smoothed linear regression between β̂ and β after applying the single-penalty regularization (denoted as “Single”) and the
double-penalty regularizations (denoted as “Double”) to select variables and refitting the model using selected variables,
where double penalties make β̂ more accurate than the single penalties.

S4 PLOTS

We present the extra figures for the first simulation study in this section. Figure S2 shows the results for the case ∥β0∥1 ≥
∥δ0∥1 when setting half of parameters in δ0 equal to zero: ∥β0∥1 = c∥δ0∥1, c = 1, 3, 5, 7, 9; and Figure S3 shows the results
for varying the sparsity level of δ0 when setting ∥β0∥1 = ∥δ0∥1 with the x axis as the ratio of the number of variables in
δ0 equal to zero. Each figure shows the MSE results and the percentage of Under-select and Over-select. Figure S2 shows
the SPIE has a larger MSE compared to the DPIE, which is consistent with the theoretical results. On the other hand, the
changes in the sparsity of δ0 affect little on the results. This finding also consists of the theoretical result, where we only
need to restrain the magnitude of different parameters to guarantee the consistency and oracle properties.



Figure S1: The smoothed linear regression between β̂ and β with the 95% confidence intervals as the shaded area and (β, β̂)
as the points.
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Figure S2: Simulation results based on 100 Monte Carlo times. The left panel shows the MSE versus the magnitude ratio
between δ and β. The right panel shows the percentage of wrongly choosing more and less parameters, separately.



Figure S3: Simulation results based on 100 Monte Carlo times. The left panel shows the MSE versus the sparsity level in δ.
The right panel shows the percentage of wrongly choosing more and less parameters, separately.
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