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Supplementary Materials for “Identifying Latent State-Transition
Processes for Individualized Reinforcement Learning”

A IDENTIFIABILITY THEORY

A.1 NOTATION AND TERMINOLOGY

We summarize the notations used throughout the paper in the following table.

Index
t Time index
τ Trajectory
K Number of individuals
k Index for a specific individual
q Number of groups
T Total length of time series
i, j Variable element index
β, α Weights in the augmented ELBO objective
Variable
s⃗ = [s1, s1, . . . , sn]

⊤ n-dimensional observed states
a⃗ = [a1, a2, . . . , sm]⊤ m-dimensional observed actions
L Latent individual-specific factor
lk The value of L for a specific individual k
ˆ⃗st Reconstructed states at time t
ϵit Process noise term
ϵ̂it Estimated process noise term
ls Length of the sequence for each individual
fi Nonlinear transition function for sit

A.2 DISCUSSION ON ASSUMPTIONS

Here, we provide intuitive explanations for each assumption and discuss their relevance to real-world
applications.

A.2.1 GROUP DETERMINACY ASSUMPTION

The value lk in L is key for the transition function f , as it specifies how f behaves differently for
each person. Essentially, L categorizes the population into groups, each with its own probability
distribution and transition behavior represented by f . In this model, each individual is part of a
unique group, each with its own transition dynamics defined by a specific function fk .

Applicability The idea of group determinacy is important in real-world applications, such as
diagnosing hypertension in healthcare. Here, s⃗k represents the health condition of a patient, a⃗k is
their tailored treatment, and the function fk decides the unique health trajectory for each patient
group. The latent individual-specific factor lk influences how a patient’s health changes over time. It
can be based on factors such as age, gender, or medical history that help to group patients logically.
For example, one group might be younger people without hypertension, and another group might
be older people with different medical histories. Each group has its own set of health outcomes and
patterns, influenced by lk and guided by fk.

A.2.2 SAMPLE SUFFICIENCY ASSUMPTION

In a finite mixture model with q groups, each group requires sufficient observations to identify the
latent individual-specific factor L. This assumption provides a minimum number of observation
samples, requiring more than twice the number of groups minus one (2q − 1) observations. This
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threshold ensures that we have enough information and variability in the observed data to distinguish
the characteristics of each group. Essentially, we should have a variety of transition samples for each
group to ensure that we can correctly identify each group in the model. This assumption helps to
identify the unique characteristic of each individual, which is critical for identifibility.

Applicability Sample Sufficiency indicates that sufficient data is needed to achieve identifiability,
which should be a common assumption. For example, in nonlinear ICA using auxiliary variables (Hy-
varinen et al., 2019), it assumes that there should be at least 2n+1 values for auxiliary variables to
encourage variability; for disentanglement with minimal change (Kong et al., 2023), it assumes that
there should be at least 2n+1 domain embeddings to ensure identifiability. Intuitively, without having
data to provide us with related information about parameters, it is impossible to “determine” the
value of these parameters.

A.2.3 SEQUENTIAL DEPENDENCY ASSUMPTION

At any given time t, the observations s⃗t depend solely on the specific conditions within each group.
This assumption implies that the elements of s⃗t have no instantaneous connections with each other,
and that the state and action at time t− 1 along with L are the only influences on the state at time t.
For each element i at time t, the previous state and action (sit−1, ait−1) is independent of L. In other
words, each element of s⃗t is independently influenced by its previous state s⃗t−1, its previous action
a⃗t−1, and the latent individual-specific factor L.

Applicability Sequential dependency is commonly seen in other related works, such as Temporal
Causal Mechanisms in Block MDP (Zhang et al., 2020). It ensures that only previous information
(such as state and action) influences the current state. In the case of individualized healthcare, this
assumption implies that a patient’s latent factors (such as medical history), current health state and
current treatment decisions determine their next health state.

A.3 PROOF OF IDENTIFIABILITY THEORY

A.3.1 PRELIMINARIES

We begin by introducing some related concepts and lemma essential for our proof.

Definition A.1 (First-order Markov Property (Sutton & Barto, 2018)). A stochastic process {Xt :
t ∈ N} has the first-order Markov property if, for each set of times t, t− 1, . . . , 0 and corresponding
state xt, xt−1, . . . , x0 in the state space, the following conditional independence property holds:

P(Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, . . . , X0 = x0) = P(Xt = xt|Xt−1 = xt−1) (6)

The first-order Markov property implies that the transition probability to the next state depends only
on the current state, uninfluenced by the sequence of previous states. In the context of state transition
process, it possess the first-order Markov property. Mathematically, it can be represented as:

P(s⃗t|s⃗t−1, a⃗t−1, s⃗t−2, a⃗t−2, . . . , s⃗0, a⃗0) = P(s⃗t|s⃗t−1, a⃗t−1), (7)

where P(s⃗t|s⃗t−1, a⃗t−1) is the transition probability from (s⃗t−1, a⃗t−1) to the state s⃗t.

Definition A.2 (Finite Mixture Models (McLachlan et al., 2019)). A finite mixture model is a
statistical model that assumes the presence of unobserved groups within a total population. In this
model, the total population consists of a finite number of unobserved groups, each characterized by
its own probability distribution.

In the finite mixture model framework, the model of the total population is constructed as a weighted
sum of these individual distributions, providing a flexible framework for analyzing and interpreting
the inherent heterogeneity within the population.

Following prior work, we define identifiability in representation function space.

Definition A.3 (Identifiability). Let s⃗t be a sequence of observed variables generated by the true
individualized transition processes specified by (fi, l, pϵi) given in the preliminary. A learned gener-
ative model (f̂i, l̂, p̂ϵi) is observationally equivalent to (fi, l, pϵi) if the joint distribution pf̂ ,l̂,p̂ϵ

(s⃗t)
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matches pf,l,pϵ
(s⃗t) everywhere. We say the latent individualized-specific factors are identifiable if

observational equivalence can always lead to identifiability of the latent variables:

pf̂ ,l̂,p̂ϵ
(s⃗t) = pf,l,pϵ

(s⃗t)⇒ l̂ = l. (8)

A.3.2 PROOF OF THEOREM 1

Theorem 1 shows the identifiability of the individual-specific factor L in the individualized transition
model. Suppose the sampled individuals are from different unobserved groups, and the transition
dynamics are different across groups but identical within each group.
Theorem 2. Assume the individualized transition processes in Eq. 2, where the nonlinear state
transition functions fi are stationary within each individual but exhibit variability across different
individuals. The individual-specific factor L is a discrete variable, and the different values of L = lk
delineate different transition processes determined by fk

i for each individual. Here we assume:

• (Group Determinacy): The individual-specific factor L = lk delineates distinct groups within the
finite mixture model, each of which defines and dictates the individualized transition dynamics fk

i .

• (Sample Sufficiency): The length of the sequence for each individual ls is greater than 2q − 1,
where q is the number of groups.

• (Sequential Dependency): At any time t, s⃗t is determined exclusively by the given conditions
⊆ (s⃗t−1, a⃗t−1, L) within each group, and there are no instantaneous relations between s⃗t.

Then the identifiability property of the individual-specific factor L is ensured.

Proof We first show that the individualized transition processes can be viewed as a finite mixture
model with grouped samples, then based on Lemma 1, the identifibility of latent individual-specific
factor can be derived if the observed samples are sufficient.

Finite Mixture Model Representation The individualized transition process in Eq. 2 consists of a
finite number of different processes sit (or mixture groups), each of which represents the behavior
of a specific group within the population. Thus the individualized transitions skit are generated
from different submodels fk

i . According to the assumption of Group Determinacy, each fk
i is

corresponding to a different component in the mixture model, characterized by different parameters
or dynamics, and conditioned on the specific value of the latent variable L = lk. According to the
assumption of Sequential Dependency, the mixture component can be integrated and represented by:

P(sit|sit−1, ait−1) =

q∑
k=1

P(sit|sit−1, ait−1, L = lk)P(L = lk) (9)

=⇒ P(s⃗t|s⃗t−1, a⃗t−1) =

q∑
k=1

P(s⃗t|s⃗t−1, a⃗t−1, L = lk)P(L = lk) (10)

where P(L = lk) is the mixing coefficient of each group k, indicating the probability that a sample
belongs to a particular group, and lk is considered as the individual-specific factors, indicating to
which group k a sample belongs and the strength of the individualized influence.

This likelihoood expression already has the form of a finite mixture model, where each term in
the summation corresponds to a group of the mixture. Thus each observation represents a mixture
component, which can represent different dynamic regimes of the transition process, and observations
in the same group are known to be drawn from the same component. This aligns with the lemma that
observations in the same group are known to be drawn from the same component.

Lemma Lemma 1 (Vandermeulen & Scott, 2015) addresses the identifiability of mixture models
from grouped samples. It states that in the context of a mixture model, where the observations are
segmented into q distinct groups, and each group is guaranteed to come from the same component. If
there are at least 2q − 1 observations for each group, then each mixture of the q probability measures
incorporated in the model can be uniquely identified. This allows for a rigorous distinction of the
individual components within the mixture model.
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Lemma 1. Suppose we have observations from a mixture model and that they are grouped, such that
observations in the same group are known to be drawn from the same component. Denote by q the
number of groups. If there are at least 2q − 1 observations per group, any mixture of q probability
measures can be uniquely identified.

Identifiability Given the lemma, for the latent variable L to be identifiable, there should be at least
2q − 1 observations per group, where q is the number of groups. Therefore, accroding to the Sample
Sufficiency assumption, each individual in the transition process has at least 2q − 1 transition tuples,
then the latent variable L would be identifiable according to the given lemma.
Remark 1. In Huang et al. (2019), a Gaussian mixture model was used as a prior on the coefficients,
while the latent confounder variable, denoted as Z, was constrained to a binary state, thereby
indicating group membership for a given individual. In our work, we extend this foundation by
generalizing the latent confounder to a broader set of discrete values. This extension to discrete
categorization offers several advantages. First, it allows for a more computationally tractable
methodology, making it easier to process and analyze the data. Second, it provides a versatile
framework for capturing different types of heterogeneity that may exist within the sample population.
In particular, the discretized nature of the latent variable L enhances the interpretability of the model.
It allows the understanding of the underlying patterns and effects manifested by the latent confounder
in a more nuanced way.

B EXTENDED BACKGROUND

Reinforcement Learning In RL, an agent learns to make decisions by interacting with the envi-
ronment. The agent receives rewards for taking actions in the environment and uses this feedback
to learn optimal behavior. It is often modeled as a Markov Decision Process (MDP) represented
by a tuple

〈
S,A,P, R, γ

〉
, where S denotes a finite set of states representing different situations an

agent might encounter, A a finite set of actions representing different decisions an agent can make, P
a state transition function defining the probability of transitioning to a new state s′ given a current
state s and action a, denoted as P(s′|s, a), R a reward function assigning a scalar value to each
state-action pair (s, a), representing the immediate reward received after performing action a in state
s. γ ∈ [0, 1] is the discount factor, representing the agent’s consideration for future rewards. The
agent’s goal is to learn an optimal policy π∗, which defines the optimal set of actions in different
states to maximize the expected cumulative discounted reward over the long run. Developing this
optimal policy involves estimating value functions such as the action-value function, defined as
Qπ(s, a) = Eπ

[∑∞
t=0 γ

tRt|S0 = s,A0 = a
]
, which represents the expected reward of taking

action a in state s following policy π. The pursuit of optimal policy π∗ involves maximizing the
value functions over all possible state-action pairs: π∗ = argmaxπ Q

π(s, a).

Model-based Reinforcement Learning Model-based Reinforcement Learning (MBRL) is a branch
of RL where an explicit model of the environment’s dynamics is either known prior or learned
through interaction with the environment. This model is then used for planning and decision-making
to optimize the agent’s policy. In the MBRL framework, the learning process is bifurcated into
two components: learning a model of the environment’s dynamics and using this model to make
decisions. In the first component, the agent interacts with the environment and collects data in
trajectories. A trajectory refers to a sequence of state-action-reward tuples an agent experiences
while interacting with the environment. A single trajectory with reward is often represented as
τ = {(s⃗0, a⃗0, r0), (s⃗1, a⃗1, r1), . . . , (s⃗T , a⃗T , rT )}, where s⃗t and a⃗t represents the vector of states and
actions at time t respectively, and rt denotes the immediate reward post-action. T is the final time
step of the trajectory, which can be the terminal state of the episode or the set horizon. After that, the
collected trajectories are used to learn or refine the model of the environment by approximating the
transition dynamics P(s′|s, a). This model is essential in planning, simulating possible trajectories,
and evaluating action sequences to identify optimal actions based on cumulative rewards. Once
the model is learned, it is used for planning by exploring hypothetical trajectories and optimizing
action selection in unexplored states and situations, enhancing overall task performance. This method
facilitates efficient exploration of the state-action space, minimizing necessary interactions with the
environment, a vital feature when such interactions are costly or risky. The accuracy of the model
is crucial, as it directly influences the agent’s ability to make informed decisions and adapt to new
scenarios, ultimately improving the efficiency and efficacy of the learning process.
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Variational Autoencoder Variational Autoencoders (VAEs) are a class of generative models in
deep learning, adept at unsupervised learning of complex data distributions. Rooted in the framework
of Bayesian inference, VAEs are designed to approximate probability density functions of input data.
The architecture of a VAE consists of two primary components: an encoder qϕ(z|x) and a decoder
pθ(x|z). The encoder maps input data x to a latent space, represented by a probability distribution,
typically Gaussian, with parameters µ and σ signifying the mean and standard deviation, respectively.
The decoder reconstructs the input data from a sampled latent representation z.

The distinct feature of VAEs lies in their probabilistic approach. The encoder outputs parameters of a
latent distribution, from which a sample z is drawn:

z ∼ qϕ(z|x) = N (z;µ, σ2I) (11)

The decoder then attempts to reconstruct the input from this latent sample. VAEs optimize the
Evidence Lower Bound (ELBO) objective, which balances two aspects: the reconstruction quality
and the regularization of the latent space. The ELBO is given by:

ELBO = Eqϕ(z|x)[log pθ(x|z)]− KL[qϕ(z|x)||p(z)] (12)

Here, the first term measures the reconstruction fidelity, while the second term, the Kullback-Leibler
(KL) divergence, imposes a regularization by encouraging the latent distribution qϕ(z|x) to be close
to a prior p(z), typically assumed to be a standard normal distribution N (0, I). VAEs, through this
optimization, are capable of generating new data points that are similar to the input data, making
them highly valuable in applications like image generation, denoising, and anomaly detection within
the domain of unsupervised learning.

C DETAILED RELATED WORK

Individualized Machine-Learning Applications In the modern era, the power of machine learning
has been harnessed to create highly individualized solutions across a myriad of domains. In the
realm of health and wellness, machine learning aids in tailoring interventions for increasing physical
activity (Yom-Tov et al., 2017; Liao et al., 2020), promoting weight loss (Forman et al., 2019;
2023), improving adherence for diabetes (Yom-Tov et al., 2017). For the elderly, personalized
algorithms assist in both technology adaptation and specialized care for conditions (Hoey et al.,
2014). The financial sector benefits from machine learning’s prowess in optimizing technical
indicators, making stock market predictions more precise and individualized (Li et al., 2019). In
the educational landscape, Information and Communication Technology (ICT) leverages machine
learning to offer personalized education systems such as adaptive e-learning interfaces (Fok et al.,
2005) and individualized tutorial planning (Ji et al., 2017). Furthermore, the transportation sector sees
advancements with car-following control strategies tailored for individual drivers (Song et al., 2023).
Multimedia platforms, such as YouTube and TikTok, are enhancing user experiences by offering
video content recommendations fine-tuned to individual preferences using reinforcement learning
(Cai et al., 2022; Hoiles et al., 2020). These examples merely scratch the surface, emphasizing the
vast and diverse applications of individualized machine learning in today’s world.

Reinforcement Learning for Latent State-Transition Processes RL has witnessed significant
advancements in recent years, particularly with the integration of latent variable models to capture the
underlying dynamics of environments. A primary focus in this domain is learning low-dimensional,
latent Markovian representations from observed data (Lesort et al., 2018; Krishnan et al., 2015;
Karl et al., 2016; Ha & Schmidhuber, 2018; Watter et al., 2015; Zhang et al., 2018; Kulkarni et al.,
2016; Mahadevan & Maggioni, 2007; Gelada et al., 2019; Gregor et al., 2018; Ghosh et al., 2019;
Zhang et al., 2021). Common strategies for state representation learning include reconstructing the
observation, learning a forward model, or learning an inverse model. Additionally, prior knowledge,
such as temporal continuity (Wiskott & Sejnowski, 2002), can be leveraged to constrain the state space.
Numerous studies have proposed methods to estimate the underlying state-transition process from
high-dimensional input sequences (Watter et al., 2015; Ebert et al., 2017; Ha & Schmidhuber, 2018;
Hafner et al., 2018; Zhang et al., 2019; Gelada et al., 2019; Kaiser et al., 2019; Hafner et al., 2020).
Using the learned world model, agents can engage in model-based RL or planning. Furthermore,
these methods encode structural constraints, ensuring the sufficiency and minimality of the estimated
state representations from both generative and selection processes. Recently, several studies (Lu
et al., 2018; Li et al., 2020; Vo et al., 2021; Wang et al., 2021; Bennett et al., 2021; Pace et al.,
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2023) have aimed to estimate the state-transition process in the presence of latent confounders. A
handful of work (Lu et al., 2018; Pace et al., 2023) can be viewed as addressing similar settings
involving individual-specific factors. However, to the best of our knowledge, we have yet to identify
a systemic approach that offers a clear identifiability result for the state-transition process when
individual-specific factors are present.

D ALGORITHM

The pseudocode for the proposed algorithm is presented in Algorithm 1 and Algorithm 2.

E EXTENDED EXPERIMENT

E.1 EVALUATION METRICS

Identifibility Metric The Pearson Correlation Coefficient (PCC) Cohen et al. (2009) is a statistical
measure that quantifies the degree of linear relationship between two variables. It provides a value
between -1 and 1, where 1 implies a perfect positive linear relationship, -1 implies a perfect negative
linear relationship, and 0 implies no linear relationship between the variables. The equation for
calculating the Pearson Correlation Coefficient r between two variables X and Y is as follows:

r =
n(
∑

xy)− (
∑

x)(
∑

y)√
[n

∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

(13)

where n is the number of paired samples,
∑

xy is the sum of the product of paired scores,
∑

x
and

∑
y are the sums of the x scores and y scores respectively,

∑
x2 and

∑
y2 are the sums of the

squared x scores and y scores respectively.

Canonical Correlation Analysis (CCA) (Hotelling, 1992) is designed to identify bases for two sets
of variables in order to maximize the mutual correlations between the projections onto these bases.
In our work, CCA is used as an evaluation metric to validate that the recovered latent variable is
meaningfully related to the ground truth latent variable, thus proving the relevance of the estimated
representations. Let X and Y be the two sets of observed variables. This algorithm starts by centering
the columns of X and Y so that they have zero mean. Then the covariance matrices CXX =
X⊤X,CY Y = Y⊤Y , and CXY = X⊤Y are calculated. After that, the canonical correlations are
obtained by solving the following generalized eigenvalue problem: C−1

XXCXY C
−1
Y Y CY Xν = λν. The

square roots of the eigenvalues λ indicate the canonical correlations between the linear combinations
of X and Y . The corresponding eigenvectors ν and u = CXY ν are the canonical weights used
to construct the canonical variables. Finally, the canonical variables of X and Y are U = Xν
and V = Y u, respectively, representing the linear combinations of the original variables that are
maximally correlated. The correlation of the primary pair of canonical variables is the highest,
followed by the secondary pair, and so on. When employing CCA as an evaluation metric, a higher
canonical correlation indicates a stronger and more relevant relationship between the recovered latent
variable and the ground truth latent variable.

E.2 DATASET DESCRIPTIONS

Synthetic Data Generation Processes In this paper, we created three synthetic datasets: One
with a single discrete latent variable that satisfies our assumptions and two others that violate our
assumptions, allowing for multiple discrete and continuous latent variables. The dimensions of states
and actions are set to 3 and 2, respectively. The initial state and the actions taken are generated
randomly, following a uniform distribution Uniform(0, 1). The noise term is modeled to follow a
Gaussian distribution with zero mean and latent-dependent variance. The mixing function f conforms
to the post-nonlinear model (Zhang & Hyvarinen, 2012), where f1 represents the nonlinear effect,
and f2 denotes the invertible post-nonlinear distortion on s⃗t, embodied by a randomly initialized
three-layer MLP with tanh units. The data generation processes are modeled as follows:

s⃗t = f2(f1(s⃗t−1, a⃗t−1, L⃗), ϵt)). (14)

• Single Discrete Latent Dataset. We generate datasets consisting of 100 individuals, typically
divided into four distinct groups, with each individual sequence having a total length of 300. The
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Algorithm 1 Algorithm of Individualized Policy Learning through Latent Factor Estimation

Require: {fk
Env}Kk=1: individualized environments; En: encoder; Quantize: embedding dictionary;

Noise: noise estimator; De: decoder; π: policy network
Ensure: l̂k: estimated individual-specific factor; {π∗

k}Kk=1: individualized policy
1: procedure MAIN(fEnv, En, Embed, Noise, De, π) ▷ main loop for IPLF
2: En,Embed,Noise,De, π ∼ N(0, I) ▷ randomly initialize the network
3: H ← {τk}Kk=1 ▷ collect individual trajectory samples by interaction with {fk

Env}Kk=1
4: for each individual trajectory k do
5: zk = Encoder(s⃗k0:T ) ▷ capture the unique individual representations
6: l̂k = Quantize(zk) ▷ vector quantization
7: ν̂k = Noise(l̂k) ▷ estimate noise with MLP layer
8: for each next state s⃗kt in the trajectory do
9: ˆ⃗skt = Decoder(s⃗kt−1, a⃗

k
t−1, l̂k, ν̂k) ▷ reconstruct the next state

10: end for
11: end for
12: return {π∗

k}Kk=1 = PolicyLearning(H, {l̂k}Kk=1) ▷ optimize the individualized policies
13: end procedure

14: function ENCODER(s⃗k0:T )
15: if dataset is synthetic then
16: for each t in s⃗k0:T do okt ← Conv1D(s⃗kt:t+H)
17: end for
18: else if dataset is corpus then
19: Initialize hk

0 , c
k
0

20: for each t in s⃗k0:T do hk
t , c

k
t ← LSTM(hk

t−1, c
k
t−1, s⃗

k
t ; θ)

21: end for
22: end if
23: return zk ← Final output of Conv1D or final hidden state of LSTM
24: end function

25: function QUANTIZE(zk)
26: Initialize E = {e1, e2, . . . , eq}, dmin =∞
27: for each ei in E do
28: if ∥zk − ei∥2< dmin then
29: Update dmin and l̂k ← ei
30: end if
31: end for
32: return l̂k
33: end function

34: function DECODER(s⃗kt−1, a⃗
k
t−1, l̂k, ν̂k)

35: Combine inputs to reconstruct ˆ⃗skt ← Decoder(s⃗kt−1, a⃗
k
t−1, l̂k, ν̂k)

36: return Reconstructed state ˆ⃗skt
37: end function

38: function POLICYLEARNING(H, {l̂k}Kk=1)
39: for each individual k do
40: Update policy input to µπ(s⃗t; θ

µ)→ µK
π (s⃗kt , l̂

k; θµ)
41: Update training objective:
42: J(θµ) = E

[∑∞
t=0 γ

tQ
(
s⃗t, µ

K
π (s⃗kt , l̂k; θ

µ); θQ
)]

43: Optimize µK
π for individual k

44: end for
45: return Updated policy µK

π
46: end function
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Algorithm 2 Training Process with Extended ELBO Objective

1: Initialize parameters of the encoder Encoder and decoder Decoder
2: Initialize weights α and β
3: repeat
4: for each individual k do
5: Compute encoded representation: zk ← Encoder(s⃗k0:T )
6: Estimate individual-specific factor: l̂k ← Quantize(zk)
7: Compute reconstructed state: ˆ⃗skt ← Decoder(s⃗kt−1, a⃗

k
t−1, l̂k, ν̂k)

8: Calculate LRecon =
∑

t ∥s⃗kt − ˆ⃗skt ∥2
9: Calculate LQuant =

∑
i ∥sg[zki ]− eki ∥2, LCommit =

∑
i ∥eki − sg[zki ]∥2

10: Compute extended ELBO objective: LELBO = LRecon + βLQuant + αLCommit
11: Update parameters to minimize LELBO

12: end for
13: until convergence

single discrete latent follows the categorical distribution Cat(0.1, 0.2, 0.3, 0.4) with cardinality 4.
The noise ϵkit is sampled from an i.i.d. Gaussian distribution with its variance modulated by four
different latent values. A 2-layer MLP with ReLU units is used to generate the latent-dependent
variance of the noise.

• (Violation) Multiple Discrete Latents Dataset. We generate datasets consisting of 100 individuals,
typically divided into twenty-four distinct groups, with each individual sequence having a total
length of 300. The multiple independent discrete latents have a dimensionality of three, which
follow the categorical distributions Cat(0.1, 0.9), Cat(0.2, 0.3, 0.5) and Cat(0.1, 0.2, 0.3, 0.4)
with cardinality 2, 3 and 4, respectively. The noise ϵkit is sampled from an i.i.d. Gaussian
distribution with the variance being modulated by the latent vectors. A 2-layer MLP with ReLU
units is used to generate the latent-dependent variance in the noise.

• (Violation) Multiple Continous Latents Dataset. We generate datasets consisting of 100 individuals
with each individual sequence having a total length of 300. The multiple independent discrete
latents have a dimensionality of three, which follow the Gaussian distribution N (0, 1), uniform
distribution Uniform(0, 1), and exponential distribution Exp(1). The noise ϵkit is sampled from an
i.i.d. Gaussian distribution with the variance being modulated by the latent vectors. A 2-layer MLP
with ReLU units is used to generate the latent-dependent variance in the noise.

Persuasion For Good The Persuasion For Good Corpus presents a valuable collection of online
dialogues carefully curated by participants from Amazon Mechanical Turk. In each interaction, one
participant, referred to as the persuader, attempts to persuade the other participant, referred to as
the persuadee, to contribute to a charitable cause. This comprehensive dataset includes 1,017 such
conversations, all accompanied by additional demographic data and psychological survey responses
from the participants involved. For each utterance in the dataset, corresponding to a turn in a
dialogue, the following attributes are provided in Table 2. Fortunately, all the participants underwent
personality assessments, allowing us to use the labeled 35-dimensional individualized personalities
of each persuadee as ground-truth latents in our experiments.

Table 3 displays excerpts from the Persuasion for Good Corpus Dataset. In our experiment, we use a
pre-trained BERT model to convert each dialogue into vectors. The process starts with tokenization,
breaking words into smaller units. These tokens are then input into BERT, which provides contextual
embeddings for each token, considering the entire dialogue context.

Pendulum Control The pendulum environment, provided by OpenAI Gym, is a classic control
task used for the evaluation and development of RL models. This environment presents a continuous
control task where the agent must learn to control a frictionless pendulum with the goal of swinging
it to the highest point and keeping it in the inverted position. The pendulum starts at a random
position, and the goal is to bring it to a standstill at the inverted position with the least amount of
effort. The system is characterized by a continuous action space, representing the torque applied to
the pendulum’s fulcrum. For a pendulum of length l and mass m, subject to gravity g and a control
input u, the equations of motion can be described by the following second-order nonlinear ordinary
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Table 2: Attribute descriptions in persuasion for good corpus.

Attribute Explanation
id index of the utterance
speaker author of the utterance
conversation id id of the first utterance in the dialogue in which the current utterance belongs to
reply to id of the prior utterance, or None if the current utterance starts the conversation
text content of the utterance
role whether the author of the utterance is the persuader (0) or persuadee (1)
user turn id turn index of the user. i represents the user’s ith turn in the conversation

label 1 a list of dialogue acts in each sentence of the utterance
label 2 the second dialogue act in each sentence, available for a limited number of utterances
sentiment sentiment scores for each sentence, categorized as positive, negative, or neutral
n sents the total number of sentences in the utterance
text by sent a string containing the utterance’s text, where the ¡s¿ denotes sentence breaks

Table 3: Excerpts from the Persuasion for Good Corpus Dataset.

Speaker Utterance
persuader Hi, how are you today?
persuadee I am fine. And you?
persuader Not too bad. Have you heard of Save The Children?
persuadee I have, actually.
persuader They do great work at least I think what about you?
persuadee I’m often skeptical of big charities like that. They sometimes don’t put the money that

is donated into the right projects.

differential equations:

θ̇ = ω,

ω̇ = −g

l
sin(θ) +

u

ml2
,

where θ is the angle of the pendulum from the vertical upright position, and ω is the angular velocity of
the pendulum. The state of the pendulum at any time t can be represented as s⃗t = [cos θt, sin θt, ωt],
action represents the torque applied to the free end of the pendulum in the range at ∈ [−2, 2], and the
reward function is defined as: rt = −(θ2t + 0.1 ∗ ω2

t + 0.001 ∗ a2t ). The goal of RL algorithms in
this environment is to determine an optimal control policy π∗ that minimizes the effort to swing and
balance the pendulum upright, typically by minimizing a cost function defined over states and actions.
Each episode provides a continuous stream of observations, actions, and rewards, allowing the
development and evaluation of algorithms capable of learning effective control policies in continuous
action spaces. In academic studies, the Pendulum environment serves as a benchmark to investigate
the effectiveness of RL algorithms in handling continuous control tasks.

E.3 ADDITIONAL EXPERIMENT RESULTS

In the main paper, we set the number of individuals as 100 to demonstrate the effectiveness of our
proposed method. Here, we will vary the number of samples to further verify this effectiveness. The
data generation process is consistent with Case 1, except that we change the number of samples to
{100, 150, 200, 300, 500, 800, 1000}. The comparison results shown in Figure 5 indicate that our
method can achieve consistently good recovery performance under different numbers of individuals.
This further confirms that the identifibility of our framework is guaranteed by the mathematical
relationship between the trajectory length and the number of groups, which is constrained by the
sample sufficiency assumption; the number of individuals is of lesser importance.

F ESTIMATION FRAMEWORK

The proposed framework is meticulously customized based on the requirements of the identifiability
theorem given in Section 4.3. Given the offline trajectory of the population, the individual-specific
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Figure 5: PCC trajectory comparisons under different number of individuals.

factor estimation framework is developed to recover the latent confounder. To satisfy the group
determinacy assumption, we first feed the entire sequence s⃗k0:T of each individual k into a quantized
encoder to estimate the latent confounder l̂k. Then to compensate for the determinacy of the
quantization operation, we introduce the noise estimator to increase the variability and robustness of
the generated samples. To reconstruct individualized transition processes, we design a conditional
decoder that takes the conditions (s⃗kt−1, a⃗

k
t−1), the estimated confounder l̂k, and the estimated noise

ν̂k as inputs, with ˆ⃗skt as the output. The optimized quantized encoder is used to augment the original
buffer and facilitate the downstream individualized policy learning.

The traditional VAE (Kingma & Welling, 2013) encodes input data into a continuous latent space
using probabilistic encoders, and then reconstructs the input from this space using decoders. While
our proposed framework differs from the general continuous VAE and model-based RL in four main
aspects: 1) Our framework uses a quantization layer to discretize the continuous latent representations.
This mapping of continuous latent representations to an embedding dictionary is well suited to the
group determinacy requirement. 2) We estimate noise as an input to the decoder to introduce
variability that satisfies our individualized transition processes and allows the model to better vary the
data. 3) Our decoder reconstructs individualized transition processes to simulate the data generation
process, incorporating additional conditions, estimated latent individual-specific factor, and noise.
4) In addition to the original population data, we further extract latent factors for each individual as
additional information to facilitate the individual policy learning.

Encoder As for the Conv1D, let the Conv1D layer transform an input sequence s⃗kt , using learned
kernel filters. These filters slide over the sequence to produce a feature map, denoting the response of
the filter at each position. Mathematically, the transformation by a single filter in the Conv1D layer at
time t is described as:

o⃗t = σ
(
W ∗ s⃗kt:H+t + b

)
,

where o⃗t is the feature map at time t, W the kernel to be learned during training, ∗ the convolution
operation, s⃗kt:H+t the input sub-sequence from time t to t +H , where H is the size of the kernel.
σ is the activation function, and b is the bias term to be learned during training. The layer may
contain multiple such filters, each learning different features of the input sequence. The resulting
feature maps serve as a transformed representation zk, which embeds the information about the latent
individual-specific factor L.

As for the LSTM, let the hidden states and cell states of the LSTM at time t denote as ht and ct,
respectively. Then, the LSTM updates are given by:

ft = σ(Wf · [s⃗kt , ht−1] + bf ),

it = σ(Wi · [s⃗kt , ht−1] + bi),

c̃t = tanh(Wc · [s⃗kt , ht−1] + bc),

ct = ft ⊙ ct−1 + it ⊙ c̃t,

ot = σ(Wo · [s⃗kt , ht−1] + bo),

ht = ot ⊙ tanh(ct),
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where σ represents the sigmoid activation function, ⊙ element-wise multiplication. Wf ,Wi,Wc,Wo

and bf , bi, bc, bo are the weight matrices and bias terms to be learned during training. ft, it, c̃t, ct, ot
and ht are the forget gate, input gate, candidate cell state, cell state, output gate, and hidden state
at time t respectively. The final hidden state of the LSTM hT , after the sequential processing of
the entire trajectory, serves as the representative zk that embeds the information about the latent
individual-specific factor L.

Quantization Layer Let the output of the encoder be a continuous latent representation denoted as
zk ∈ R, and define an embedding dictionary E consisting of q vectors, where each vector represents
a unique discrete category: E = {e1, e2, . . . , eq}, where ei ∈ R. The quantized vector l̂k is obtained
by mapping zk to the nearest dictionary vector. The mapping can be expressed mathematically as:
l̂k = argminei∈E∥zk − ei∥2. Subsequently, the quantized output is the vector from the dictionary
that is closest to the encoder output. Thus, the continuous representation zk is effectively mapped to
a discrete l̂k by finding the nearest neighbor in the dictionary, aligning the representation learning
with the discrete nature of the latent variable.

Decoder Define s⃗kt−1 and a⃗kt−1 as the true previous state and action, respectively, and let ν̂k
be the estimated noise term. Additionally, let l̂k be the approximated latent individual-specific
factor for the k-th individual. The inputs to the conditional decoder at time t are a combination
of the aforementioned variables: Inputt = (s⃗t−1, a⃗t−1, ν̂k, l̂k). The output of the decoder is the
reconstructed next state, ˆ⃗st, which is a function of the decoder input: ˆ⃗st = De(Inputt). The
reconstruction likelihood measures how closely the reconstructed state matches the true subsequent
state, which is defined as LRecon = pRecon(s⃗

k
t |s⃗kt−1, a⃗

k
t−1, ν̂k, l̂k). The objective in this process is to

optimize the decoder parameters to maximize the reconstruction likelihood maxLRecon so that the
reconstructed state ˆ⃗st is as close as possible to the true next state s⃗t.
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