335

336

338

339

340

341
342

343
344
345

346
347

348
349

350
351
352
353

355
356
357

358
359
360
361

362

363
364

A Model

We follow the model structure of Gumbel MuZero [7] as far as necessary for our case of non-
intermediate rewards. As an improvement, we add the self-supervised consistency loss introduced in
Efficient Zero [31]]. To increase reproducibility, we go into as much detail as necessary.

A.1 Inference

External inputs to inference are the observation o; and the action a; at time ¢.

The results of the network functions are state s7, policy p; and value v; derived from an observation
o0, one initial inference step and 7 sequential recurrent inference steps. We call 7 in-mind time.

The initial inference function I produces an in-mind starting point at the in-mind time 7 = 0.
The recurrent inference function ;7" takes one step into the future along 7. 6 denotes the network
parameters.

0.0.0 initial
8¢, P, v = 15" (00:1) @)
spth it ol = P (sT agy) (®)

The inference functions have the network functions representation hg, generation gy and the predic-
tions py, ve as building blocks:

sy = hg(00.t) ©
sih = go(s], aryr) (10)
p; = po(s]) (11)
v = vg(s]) (12)

Two additional building blocks are the similarity projector Py, and the similarity predictor Pj , used
in EfficientZero [31]] to measure and increase similarityﬂ of s7 and s, :

Pl = Pro(st) 13)
Py = Pop(P}) (14)

The high-level breakdown of the inference functions Iiiia! and Ifreu™n together with the top-down
description of the building blocks in the source papers [[7,[31] provide a description that may help to
reproduce the network but may leave details unclear. One approach to avoid potential ambiguity is a
mathematically precise functional description as in [15].

We take a different approach, revealing not only the exact structure of the model but also its trained
parameters: The open-source implementation we provide allows the model to be exported into the
language-neutral Open Neural Network Exchange (ONNX) format [2]], which can be visualised by
an application such as Netron [16]], as the following links illustrate for the building blocks O}{T4}

- https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-Representation.onnx

- https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-Prediction.onnx

- https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-Generation.onnx

- https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-SimilarityProjector.onnx

- https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-SimilarityPredictor.onnx

In addition to viewing the model in ONNX format, it can also be used to run the model on an ONNX
runtime.

2Remark: A similarity measure for in-mind states could be used as an equality measure for in-mind states,
opening the possibility of moving from a decision tree to an acyclic decision graph [S]] even when using in-mind
states.

12

https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-Representation.onnx
https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-Prediction.onnx
https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-Generation.onnx
https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-SimilarityProjector.onnx
https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-SimilarityPredictor.onnx

365

366

367

368

369
370

371

372
373
374
375

376
377
378

379

380

381

382

383

385

A.2 Training

The training’s loss function:

1 Tunroll

1(0) =19 + >+ clo)? (15)
Tunroll p—
7 = el (7o) + el (7 of) 4 esl™™ (s 7) (16)

0 ifr=0

lsi'rn 0 T — . 17
(St+‘r’ St) {l“"“”(StOpgTad’L'ent(Pl(),t+7)vP2T7t> ift>0 an

As in MuZero [17] the gradient is scaled at the start of the dynamics function by 1/2.

The value function does not change in the final, absorbing state. In the absorbing state, no loss forces
are on the policy and arbitrary actions do not put any loss force on the value.

B Planning - Input and Output

We use Gumbel MuZero [7] for planning - in the variant Full Gumbel with deterministic action
selection at non-root nodes. Given the model and a recurrent inference step budget as input, the
outputs of the planning optimiser at a time ¢ are a chosen action ag, the improved policy Pimproved
and the improved value v;y,proveq - here in the notation of Gumbel MuZero [[7]:

Pimproved = softmax (lothS + U(Qcompleted)) (] 8)

Vimproved = Umix (19)

During training, we always use the Gumbel noise g. For a greedy playout with maximum exploitation,
the planning optimiser could be entered without Gumbel noise g = 0, resulting in a deterministic
action selection ag—o, see Appendix [C.4}

C Proofs Relevant for Policy Improvement

C.1 Softmax and Equivalent Logits
From p, logits € R” and
p = softmax(logits) (20)
it follows
In(p) = logits (21)

where we call logits 4 and logits; equivalent logits 4, = logitsg if p4 = pp.
Proof:

> ; exp(logits;)
= logits; + C
= logits;

In(pi) = In (exp(logits;))

with the constant C' € R.

13

386

387

388

389

390
391

392
393

394

395
396

397
398

399

400

401

402

403
404

406

407

408

409
410
411
412
413
414

C.2 Policy Improvement Proof by Planning With Gumbel and a Prior Temperature
Gumbel MuZero [[/] proved that

Pimproved = SOftmaX(IOgitS + U(Qcompleted)) (22)

produces a policy improvement compared to p = softmax(logits).

It follows that

logits + 0 (Qcompieted) > (23)

DPimproved, T = softmax < T

with T' > 0 produces a policy improvement compared to pr = softmax(logits/T) if one enters the
optimization search with logits/T instead of logits and o /T instead of o.

Proof: Gumbel MuZero [[7] states that o can be any monotonically increasing transformation. If o is
monotonically increasing so is o /7.

C.3 Policy Improvement by Planning With Gumbel and a Prior Temperature 7" = 0

Doing the planning optimization in the limit 7" — 0 could be done by setting the Gumbel g to 0.
Proof: The optimization process uses expressions of the type

argmax, (g(a) + logits(a) + o(g(a))) (24)

Entering the optimization search with logits/T instead of logits and /T instead of o we have
expressions of the type

argmax, (g(a) + logits(a); a(q(a))) (25)

In the limit 7" — 0 we get

logits(a) + o(q(a))
T

%im0 argmax,, <g(a) +) = argmax, (logits(a) 4+ o(q(a))) (26)

which is the same as setting Gumbel g to 0 in equation[24]

C.4 Improving Planning in an Eager Playout
Let p = softmax(logits), pr = softmax(logits/T") and p(ay) > p(az) > 0, then it follows that

pT(a1) > p(a1)

pr(asz) p(az)

27)

for 0 < T' < 1. Therefore, introducing the temperature T in this range emphasises the relative
magnitude of the probability. Additionally pr is improved by planning using o /7 instead of o
according to Appendix In the limit 7" — 0 pr is improved by setting the Gumbel value to 0 in
planning according to Appendix [C.3]

D Experimental Details

D.1 Training and Testing

During the training of the model in each play and training cycle, which we call an epoch, the agent
plays 1000 games before the model is updated 40 times by drawing batches from the last 10000
games of size 256 and using game symmetry to increase the batch size by the symmetry group size 8
on the training device to 2048. To evaluate the strength of the games, the acyclic-directed decision
graph is fully unfolded, all relevant decision nodes are identified, and the network decisions are
compared with the optimal decisions for each epoch, once without and once with tree search.

14

415

416
417

418
419
420
421
422

423

424
425

426
427
428

429
430

D.2 Counting Bad Decisions

To illustrate the counting of bad decisions: Adding the entries from the epoch-1028 row, exploration-
off column and all the decision nodes from Table[T| gives 411.

Table 1: Ilustrating the counting of bad decisions on the nodes where a decision matters in Figure 3]

all decision nodes decision nodes on optimal path
epoch exploration X:1 O:1 X:P O:P X:1 O:1 X:P O:P
1028 off 110 91 104 106 12 23 6 19
1028 on 0 0 0 0 0 0 0 0

fl

“X is short for player x, O for player o, I for intuition - initial inference only, P for planning - doing tree
search.

We count the decision from a game state only once, even if the decision tree node appears more than
once in the decision tree - we count the nodes in terms of a decision graph. But there is a double
count because we test once with and once without tree search and add the numbers. For a closer look
at distinguishing between bad decisions after initial inference only (I) and the bad decisions after tree
search (P) see Appendix[D.3]

D.3 Testing With and Without Tree Search

In Appendix [D.2] we described how we count bad decisions when testing a network. Here we take a
closer look at the difference in bad decisions with and without tree search.

In the MuZero learning process, the tree search produces better-rewarded decisions than the decisions
from the model just doing initial inference. The model becomes better as it learns from the experience
of this improved policy and therefore makes better decisions than before. This is reflected in Figure[9]

bad decisions 600,00

500,00
400,00)

— without tree search
300,00 — with tree search

200,00

100,00

0,00 epochs
100 150 200 250

Figure 9: Bad decisions with and without tree search on the models trained with exploration-on in
Figure arolling average of the last 100 epochs, 10 samples, 95% confidence intervals.

At training epochs beyond about 250 the training does not show an improvement for the training
parameters used, see Figure [T0]

15

431

432

434

436
437
438

350 . bad decisions 0,60

— without tree search

— with tree search 0,40

0,20
100 M /\W
0,50 0,10 W ~

0,00 0,00
200 250 300 300 400 500 600 700 800 900 1000 1100 1200

epochs

Figure 10: Extended view of the graph shown in Figure [J]- Bad decisions with and without tree
search, a rolling average of the last 100 epochs, 10 samples, 95% confidence interval limits.

D.4 Statistics

In the experiments presented in Figures 5] [7} [§]and [I2] we train a sample of 10 networks separately.
For this sample size, we assume a Student’s t-distribution for the mean values to calculate the
confidence intervals.

D.5 Training With Exploration-on - Compound Error

If we replace in equation|§| the target value vipnitiaiIn ference,: With the improved value from planning
Vimproved,t from planning, equation|[T9} we introduce a compound error. Figure[TT]illustrates how
this compound error increases back in time.

a) b)

Figure 11: v} for models from "epoch 1200: light grey" to "epoch 1250: dark grey" trained in two
Conﬁgurations fort < tstartNormal: a) VinitialIn ference,t and b) Vimproved,t-

16

439 D.6 Hyperparameters

as0 Table 2] lists the common hyperparameters and Table [3] the specific hyperparameters used in the
441 experiments.

Table 2: Common Hyperparameters.

Parameter Setting
model: number of residuals 6
model: broadcast layers none
model: channels 256
model: bottleneck channels 128

model: channels of hidden layer in similarity projector 500
model: channels of output layer in similarity projector 500
model: channels of hidden layer in similarity predictor 250
model: channels of output layer in similarity predictor 500

planning Gumbel MuZero
planning: initial m 4
planning: cVisit 20
planning: cScale 1.0
planning: number of simulations 20
planning: root noise: Dirichlet alpha 1.2
planning: root noise: exploration fraction 0.25
decision: temperature: exploration-on 5
decision: temperature: exploration-off 1
experience: window size 10K
training: steps 50K
training: training steps per epoch 40
training: number of unrolling steps Tynroii 5
training: batch size before symmetry 256
training: symmetry square
training: loss: ¢y 1
training: loss: ¢y 1
training: loss: c3 2
training: optimizer Adam
training: optimizer: learning rate 0.0001
training: optimizer: weight decayﬁ] 0.0001

“cy4 is part of weight decay attribute used in the Adam optimizer.

Table 3: Experiment-specific hyperparameters in planning.

Experiment Parameter Setting

Figures[5}[T2]P}[T0] root noise: exploration fraction 0.25
Gumbel value during test playout with tree search g ~ Gumbel(0)
Temperature during test playout with no tree search 7' =0

Figure root noise: exploration fraction 0.25
Gumbel value during test playout with tree search g =
Temperature during test playout with no tree search 7' =0

Figure@ root noise: exploration fraction 0
Gumbel value during test playout with tree search g ~ Gumbel(0)
Temperature during test playout with no tree search 7' =0

17

442

443

444
445
446

447
448
449
450

451

452

453
454
455

456

457
458

459
460
461

462
463

464
465

D.7 Dirichlet Noise and Entropy

The entropy of the model’s policy prediction p; at time ¢ and in-mind time 7 is

H] == pj(a)in(p] (a)) (28)

In Tic-Tac-Toe at the very beginning of the game player x could do any move without influencing the
outcome of the game. To get some insight into why the models trained with Dirichlet noise produce
better decisions in our experiments we investigate the entropy H{ for this initial state, see Figure

entropy HJ 250 4

2,00

1,50

oo — max entropy = In(9)

' — with Dirichlet noise

— without Dirichlet noise
0,50
0,00 » epochs

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Figure 12: entropy H{ during training from epoch 0 to epoch 1250 - mean value over 10 samples
with 99% confidence intervals. One model is trained with Dirichlet noise (green) and another model
is trained without Dirichlet noise (red).

Adding Dirichlet noise seems to push the entropy higher where there is no reason concerning the
outcome of the game to favour one action over the other. As a consequence, the agent experiences
more regions of the decision tree which may be the cause of why it produces better decisions trained
with Dirichlet noise.

E Open Source Implementation

The source code is available at https://github.com/. . ..

The open-source implementation stores in the subdirectory reproduce all relevant information to
reproduce the experimental results shown in the paper. All hyperparameters needed to train a network
are stored in one text file with the parameters hierarchically organised as key/value pairs.

E.1 Architecture

Agent and environment are implemented as a Java Spring Boot command line application. The
hyperparameters can be configured using Spring Boot configuration properties.

Agent and environment are separated by the interface described in Figure[I] This allows plugging the
agent into different environments. Figure [I3]details the structuring of the agent into components and
their interplay.

During training, a loop iterates over epochs. Each epoch has an experience episodes phase and a train
model phase.

The experience episodes phase runs episodes in parallel. Each episode iterates discrete timesteps.
Each timestep begins with an observation of the environment. Next, the action to be taken is decided.

18

https://github.com/...

466
467
468

469
470

471
472
473
474
475

476
477
478

479
480
481

482
483

484

485

486

487

488

490

491

4 A)
agent environment
decide traini
.. . rainin
decision making — &
loop
Q tree search experience episodes phase &Z?EE‘;Z
run n?ulnple in parallel allowed actions
lannin episode (
planning epis —(O
per timestep black
infere 1. observe
async| initial/recurrent 2. decide actAndGetReward bOX
3.act {
model train 1. store experience ‘C
encapsulates
neural network |async
operations train model phase
loop
1. draw experience samples
: store 2. prepare training targets
experience prep g targ
memory _O)_ 3. train
of episodes
such as games O)_
retrieve
\. J/ ~—

Figure 13: Structuring of the environment and the agent into interacting components.

This is the responsibility of a decision component, which calls planning for the tree search but is free
in how it uses planning. Planning calls the model for inference results. Then the agent acts against
the environment and stores the experience it has gained at this time step.

During the train model phase, samples are taken from the experience and the model component is
called to perform batch training.

All calls to the model are asynchronous. This decouples the callers from the model. The model
component encapsulates all neural network operations. The decoupling is not only in functionality but
also in parallelization. The model component builds batch tasks and sends them via the DeepJavaLi-
brary (DJL) and Java Native Interface (JNI) to PyTorch, where they are processed using NVIDIA
CUDA on a single GP[ﬂ

The implementation provides export functionality to the ONNX exchange format, which we use to
run the model on WebAssembly directly in a browser, or to navigate the visualised network graph
using Netron [16].

The build tool is Gradle, which packages the application with all Java dependencies into a single jar
file at compile time. C-based dependencies for PyTorch and CUDA are dynamically loaded using the
standard DJL approach.

All hyperparameters used can be fully configured by the Spring Boot application via a single YAML
file or as command line parameters. Concrete properties files are provided with the source code.

E.2 Reference Stack and Running Times

The implementation runs on a consumer pc. We use the following reference stack:

* Spring Boot 3.1
e DJL 0.22.1

— PYTORCH 2.0.0
e Java: Corretto-17.0.6
* CUDA

— cudnn 8.9

3DIL and PyTorch support processing on multiple GPUs out of the box. The use of a single GPU only
reflects the hardware we are using.

19

492 — CUDA SDK 11.8

493 — GPU Diriver 528.24

494 * operating system: Microsoft Windows 11
495 * hardware:

496 — GPU: NVIDIA GeForce RTX 4090
497 — CPU: Intel Core 19-13900K

498 - RAM: 128 GB

499 On this stack doing the training of the network for 1250 epochs takes about 7 hours. After each epoch
s00 a network is stored. Testing these 1250 networks on all relevant decisions in the Tic-Tac-Toe decision
501 graph takes about 3.5 hours.

20

	Model
	Inference
	Training

	Planning - Input and Output
	Proofs Relevant for Policy Improvement
	Softmax and Equivalent Logits
	Policy Improvement Proof by Planning With Gumbel and a Prior Temperature
	Policy Improvement by Planning With Gumbel and a Prior Temperature T=0
	Improving Planning in an Eager Playout

	Experimental Details
	Training and Testing
	Counting Bad Decisions
	Testing With and Without Tree Search
	Statistics
	Training With Exploration-on - Compound Error
	Hyperparameters
	Dirichlet Noise and Entropy

	Open Source Implementation
	Architecture
	Reference Stack and Running Times

