
A Model335

We follow the model structure of Gumbel MuZero [7] as far as necessary for our case of non-336

intermediate rewards. As an improvement, we add the self-supervised consistency loss introduced in337

Efficient Zero [31]. To increase reproducibility, we go into as much detail as necessary.338

A.1 Inference339

External inputs to inference are the observation ot and the action at at time t.340

The results of the network functions are state sτt , policy pτ
t and value vτt derived from an observation341

ot, one initial inference step and τ sequential recurrent inference steps. We call τ in-mind time.342

The initial inference function I initial
θ produces an in-mind starting point at the in-mind time τ = 0.343

The recurrent inference function I recurrent
θ takes one step into the future along τ . θ denotes the network344

parameters.345

s0t ,p
0
t , v

0
t = I initial

θ (o0:t) (7)

sτ+1
t ,pτ+1

t , vτ+1
t = I recurrent

θ (sτt , at+τ) (8)

The inference functions have the network functions representation hθ, generation gθ and the predic-346

tions pθ, vθ as building blocks:347

s0t = hθ(o0:t) (9)

sτ+1
t = gθ(s

τ
t , at+τ) (10)

pτ
t = pθ(s

τ
t) (11)

vτt = vθ(s
τ
t) (12)

Two additional building blocks are the similarity projector P τ
1,t and the similarity predictor P τ

2,t used348

in EfficientZero [31] to measure and increase similarity2 of sτt and s0t+τ :349

P τ
1,t = P1,θ(s

τ
t) (13)

P τ
2,t = P2,θ(P

τ
1,t) (14)

The high-level breakdown of the inference functions I initial
θ and I recurrent

θ together with the top-down350

description of the building blocks in the source papers [7, 31] provide a description that may help to351

reproduce the network but may leave details unclear. One approach to avoid potential ambiguity is a352

mathematically precise functional description as in [15].353

We take a different approach, revealing not only the exact structure of the model but also its trained354

parameters: The open-source implementation we provide allows the model to be exported into the355

language-neutral Open Neural Network Exchange (ONNX) format [2], which can be visualised by356

an application such as Netron [16], as the following links illustrate for the building blocks 9-14:357

- https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-Representation.onnx358

- https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-Prediction.onnx359

- https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-Generation.onnx360

- https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-SimilarityProjector.onnx361

- https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-SimilarityPredictor.onnx362

In addition to viewing the model in ONNX format, it can also be used to run the model on an ONNX363

runtime.364

2Remark: A similarity measure for in-mind states could be used as an equality measure for in-mind states,
opening the possibility of moving from a decision tree to an acyclic decision graph [5] even when using in-mind
states.

12

https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-Representation.onnx
https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-Prediction.onnx
https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-Generation.onnx
https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-SimilarityProjector.onnx
https://netron.app/?url=https://.../onnx/MuZero-TicTacToe-SimilarityPredictor.onnx

A.2 Training365

The training’s loss function:366

lt(θ) = l0t +
1

τunroll

τunroll∑
τ=1

lτt + c4∥θ∥2 (15)

367

lτt = c1l
p(ptargett+τ , pτt) + c2l

v(vtargett+τ , vτt) + c3l
sim(s0t+τ , s

τ
t) (16)

lsim(s0t+τ , s
τ
t) =

{
0 if τ = 0

lsim(stopgradient(P 0
1,t+τ), P

τ
2,t) if τ > 0

(17)

As in MuZero [17] the gradient is scaled at the start of the dynamics function by 1/2.368

The value function does not change in the final, absorbing state. In the absorbing state, no loss forces369

are on the policy and arbitrary actions do not put any loss force on the value.370

B Planning - Input and Output371

We use Gumbel MuZero [7] for planning - in the variant Full Gumbel with deterministic action372

selection at non-root nodes. Given the model and a recurrent inference step budget as input, the373

outputs of the planning optimiser at a time t are a chosen action ag, the improved policy pimproved374

and the improved value vimproved - here in the notation of Gumbel MuZero [7]:375

pimproved = softmax (logits+ σ(Qcompleted)) (18)
vimproved = vmix (19)

During training, we always use the Gumbel noise g. For a greedy playout with maximum exploitation,376

the planning optimiser could be entered without Gumbel noise g = 0, resulting in a deterministic377

action selection ag=0, see Appendix C.4.378

C Proofs Relevant for Policy Improvement379

C.1 Softmax and Equivalent Logits380

From p, logits ∈ Rk and381

p = softmax(logits) (20)

it follows382

ln(p) ≡ logits (21)

where we call logitsA and logitsB equivalent logitsA ≡ logitsB if pA = pB .383

Proof:384

ln(pi) = ln

(
exp(logitsi)∑
j exp(logitsj)

)
= logitsi + C

≡ logitsi

with the constant C ∈ R.385

13

C.2 Policy Improvement Proof by Planning With Gumbel and a Prior Temperature386

Gumbel MuZero [7] proved that387

pimproved = softmax(logits + σ(Qcompleted)) (22)

produces a policy improvement compared to p = softmax(logits).388

It follows that389

pimproved,T = softmax

(
logits + σ(Qcompleted)

T

)
(23)

with T > 0 produces a policy improvement compared to pT = softmax(logits/T) if one enters the390

optimization search with logits/T instead of logits and σ/T instead of σ.391

Proof: Gumbel MuZero [7] states that σ can be any monotonically increasing transformation. If σ is392

monotonically increasing so is σ/T .393

C.3 Policy Improvement by Planning With Gumbel and a Prior Temperature T = 0394

Doing the planning optimization in the limit T → 0 could be done by setting the Gumbel g to 0.395

Proof: The optimization process uses expressions of the type396

argmaxa (g(a) + logits(a) + σ(q(a))) (24)

Entering the optimization search with logits/T instead of logits and σ/T instead of σ we have397

expressions of the type398

argmaxa

(
g(a) +

logits(a) + σ(q(a))

T

)
(25)

In the limit T → 0 we get399

lim
T→0

argmaxa

(
g(a) +

logits(a) + σ(q(a))

T

)
= argmaxa (logits(a) + σ(q(a))) (26)

which is the same as setting Gumbel g to 0 in equation 24.400

C.4 Improving Planning in an Eager Playout401

Let p = softmax(logits), pT = softmax(logits/T) and p(a1) > p(a2) > 0, then it follows that402

pT (a1)

pT (a2)
>

p(a1)

p(a2)
(27)

for 0 < T < 1. Therefore, introducing the temperature T in this range emphasises the relative403

magnitude of the probability. Additionally pT is improved by planning using σ/T instead of σ404

according to Appendix C.2. In the limit T → 0 pT is improved by setting the Gumbel value to 0 in405

planning according to Appendix C.3.406

D Experimental Details407

D.1 Training and Testing408

During the training of the model in each play and training cycle, which we call an epoch, the agent409

plays 1000 games before the model is updated 40 times by drawing batches from the last 10000410

games of size 256 and using game symmetry to increase the batch size by the symmetry group size 8411

on the training device to 2048. To evaluate the strength of the games, the acyclic-directed decision412

graph is fully unfolded, all relevant decision nodes are identified, and the network decisions are413

compared with the optimal decisions for each epoch, once without and once with tree search.414

14

D.2 Counting Bad Decisions415

To illustrate the counting of bad decisions: Adding the entries from the epoch-1028 row, exploration-416

off column and all the decision nodes from Table 1 gives 411.417

Table 1: Illustrating the counting of bad decisions on the nodes where a decision matters in Figure 5.

all decision nodes decision nodes on optimal path

epoch exploration X : I O : I X : P O : P X : I O : I X : P O : P

1028 off 110 91 104 106 12 23 6 19
1028 on 0 0 0 0 0 0 0 0
a

aX is short for player x, O for player o, I for intuition - initial inference only, P for planning - doing tree
search.

We count the decision from a game state only once, even if the decision tree node appears more than418

once in the decision tree - we count the nodes in terms of a decision graph. But there is a double419

count because we test once with and once without tree search and add the numbers. For a closer look420

at distinguishing between bad decisions after initial inference only (I) and the bad decisions after tree421

search (P) see Appendix D.3.422

D.3 Testing With and Without Tree Search423

In Appendix D.2 we described how we count bad decisions when testing a network. Here we take a424

closer look at the difference in bad decisions with and without tree search.425

In the MuZero learning process, the tree search produces better-rewarded decisions than the decisions426

from the model just doing initial inference. The model becomes better as it learns from the experience427

of this improved policy and therefore makes better decisions than before. This is reflected in Figure 9.428

0,00

100,00

200,00

300,00

400,00

500,00

600,00

100 150 200 250

Figure 9: Bad decisions with and without tree search on the models trained with exploration-on in
Figure 5, a rolling average of the last 100 epochs, 10 samples, 95% confidence intervals.

At training epochs beyond about 250 the training does not show an improvement for the training429

parameters used, see Figure 10.430

15

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

200 250 300

0,00

0,10

0,20

0,30

0,40

0,50

0,60

300 400 500 600 700 800 900 1000 1100 1200

Figure 10: Extended view of the graph shown in Figure 9 - Bad decisions with and without tree
search, a rolling average of the last 100 epochs, 10 samples, 95% confidence interval limits.

D.4 Statistics431

In the experiments presented in Figures 5, 7, 8 and 12, we train a sample of 10 networks separately.432

For this sample size, we assume a Student’s t-distribution for the mean values [24] to calculate the433

confidence intervals.434

D.5 Training With Exploration-on - Compound Error435

If we replace in equation 5 the target value vinitialInference,t with the improved value from planning436

vimproved,t from planning, equation 19, we introduce a compound error. Figure 11 illustrates how437

this compound error increases back in time.438

a) b)

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6 7 8

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6 7 8

Figure 11: v0t for models from "epoch 1200: light grey" to "epoch 1250: dark grey" trained in two
configurations for t < tstartNormal: a) vinitialInference,t and b) vimproved,t.

16

D.6 Hyperparameters439

Table 2 lists the common hyperparameters and Table 3 the specific hyperparameters used in the440

experiments.441

Table 2: Common Hyperparameters.

Parameter Setting

model: number of residuals 6
model: broadcast layers none
model: channels 256
model: bottleneck channels 128
model: channels of hidden layer in similarity projector 500
model: channels of output layer in similarity projector 500
model: channels of hidden layer in similarity predictor 250
model: channels of output layer in similarity predictor 500
planning Gumbel MuZero
planning: initial m 4
planning: cVisit 20
planning: cScale 1.0
planning: number of simulations 20
planning: root noise: Dirichlet alpha 1.2
planning: root noise: exploration fraction 0.25
decision: temperature: exploration-on 5
decision: temperature: exploration-off 1
experience: window size 10K
training: steps 50K
training: training steps per epoch 40
training: number of unrolling steps τunroll 5
training: batch size before symmetry 256
training: symmetry square
training: loss: c1 1
training: loss: c2 1
training: loss: c3 2
training: optimizer Adam
training: optimizer: learning rate 0.0001
training: optimizer: weight decaya 0.0001

ac4 is part of weight decay attribute used in the Adam optimizer.

Table 3: Experiment-specific hyperparameters in planning.

Experiment Parameter Setting

Figures 5, 12, 9, 10 root noise: exploration fraction 0.25
Gumbel value during test playout with tree search g ∼ Gumbel(0)
Temperature during test playout with no tree search T = 0

Figure 7 root noise: exploration fraction 0.25
Gumbel value during test playout with tree search g = 0
Temperature during test playout with no tree search T = 0

Figure 8 root noise: exploration fraction 0
Gumbel value during test playout with tree search g ∼ Gumbel(0)
Temperature during test playout with no tree search T = 0

17

D.7 Dirichlet Noise and Entropy442

The entropy of the model’s policy prediction pτt at time t and in-mind time τ is443

Hτ
t = −

∑
a

pτt (a)ln(p
τ
t (a)) (28)

In Tic-Tac-Toe at the very beginning of the game player x could do any move without influencing the444

outcome of the game. To get some insight into why the models trained with Dirichlet noise produce445

better decisions in our experiments we investigate the entropy H0
0 for this initial state, see Figure 12.446

0,00

0,50

1,00

1,50

2,00

2,50

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Figure 12: entropy H0
0 during training from epoch 0 to epoch 1250 - mean value over 10 samples

with 99% confidence intervals. One model is trained with Dirichlet noise (green) and another model
is trained without Dirichlet noise (red).

Adding Dirichlet noise seems to push the entropy higher where there is no reason concerning the447

outcome of the game to favour one action over the other. As a consequence, the agent experiences448

more regions of the decision tree which may be the cause of why it produces better decisions trained449

with Dirichlet noise.450

E Open Source Implementation451

The source code is available at https://github.com/....452

The open-source implementation stores in the subdirectory reproduce all relevant information to453

reproduce the experimental results shown in the paper. All hyperparameters needed to train a network454

are stored in one text file with the parameters hierarchically organised as key/value pairs.455

E.1 Architecture456

Agent and environment are implemented as a Java Spring Boot command line application. The457

hyperparameters can be configured using Spring Boot configuration properties.458

Agent and environment are separated by the interface described in Figure 1. This allows plugging the459

agent into different environments. Figure 13 details the structuring of the agent into components and460

their interplay.461

During training, a loop iterates over epochs. Each epoch has an experience episodes phase and a train462

model phase.463

The experience episodes phase runs episodes in parallel. Each episode iterates discrete timesteps.464

Each timestep begins with an observation of the environment. Next, the action to be taken is decided.465

18

https://github.com/...

infere
initial/recurrent

model
encapsulates

neural network
operations

train

async

environment

black
boxactAndGetReward

observe
includes

allowed actions
episode
loop

per timestep
1. observe
2. decide
3. act
4. store experience

trainmodel phase
loop

1. draw experience samples
2. prepare training targets
3. train

loop

experience episodes phase
run multiple in parallel

experience
memory

of episodes
such as games

store

retrieve

agent

training

planning

decisionmaking

async

tree search

decide

Figure 13: Structuring of the environment and the agent into interacting components.

This is the responsibility of a decision component, which calls planning for the tree search but is free466

in how it uses planning. Planning calls the model for inference results. Then the agent acts against467

the environment and stores the experience it has gained at this time step.468

During the train model phase, samples are taken from the experience and the model component is469

called to perform batch training.470

All calls to the model are asynchronous. This decouples the callers from the model. The model471

component encapsulates all neural network operations. The decoupling is not only in functionality but472

also in parallelization. The model component builds batch tasks and sends them via the DeepJavaLi-473

brary (DJL) and Java Native Interface (JNI) to PyTorch, where they are processed using NVIDIA474

CUDA on a single GPU3475

The implementation provides export functionality to the ONNX exchange format, which we use to476

run the model on WebAssembly directly in a browser, or to navigate the visualised network graph477

using Netron [16].478

The build tool is Gradle, which packages the application with all Java dependencies into a single jar479

file at compile time. C-based dependencies for PyTorch and CUDA are dynamically loaded using the480

standard DJL approach.481

All hyperparameters used can be fully configured by the Spring Boot application via a single YAML482

file or as command line parameters. Concrete properties files are provided with the source code.483

E.2 Reference Stack and Running Times484

The implementation runs on a consumer pc. We use the following reference stack:485

• Spring Boot 3.1486

• DJL 0.22.1487

– PYTORCH 2.0.0488

• Java: Corretto-17.0.6489

• CUDA490

– cudnn 8.9491

3DJL and PyTorch support processing on multiple GPUs out of the box. The use of a single GPU only
reflects the hardware we are using.

19

– CUDA SDK 11.8492

– GPU Driver 528.24493

• operating system: Microsoft Windows 11494

• hardware:495

– GPU: NVIDIA GeForce RTX 4090496

– CPU: Intel Core i9-13900K497

– RAM: 128 GB498

On this stack doing the training of the network for 1250 epochs takes about 7 hours. After each epoch499

a network is stored. Testing these 1250 networks on all relevant decisions in the Tic-Tac-Toe decision500

graph takes about 3.5 hours.501

20

	Model
	Inference
	Training

	Planning - Input and Output
	Proofs Relevant for Policy Improvement
	Softmax and Equivalent Logits
	Policy Improvement Proof by Planning With Gumbel and a Prior Temperature
	Policy Improvement by Planning With Gumbel and a Prior Temperature T=0
	Improving Planning in an Eager Playout

	Experimental Details
	Training and Testing
	Counting Bad Decisions
	Testing With and Without Tree Search
	Statistics
	Training With Exploration-on - Compound Error
	Hyperparameters
	Dirichlet Noise and Entropy

	Open Source Implementation
	Architecture
	Reference Stack and Running Times

