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A Additional Information about the Dataset

A.1 Distribution of Dataset Attributes.

As shown in Fig[I] we present the category distribution for four data sources: Fed-FGVC, Fed-
ScienceCap, Fed-SLAKE, and Fed-RadGenome. Each dataset contains a diverse array of data
points, each with multiple attributes. This richness in diversity makes them ideal for constructing a
comprehensive FL dataset.

FGVC Data Distribution 6OSOC:iEI'1CeQA Data Distribution 750 SLAKE Data Distribution  feq-RadGenome Data Distribution
- 5 750-

51500 5 o
21200 2 450- Natural Science 8 500- MR @ 3000 Lung
£ 200 £ 300 Social Science 200 cr € 1239 Abdomen
S 288 5150 5 250 X-Ray 2 750 Heart
Z 0y e 55550 © %0 5 101520253035 2 O g i 2 3 4 5 6 91234567829
Manufacturer Topic Content Type Number of Detection Objects
(a) FGVC (b) ScienceQA (c) SLAKE (d) RadGenome

Figure 1: Data distribution of the original datasets. We divide them into clients with different degrees
of data heterogeneity based on their labels, such as "Real World Non-IID Distribution" which strictly
adheres to the established label categories.

As illustrated in Fig. 2} we also present the t-SNE visualization of text and image embeddings from
different tasks in Fed-Nature and Fed-Med datasets. The images and texts of the two datasets exhibit
certain similarities, indicating an overlap in knowledge among different clients. This overlap is
conducive to collaborative training, which can improve performance in various tasks.

B More Implement Details

B.1 Training Details

All experiments are conducted on NVIDIA L40S GPUs. The learning rate is initialized to le-4 and
optimized using a cosine annealing scheduler to balance convergence speed and stability. The batch
size and maximum sequence length for the model architecture are set to 8 and 512, respectively.
For the encoder-free model, the codebook size for the image tokens is 8,192. To ensure fairness
in evaluation, all additional hyperparameters are adjusted to their default values for benchmark
comparison. Hardware-specific optimizations, including mixed precision training and gradient
checkpointing, are uniformly applied across all runs to minimize resource discrepancies.
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Figure 2: The t-SNE visualization of text and image embeddings from different tasks in Fed-Med
and Fed-Nature. Each color denotes one task. We can see clustering phenomenon of one client’s data
and that clients’ data are diverse.

B.2 Metrics

For the four types of downstream tasks discussed in our benchmark, we employ classic metrics to
evaluate the performance of various methods.

1) Image Classification primarily employs Accuracy (Acc) to quantify the proportion of correctly
predicted labels relative to the total number of samples.

2) Text Generation employs CIDEr (Consensus-based Image Description Evaluation), which
weights n-gram similarity using TF-IDF to prioritize informative and diverse outputs. Addi-
tionally, ROUGE-L evaluates fluency through unigram recall and longest common subsequence
alignment.

3) Visual Question Answering (VQA) also utilizes Task-Specific Accuracy (Acc), which evaluates
exact matches or provides partial credit for semantically equivalent answers.

4) Detection relies on Mean Intersection over Union (mloU), which measures the overlap between
the predicted and ground-truth bounding boxes.

B.3 Datasets

We provide details on the specific partitions for the following four datasets:

1) Fed-FGVC: Utilizing the key attribute "manufacturer” from the FGVC dataset, which consists of
30 categories, we create six distinct partitions.
IID Distribution: We can allocate up to all 30 categories across a maximum of 30 clients, ensuring
that each client receives a representative sample. This results in a balanced distribution among
clients.
Real World Non-IID Distribution: We can also distribute the 30 categories across a maximum
of 30 clients by grouping the categories into different sets, assigning each group to a different
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2)

3)

4)

client. This approach creates imbalanced data distributions, reflecting real-world scenarios where
clients have varying amounts of data.

Simulated Non-IID Distribution: We simulate the non-IID distribution with the Dirichlet
Distribution. Specifically, we can similarly allocate the 30 categories across up to 30 clients,
varying the alpha parameter to values of 0.01, 0.5, 5, and 100. Each setting generates data sets with
different degrees of data heterogeneity, allowing us to analyze the impact of the data distribution
on model performance.

In our experiments, we utilize a total of 5 clients across all distribution methods.

Fed-ScienceCap: We screen image-description pairs and exclude categories with fewer than 100
samples based on ’category’. We then distribute the remaining 27 image-description pairs among
different clients, creating two distinct partitions.

IID Distribution: We can allocate up to 27 categories across a maximum of 27 clients, evenly
distributing different categories to each client to ensure balanced representation.

Real World Non-IID Distribution: We can also group the 27 categories while maintaining a
similar number of data points across the clients, reflecting varying data distributions.

In our experiments, we utilize a total of 5 clients for both distribution methods.

Fed-SLAKE:We first exclude question types with fewer than 20 samples, then use uniform and
complete partitioning by "modality" to create IID and Non-IID partitions among 3 clients.

IID Distribution: We evenly distribute all data to three clients based on different medical imaging
modalities (X-ray, CT, and MRI), resulting in a balanced partition.

Real World Non-IID Distribution: We allocate all images to the three clients according to
modality, creating a partition that reflects varying data distributions.

Fed-RadGenome: We first extract 2D images from the 3D volume segmentation mask in the
RadGenome-Chest CT dataset. Specifically, we extract two axial slices at normalized heights of
35% (z=0.35) and 50% (z=0.5) along the superior-inferior axis, generating two 2D images from
the same case. We select three organs—Ilung, abdomen, and heart—as our detection targets, each
potentially containing multiple detection targets. For each irregularly shaped detection target, we
generate axis-aligned bounding boxes based on spatial extremal points.

IID Distribution: We evenly distribute all data to three clients based on organ type, resulting in a
balanced IID partition that ensures that each client has a similar representation of the data.

Real World Non-IID Distribution: We allocate the data to the three clients according to specific
organ categories, creating a Non-IID partition that reflects varying data distributions among clients.

B.4 Baseline

We evaluate five representative FL approaches spanning classical and adaptive heterogeneity opti-
mization paradigms: FedAvg [3]], FedProx [2l], FedAvgM [1]], FedYogi [4] and FedAdam [4].

1))

2)

3)

4)

FedAvg: A foundational method in federated learning (FL) that performs local multi-round
training on clients before uploading model parameters. It aggregates these parameters through
weighted averaging, significantly reducing communication rounds while ensuring data privacy.

FedProx: This method builds upon FedAvg by introducing a proximal regularization term to
limit the deviation of local models from the global model. The regularization strength is set to
p = 0.01, which helps alleviate convergence issues caused by data and device heterogeneity,
thereby enhancing model robustness in non-IID data distributions.

FedAvgM: Enhancing the parameter aggregation process of FedAvg, FedAvgM incorporates a
momentum mechanism that introduces a momentum term during global model updates. This
approach smooths out historical gradient directions, accelerating convergence and stabilizing
updates, particularly in complex client data distributions. The momentum parameters are set as
follows: 81 = 0.9 for the first moment and 52 = 0.99 for the second moment.

FedYogi: An adaptive FL algorithm based on the Yogi optimizer, which dynamically adjusts
learning rates to effectively tackle non-convex optimization problems. This method estimates
second-order moments of gradients, improving global update directions in heterogeneous data
scenarios. The adaptation is controlled by a parameter 7 = 0.001, which influences the learning
rate adjustments.
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Figure 3: Performance of different connection layers across multiple random experiments on the
Fed-SLAKE dataset. We conduct eight evaluations using FedAvg and Central training respec-
tively.(mentioned in Sec.5.2)

5) FedAdam: This method integrates the momentum mechanism and adaptive learning rates of
the Adam optimizer into the federated framework. By leveraging weighted first and second
moments of gradients, it achieves faster convergence and greater stability compared to FedAvg.
The parameters include 5; = 0.9 and 52 = 0.99 for the momentum coefficients, facilitating
effective global parameter updates.

C Additional Experimental Results

C.1 Experiments on the Stability of Connector Training

As shown in Fig[3] we show the results of different connector types in two scenarios: FL and
centralized training. It can be seen that the performance of the linear layer in FL fluctuates significantly
more than that in centralized training, which indicates that the linear layer is unstable in the FL
scenario with limited data (each client in the FL scenario only has a portion of the data in the
centralized training mode).

C.2 Experiments on Varying Degrees of Data Heterogeneity

FigH]illustrates the performance of different FL algorithms across various levels of data heterogeneity.
Notably, traditional FL optimizers such as FedProx and FedYogi do not effectively mitigate this
performance degradation.
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Figure 4: Performance of different FL algorithms at various levels of data heterogeneity on the
Fed-FGVC dataset. « is the parameter of the Dirichlet distribution.(mentioned in Sec.5.2)
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