We provide further details, experiments, and descriptions of the attached media, to reinforce the
results and conclusions from the main body of our paper. For a more fluid viewing experience please
look through our project website, where videos (and corresponding descriptions) are side-by-side:

A Additional Dataset Details

Square Nut [10]. The state space for this task is similar to Mandlekar et al. [10]. We use a
proprioceptive state consisting of the robot’s end-effector position (3-DoF), end-effector rotation as
a quaternion (4-DoF), the gripper position (2-DoF) and a coordinate-based state representation for
encoding object positions and poses (14-dim). We use the original data from Mandlekar et al. [10],
using a 3DConnexion SpaceMouse for 6-DoF teleoperation. The horizon is set to 500 steps.

We randomly sample 50 demos from the proficient operator [10] to initialize the base dataset.
Operators 1 through 4 are Better OP 1, Better OP 2, Okay OP 1 and Okay OP 2 from the Robomimic
multi-human dataset.

Round Nut [10, 20]. The state space for this task is the same as Hoque et al. [20]; complete robot
proprioception states and object states are included. The data was collected using a keyboard. The
horizon is set to 400 steps.

Hammer Placement [32]. The state space for this task is the complete robot proprioception state and
object. The base demonstrations include 20 demonstration collected by the proficient demonstrator
and 5 demonstrations collected by the demonstrator using interactive interventions like in Kelly et al.
[2]. These interactive on-policy demos help us in learning a decent base policy. Data was collected
with a keyboard. The horizon is set to 175 steps.

B Policy Training & Other Implementation Details

Architecture. We train an ensemble of 5-MLPs. Each MLP has 2 hidden layers, a hidden size of
1024. We use ReLU activations, LayerNorm [34] and a dropout of 0.5 [35] between the hidden layers.

Training. We train the models using an ADAM [36] optimizer with a learning rate of 1e-3 for 1000
epochs with a batch size of 512. The models are trained to reduce the mean squared error between
the ground truth actions and the predicted actions.

Evaluation. The models are evaluated for 50 rollouts for their respective maximum horizons or
till the task is completed. Checkpoints are evaluated at every 200 epochs. We also evaluate the
checkpoint with the best validation loss.

Compatibility Thresholds. We use the thresholds detailed in to compute the compatibility
score M for the new demonstrations Dy,,. Likelihood is measured using a negative mean squared
error between the actions predicted by 7p,s. and the provided actions a,ew. The novelty of a state is
measured by the standard deviation in the predicted actions from the ensemble policy. To select these
thresholds, we assume access to a compatible and an incompatible trajectory in addition to the base
demonstrations. We regress these thresholds from a 2D compatibility map of likelihood vs novelty.

Parameter Square Nut Round Nut Hammer Placement

Novelty n 0.05 0.05 0.06
Likelihood A 0.4 0.35 0.35

Table 3: Thresholds for novelty (standard deviation of predicted actions) and likelihood (mean
squared error between predicted actions and provided actions). The standard deviation and the MSE
of actions were averaged across the dimensions of the action space.

C Baseline Results
C.1 Mixture Density Network (MDN)

Architecture. We train a Mixture Density Network (MDN) with 2 components corresponding to the
2 operators in the aggregated dataset Dyyse U Dpew. The MDN is modelled as an MLP with 2 hidden
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Round Nut Hammer Placement
5-MLP MDN RNN 5-MLP MDN RNN

Base 133(23) 80(4.0) 147(23) 247(6.1) 113(1.2) 43.3(13.3)
Operator 1 267 (11.7)  29.3(9.5) 31.3(8.3) 38.0(2.0) 30.7(155 30.0(8.0)
Operator2  22.0(7.2) 113(3.1) 153(3.1) 333(3.1) 12035 2473.1)
Operator 3 17.3(4.6) 10.7(7.6) 47(3.1) 8.0(0.0) 12.0(53) 48.0(15.6)
Operator4 7.3 (4.6) 473.1) 133(23) 4.0(0.0) 67(23)  8.7(50)

Operator

Table 4: Success rates on Round Nut and Hammer Placement (mean/std across 3 training runs) for
policies trained on D, from different operators using different models.

layers and a hidden size of 1024. We use ReL.U activations, LayerNorm [34] and a dropout of 0.5
[35] between the hidden layers.

Training. We train the model using an ADAM [36] optimizer with a learning rate of le-4 for 1000
epochs with a batch size of 512. The models are trained to maximize the log likelihood of the expert
actions.

Evaluation. The models are evaluated for 50 rollouts for their respective maximum horizons or
till the task is completed. Checkpoints are evaluated at every 200 epochs. We also evaluate the
checkpoint with the best validation loss. We use a low-noise evaluation scheme similar to Mandlekar
et al. [10], setting the scale of the Gaussian components to le-4 during the evaluation phase.

Results and Discussion. From the results in and , we find that using an MDN is
worse, in general, compared to an ensemble of MLPs. The trends of operators being compatible to
varying degrees with the base dataset holds even when using an MDN. Further, when we aggregate
demonstrations from multiple users, it is difficult to pre-define the number of modes (one mode per
user) for the MDN. Thus, trying to model multiple modes using an MDN does not help mitigate
the lack of compatibility between Dyyse and Diey. We also find that the uncertainty estimates in the
MDN are not calibrated and tend to collapse to a constant value, making it difficult to use for active
elicitation (as we have no metric to tell novel states apart from familiar ones).

C.2 Recurrent Neural Network (RNN)

Architecture. We train an ensemble of 5 LSTM [37] models with two layers and 512 hidden units.

Training. We train the models using an ADAM [36] optimizer with a learning rate of 1e-3 for 1000
epochs with a batch size of 512. The models are trained to reduce the mean squared error between
the ground truth actions and the predicted actions.

Evaluation. The models are evaluated for 50 rollouts for their respective maximum horizons or
till the task is completed. Checkpoints are evaluated at every 200 epochs. We also evaluate the
checkpoint with the best validation loss.

Results and Discussion. From the results in and , we find that the ensemble of
RNN:Ss, in general, is comparable to an ensemble of MLPs. Similar to an ensemble of MLPs and
MDNS, the trends are quite consistent, albeit a couple of exceptions (e.g., Operator 3 in Hammer

Operator Square Nut
P 5-MLP MDN RNN
Base 38.7(2.1) 233(1.2) 30.7(1.2)

Operator 1 54.3(1.5) 27.3(8.3) 31.3(1.2)
Operator2 403 (5.1) 15.3(6.1) 10.7 (1.2)
Operator 3 37.3(2.1) 12.0(2.0) 10.0(2.0)
Operator4 27.3(3.5) 10.0(0.0) 10.7 (3.1)

Table 5: Success rates on Square Nut (mean/std across 3 training runs) for policies trained on Dyey
from different operators using different models.
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Figure 5: Results of our post-study survey. All responses are collected on a 5-point Likert scale (1:
Strongly Disagree, 5: Strongly Agree).

Placement). The added computational load of using a sequential model does not mitigate the problem
of incompatibility between the demonstrations from different users. We prefer to use an ensemble
of MLPs (for their lower computational load) to test the validity of our compatibility metric and
demonstrations elicitation procedure. Our procedure can easily be extended to sequential models.

D Real-World Robot Task Details: Food Plating

Hardware Details. We use a Franka Emika Panda arm for our experiments. We use a RealSense
camera to record visual observations (as RGB images). For control, we predict 7-DoF joint actions
and use the Polymetis library [38] for low-level impedance control. We keep the gripper of the Panda
arm in a fixed position grasping the pan throughout the task.

Policy Architecture. We train an ensemble of 5 visually-conditioned policies. We use a ResNet34
backbone pretrained on Imagenet [33] to encode the visual observations, keeping the ResNet weights
frozen. The robot proprioceptive state consists of the end effector position and pose (as a quaternion),
concatenated with the visual embeddings and passed through an MLP to predict the actions. The
MLP consists of two hidden layers with a hidden size of 64 and GELU [39] activations.

Active Elicitation. If a demonstration is rejected, we provide corrective feedback to demonstrators
after the demo has been recorded. We show a video of the incompatible parts of the trajectory, retrieve
and play the closest expert demo to the rejected one. For the retrieval of corrective demos, we look at
the similarity of demos in the state space. This is done by measuring the L2 distance of the ResNet
embeddings. This isn’t a perfect measure and that lots of other work tries to solve this problem; we
choose ResNet features to be expedient.

Policy Training. We train the ensemble of visual policies for 20 epochs with a batch size of 512.
The model is trained to minimize the mean squared error (MSE) between predicted and recorded
actions. We use an AdamW optimizer [40] with a learning rate of le-3.

Evaluation. For evaluation, we choose five points for the location of the plate and evaluate each
policy for 5 rollouts.

E Additional Results on Active Elicitation
Round Nut. We collect data from 16 users (age = 23.7 &= 1.7, 11 males, 5 females). Each user is
either assigned to the naive or informed condition.

Hammer Placement. We collect data from 4 users (age = 23.2 + 0.9, 4 males). Each user performs
the naive condition first and then the informed condition.

[Real] Food Plating. We collect data from 4 users (age = 23.0 & 1.1, 1 male, 3 females). Each
user performs the naive condition first and then the informed condition.
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Figure 6: (a) and (c) show 2D “maps” of demonstrations collected from an informed operator and a
naive operator respectively. (b) shows the success rates on using the two sets of demonstrations to
train a policy.

Post Study Survey. We asked users to rate their experience in collecting the demonstrations by
asking them questions related to mental demand, task difficulty and task comprehension on a 5-point
Likert scale. These questions were inspired from Hart [41].

Discussion. From the post-study survey , we find that our method is slightly more difficult
to understand (+0.37; averaged across 3 tasks), requires marginally more mental demand (+0.30;
averaged across 3 tasks), and is a little more difficult to succeed at (+0.20; averaged across 3 tasks).
We find that this marginal increase in difficulty and effort in performing the task lead to the collection
of significantly better demonstrations. For instance, we see in that the informed operator, using
our active elicitation interface, is much better at giving more compatible demonstrations that the naive
operator. This is reflected in the success rates acheived by the corresponding policies (25.3 v/s 7.3).

Trajectory Lengths. In , we present the average trajectory lengths for demonstrations
collected by the base user, naive users, and informed users. We find that informed users tend to
be more optimal in providing demonstrations while also providing demos of a similar style to the
base user. For demonstrations with the real food plating task, the base user’s style requires longer
trajectories on average compared to a naive user’s style. Our active elicitation procedure is able to
bring the average trajectory length of an informed user closer to that of the base user. So, we are able
to elicit behavior that matches a style, not solely optimizing for shorter trajectories.

Task Base Naive Informed

Round Nut 87.3 95.9 (12.5) 88.9 (6.8)
Hammer Placement 174.6  185.5(34.3) 174 (8.7)
Real: Food Plating 306.5 263.7(10.26) 278.3(8.9)

Table 6: Average trajectory lengths for demonstrations collected using active elicitation and naive
collection.

F Active Elicitation with Human-Gated (HG) DAgger

Procedure. We use the same interface as described in Section 5 to collect demonstrations interactively
using Human-Gated DAgger [2]. Users were asked to help a robot complete the Round Nut task
successfully five times. They were instructed to intervene and help the robot when they thought the
robot was stuck or was making a mistake in completing the task. They were also told to give control
back to the robot when they thought the robot could complete the task successfully.

Drase consists of 30 trajectories collected by a proficient operator. For this task, we perform a
longitudinal study with n = 3 participants, where users are first asked to complete 5 demonstrations
in the naive condition and then 5 demonstrations in the informed condition. This allows us to measure
the effect of the interface in eliciting demonstrations within subjects.
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Operator Naive Informed

Base 13.3(2.3) -

Operator 1 24 (3.5) 25.3(5.0)
Operator2 18 (7.2) 23.3(4.2)
Operator 3 31.3(9.9) 21.3(2.3)
Operator4 29.3 (5.8) 32.7(7.0)

Table 7: Success rates (mean/std across 3 random seeds) for user studies evaluating both naive and
informed demonstration collection using HG-DAgger against base users for the Round Nut task.

Results and Discussion. Informed elicitation works better for three out of four operators (see )
but the gains are lower compared to the condition where we collect complete trajectories. Further,
we observe that none of the conditions result in a policy that is worse than the base policy. We find
that the base policy is quite good and only requires intervention in a few “critical states” like picking
the nut up or inserting the nut into the peg. Further, the results also show that the high frequency
feedback to the users from our interface does not discourage them from intervening and providing
corrections. Our results our limited by the number of users we test in this condition and also by
the task that we consider. Future work will address how active elicitation might help in interactive
imitation learning across more users and more diverse tasks.

G Operator-wise Success Rates

Operator Success Rates

Base 13.3 (2.3)

Naive 1 16 (3.5)

Naive 2 7.3 (4.6)

Naive 3 6.7 (1.2)

EZ}XE ;1 183'93((24%)) Operator Naive Informed
Naive 6 7.3@3.1) Base 24.7 (6.1) -
Naive 7 4.7 (1.2) Operator 1 8.0 (0.0) 28.0 (6.0)
Naive 8 13.3(2.3) Operator 2 33.3(3.1) 52.7(10.1)
Informed 1 25.3(1.2) Operator 3 38.0(2.0) 35.3(2.3)
Informed 2 20.0 (2.0) Operator4 4.0 (0.0) 11.3 (2.3)
Informed 3 18.0 (3.5)

Informed 4 113 (2.3) (b) Hammer Placement

Informed 5 16.0 (3.5)
Informed 6 5.3(1.2)
Informed 7 15.3(1.2)
Informed 8 14.0 (3.5)

(a) Round Nut

Table 8: Success rates (mean/std across 3 random seeds) for different operators.
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