
Supplement for Low-Rank Learning by Design

Anonymous Author(s)
Affiliation
Address
email

Appendix A Table of Notation1

Symbol Subspace Definition

Data Set Notation

m N+ Number of Input Features

x Rm Single input Sample

N N+ Number of Samples

X RN×m Data set features with N samples and
m features

n N+ Number of Target Features

y Rn Single target sample

Y RN×n Data set targets with N samples and n
features

T N+ Length of Data Sequence

X RN×m×T Data set feature tensor: N samples,
m features, sequence length T

Network Architecture

L N+ Number of Layers in Neural Network

hi N+ Number of Neurons at Network
Layer i

Wi Rhi−1×hi Weight matrix from layers i− 1 to i

bi Rhi Bias at layer i

ϕi ϕi : Rhi → Rhi Activation function at layer i

Φ({Wi}Li=0, {bi}Li=0, {ϕi}Li=0) Φ : Rm → Rn L-layer Neural network

h0 = m N+ Number of Neurons at Input
Table 1: Important notation used throughout the main work.

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Appendix B Parameter Tying: Bounds on Gradients in Convolutional Layers2

with Linear Activations3

Our derivation of bounds on the gradient rank of convolutional layers will follow much of what was4

derived for RNNs. The primary difference will appear in the number of steps over which gradients5

are accumulated, and their relationship to image size, stride, kernel size, padding, etc.6

Suppose we are working on a convolution of dimension m. If we let N denote the size of a given7

batch, and let Cin, Cout be the input/output channels, and let win ∈ Nm
+ be a list of image dimensions8

(such as Height and Width for a 2d image). Then the input image to the convolution is denoted as a9

tensor X ∈ RN×Cin×win,1×win,2×···×win,m .10

Suppose we are performing a convolution with a kernel sizes k ∈ Nm
+ , dilations d ∈ Nm

+ ,11

padding p ∈ Nm
+ , and stride s ∈ Nm

+ . The weight tensor for this convolution is denoted as12

W ∈ RCout×Cin×k1×k2×···×km . The output of this convolution is thus computed as the tensor13

Y ∈ RN×Cout×wout,1×wout,2×···×wout,m :14

Yi,j,... =

Cin∑
k=1

Wi,k,... ⋆ Xi,k,...

where ⋆ is the m-dimensional cross-correlation operator.15

Following reverse-mode auto-differentiation for m-dimensional convolutions, the gradient of W is16

computed as a convolution between the input X and the adjoint from the backward pass ∆:17

∇W =

N∑
i=1

{X ⋆∆}i

It is clear that with linear activations, even if X and ∆ are low-rank, the rank of this gradient18

is accumulated over the cross-correlation operator ⋆ (as well as over N , in a similar way to for19

linear layers). It becomes apparent that like for RNNs, we are accumulating over the sequence of20 ∏d
i=1 wout,i many patches, where wout,i is the size of the output in the ith dimension.21

For convolutional layers, this can be explicitly computed as22

wout,i =

⌊
win,i + 2pi − di × (ki − 1)− 1

si
+ 1

⌋
if we let B be the linear bound computed in section 2.3, then the bound on the rank of the gradient is23

thus24

rank(∇Wi) ≤ B
m∏
i=1

⌊
win,i + 2pi − di × (ki − 1)− 1

si
+ 1

⌋
(1)

Intuitively, this means the bound will shrink as the input image size and padding shrinks, and will25

shrink as the stride, dilation and kernel size increase.26

Appendix C Rank of the Leaky-ReLU Derivative27

We can use a similar kind of analysis as in section 3.3.1 to derive a bound on the rank for the partial28

derivative of the Leaky-ReLU activation on the output. As we mentioned in that section, the analysis29

can extend trivially to any piecewise linear function, and indeed the derivative of a Leaky-ReLU is30

piecewise linear.31

Let Dα(Z) ∈ Rh×h be the matrix with entries corresponding to the linear coefficients from the32

Leaky-Relu activation applied to internal activation Zi = XWi. The partial derivative w.r.t to the33

2



output can be written as the hadamard product34

ϕ′
α(Zi) = Dα ⊙ 1h×h (2)

where 1h×h is an h× h matrix of ones.35

From our derivation in section 3.3.1, we can say that Dα ⊙ 1h×h will remain numerically rank-36

deficient according to the bound37

min{ck(Dα), rk(Dα)} ≤ ϵmin{c1(Dα), r1(Dα)}σ1(Zi)/σk(Zi) (3)

We note that 1h×h is rank-1 with σ1 = h and σk ≤ ϵh. If we suppose this bound is saturated, the38

bound depends primarily on the quantity min{c1(Dα), r1(Dα)}, and will loosen somewhat as the39

precision of σk shrinks it toward 0.40

Appendix D Connection to ReLU-Singular Values41

One initial theoretical answer to analyse particular nonlinearities involves extending the notion of42

singular values to certain nonlinear functions which are locally linear, such as ReLU or Leaky-ReLU43

activations [1]. For the nonlinear operator ϕα(Z) = LeakyReLUα(Z), where α ∈ [0, 1] controls the44

slope of the activation when Z < 0. We note that when α = 0, this is equivalent to a ReLU activation45

and when α = 1 it is equivalent to a Linear activation.46

Following the work in [1], for a matrix Z ∈ Rm×n the kth “Leaky-ReLU Singular Value” is defined47

for the operator ϕα(Z) as48

sk(ϕα(Z)) = min
rankL≤k

max
x∈B

∥LeakyReLUα(Zx)− LeakyReLUα(Lx)∥. (4)

In [1], the extension of the notion of ReLU singular values to Leaky-ReLUs carries naturally; however,49

for completeness, we have included Leaky-ReLU-specific versions of each of the proofs from that50

work in the supplement. Among these results, we have the following lemma:51

Lemma: Let ϕα(Z) = LeakyReLUα(Z) for Z ∈ Rn×m, then52

sk(ϕα(Z)) ≤ σk(Z) (5)

In other words, the Leaky-ReLU singular values will be bounded above by the singular values of the53

underlying linear transformation Z. It follows then that as we increase α along the interval [0, 1], the54

analogous notion of ” rank (the number of non-zero values of sk) will converge converge upward to55

the linear rank of Z, and our boundaries will still hold.56

Appendix E Additional Empirical Verification57

Hypothesis S1: Low-rank input/output spaces systematically bound gradient rank. The remaining58

terms in the bound in equation ? show that gradient rank is bound by the rank of the inputs and the59

rank partial derivative of the loss function (i.e., the rank of the output space). In Figure 1, we show60

the computed gradient rank on a fully-connected network with three layers of 128 neurons each,61

trained to reconstruct a full-rank (128-dim) gaussian input (panel 1a) in contrast to a model trained62

to reconstruct a low-rank (16-dim) gaussian embedded in a higher-dimensional (128-dim) space63

(panel 1b). Indeed, in panel 1c we see that any linear model which receives the low-rank embedded64

input has gradients which are bounded entirely by the rank of the input space.65

Appendix F Large Scale Demonstration66

In this section, we include results on larger-scale networks and problem settings. Our goal is to67

illustrate how architectural choices can affect rank not only in small models, but also in modern68

architectures. These results highlight the relevance of our theoretical result to the deep learning69

community at large.70

ImageNet with ResNet18: In figure 2, we illustrate the effect of increasing the input image size on71

the rank of the gradient in the ResNet18 architecture. In each panel the image size increases from top72

to bottom, and as expected smaller image sizes produce smaller ranks.73

3



Linear(128, 128)3 Linear(128, 128)2 Linear(128, 128)1 Linear(128, 128)0
module

0

20

40

60

80

100

120

140

ra
nk

statistic
Activation
Delta
Gradient

(a) Full-dimensional input

Linear(128, 128, )3 Linear(128, 128, )2 Linear(128, 128, )1 Linear(128, 128, )0
module

0

20

40

60

80

100

120

140

ra
nk

statistic
Activation
Delta
Gradient

(b) Input of dimension 16 embedded

16 32 64 128
Source Dimension

24

25

26

27

ra
nk

statistic
Activation
Delta
Gradient

(c) Gradients, Deltas, Activations for different dimension input

Figure 1: Low-Dimensional Input

Additionally, we estimated the effect of artificially introduced Leaky-ReLU activations with different74

levels of α; however, we observed little noticeable effect as long as the input image was large.75

4



do
w
ns
am
lin
g

do
w
ns
am
lin
g

do
w
ns
am
lin
g

Fi
gu

re
2:

Il
lu

st
ra

tio
n

of
th

e
ra

nk
of

th
e

gr
ad

ie
nt

at
ea

ch
la

ye
ri

n
th

e
R

es
N

et
18

ar
ch

ite
ct

ur
e

us
ed

to
cl

as
si

fy
Ti

ny
-I

m
ag

en
et

.E
ac

h
pa

ne
ls

ho
w

s
th

e
ef

fe
ct

of
in

cr
ea

si
ng

im
ag

e
si

ze
(f

ro
m

to
p

to
bo

tto
m

)o
n

th
e

ra
nk

,i
llu

st
ra

tin
g

th
at

la
rg

er
im

ag
e

sp
ac

es
pr

ov
id

e
m

or
e

ac
cu

m
ul

at
io

n
of

th
e

gr
ad

ie
nt

.

5



ImageNet with VGG11: In figure 3 we illustrate the effect of increasing the input image size on the76

rank of the gradient in the ResNet18 architecture. In each panel the image size increases from top to77

bottom, and as expected smaller image sizes produce smaller ranks.78

6



Co
nv

2d
)1

0
m

od
ul

e
2022242628

rank

Co
nv

2d
)9

m
od

ul
e

2022242628

rank

Co
nv

2d
)8

m
od

ul
e

2022242628

rank

Co
nv

2d
)7

m
od

ul
e

2022242628

rank

Co
nv

2d
)6

m
od

ul
e

2022242628

rank

Co
nv

2d
)5

m
od

ul
e

2022242628

rank

Co
nv

2d
)4

m
od

ul
e

2022242628

rank

Co
nv

2d
)3

m
od

ul
e

2022242628

rank

Lin
ea

r2
m

od
ul

e
2022242628

rank

Lin
ea

r1
m

od
ul

e
2022242628

rank

Lin
ea

r0
M

od
ul

e
2022242628

rank

Fi
gu

re
3:

Il
lu

st
ra

tio
n

of
th

e
ra

nk
of

th
e

gr
ad

ie
nt

at
ea

ch
la

ye
ri

n
th

e
V

G
G

11
ar

ch
ite

ct
ur

e
us

ed
to

cl
as

si
fy

Ti
ny

-I
m

ag
en

et
.E

ac
h

pa
ne

ls
ho

w
s

th
e

ef
fe

ct
of

in
cr

ea
si

ng
im

ag
e

si
ze

(i
np

ut
is

fr
om

to
p

to
bo

tto
m

)o
n

th
e

ra
nk

,i
llu

st
ra

tin
g

th
at

la
rg

er
im

ag
e

sp
ac

es
pr

ov
id

e
m

or
e

ac
cu

m
ul

at
io

n
of

th
e

gr
ad

ie
nt

.

7



WikiText/M130k with BERT/XLM: We have included a demonstration of decreasing the sequence79

length in two large-scale NLP datasets (WikiText and Multi30K) for the BERT architecture with80

standard pretraining and XLM pretraining. In figure 4 we include the estimated rank of the first two81

and last two linear layers for BERT applied to the WikiText data set. The rank for all other layers and82

for the4 XLM/Multi30k application are included in separate PDFs along with this supplement. In83

general we do not see much variation between linear layers in each architecture, except for near the84

input (layers 73,72), in which length 1 sequences collapse the rank of the gradients down to 1.85

References86

[1] DITTMER, S., KING, E. J., AND MAASS, P. Singular values for ReLU layers. IEEE Transactions87

on Neural Networks and Learning Systems 31, 9 (2019), 3594–3605.88

8



Linear73
module

20

22

24

26

28

ra
n
k

Linear72
module

20

22

24

26

28

ra
n
k

20

22

24

26

28

ra
n
k

Linear0
Module

20

22

24

26

28

ra
n
k

Linear1
module

Figure 4: Illustration of the rank of the gradient at each layer in the BERT architecture used for
language modeling on the WikiText2 data set. Each panel shows the effect of increasing sequence
length (increasing from right to left) on the rank, illustrating that larger sequence lengths. provide
more accumulation of the gradient.

9


	Table of Notation
	Parameter Tying: Bounds on Gradients in Convolutional Layers with Linear Activations
	Rank of the Leaky-ReLU Derivative
	Connection to ReLU-Singular Values
	Additional Empirical Verification
	Large Scale Demonstration

