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Appendix A Table of Notation
Symbol Subspace Definition
Data Set Notation

m N, Number of Input Features

X R™ Single input Sample

N N4 Number of Samples

X RN xm Data set features with /V samples and

m features

3
2,
Jr

Number of Target Features

y R™ Single target sample
Y RN *n Data set targets with NV samples and n
features
T A\ Length of Data Sequence
X RN XxmxT Data set feature tensor: N samples,
m features, sequence length 7’
Network Architecture
L N4 Number of Layers in Neural Network
h; \ Number of Neurons at Network
Layer ¢
W, Rhi-1xhi Weight matrix from layers : — 1 to ¢
b; RP Bias at layer i
oy ¢; : R — R Activation function at layer i
S({W, ) {bi}y, {¢i},) @®:R™ = R™ L-layer Neural network
hog =m N, Number of Neurons at Input

Table 1: Important notation used throughout the main work.
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Appendix B Parameter Tying: Bounds on Gradients in Convolutional Layers
with Linear Activations

Our derivation of bounds on the gradient rank of convolutional layers will follow much of what was
derived for RNNs. The primary difference will appear in the number of steps over which gradients
are accumulated, and their relationship to image size, stride, kernel size, padding, etc.

Suppose we are working on a convolution of dimension m. If we let IV denote the size of a given
batch, and let Cs;,, Coy¢ be the input/output channels, and let w;,, € N’ be a list of image dimensions

(such as Height and Width for a 2d image). Then the input image to the convolution is denoted as a
tensor X € RN XCinXWin 1 XWin,2 X" XWin,m

Suppose we are performing a convolution with a kernel sizes k € N, dilations d € N7,
padding p € N7, and stride s € N'. The weight tensor for this convolution is denoted as

W € RCutxCinxkixkex--Xkm The output of this convolution is thus computed as the tensor
Ve RN X Cout XWout,1 XWout,2 X X Wout,m

Cin
Vij,... = E Wik,... x Xi,...

k=1
where * is the m-dimensional cross-correlation operator.

Following reverse-mode auto-differentiation for m-dimensional convolutions, the gradient of WV is
computed as a convolution between the input &' and the adjoint from the backward pass A:

N
Vw =» {X+A};
=1

It is clear that with linear activations, even if X and A are low-rank, the rank of this gradient
is accumulated over the cross-correlation operator x (as well as over N, in a similar way to for
linear layers). It becomes apparent that like for RNNs, we are accumulating over the sequence of

Hle Woyt,; Many patches, where w,; ; is the size of the output in the 7th dimension.

For convolutional layers, this can be explicitly computed as

Si

in,i +2pi —d; X (k; —1) =1
Wout,i = \‘w ’ + P X( ) +1J

if we let B be the linear bound computed in section 2.3, then the bound on the rank of the gradient is
thus

rank(Vyy,) < BH .
i=1 :

Intuitively, this means the bound will shrink as the input image size and padding shrinks, and will
shrink as the stride, dilation and kernel size increase.

Appendix C Rank of the Leaky-ReLLU Derivative

We can use a similar kind of analysis as in section 3.3.1 to derive a bound on the rank for the partial
derivative of the Leaky-ReLU activation on the output. As we mentioned in that section, the analysis
can extend trivially to any piecewise linear function, and indeed the derivative of a Leaky-ReL.U is
piecewise linear.

Let D,(Z) € R"*" be the matrix with entries corresponding to the linear coefficients from the
Leaky-Relu activation applied to internal activation Z; = X'W,. The partial derivative w.r.t to the
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output can be written as the hadamard product
¢4 (Zi) = Dy © 10 @

«

where 1% is an h x h matrix of ones.

From our derivation in section 3.3.1, we can say that D, ® 1"*" will remain numerically rank-
deficient according to the bound

min{ck(Da), Tk (DQ)} S € min{q (DQ), T1 (Da)}(fl (Z,)/ok(Zl) (3)

We note that 17*" is rank-1 with o1 = h and o), < eh. If we suppose this bound is saturated, the
bound depends primarily on the quantity min{c; (D), 71 (D, )}, and will loosen somewhat as the
precision of o, shrinks it toward 0.

Appendix D Connection to ReLLU-Singular Values

One initial theoretical answer to analyse particular nonlinearities involves extending the notion of
singular values to certain nonlinear functions which are locally linear, such as ReLU or Leaky-ReLU
activations [1]. For the nonlinear operator ¢, (Z) = LeakyReLU,, (Z), where « € [0, 1] controls the
slope of the activation when Z < 0. We note that when o = 0, this is equivalent to a ReLU activation
and when o = 1 it is equivalent to a Linear activation.

Following the work in [1]], for a matrix Z € R™*™ the kth “Leaky-ReL.U Singular Value” is defined
for the operator ¢, (Z) as

$k(Pa(Z)) = min kmeagHLeakyReLUa(Zx) — LeakyReLU_ (Lz)||. 4)

rank L<k z
In [IL]], the extension of the notion of ReLU singular values to Leaky-ReLLUs carries naturally; however,
for completeness, we have included Leaky-ReL.U-specific versions of each of the proofs from that
work in the supplement. Among these results, we have the following lemma:

Lemma: Let ¢,(Z) = LeakyReLU(Z) for Z € R™*™, then

sk(¢a(Z)) < ox(Z) ©)

In other words, the Leaky-ReLU singular values will be bounded above by the singular values of the
underlying linear transformation Z. It follows then that as we increase « along the interval [0, 1], the
analogous notion of ” rank (the number of non-zero values of sj) will converge converge upward to
the linear rank of Z, and our boundaries will still hold.

Appendix E Additional Empirical Verification

Hypothesis S1: Low-rank input/output spaces systematically bound gradient rank. The remaining
terms in the bound in equation ? show that gradient rank is bound by the rank of the inputs and the
rank partial derivative of the loss function (i.e., the rank of the output space). In Figure[T} we show
the computed gradient rank on a fully-connected network with three layers of 128 neurons each,
trained to reconstruct a full-rank (128-dim) gaussian input (panel [Ta) in contrast to a model trained
to reconstruct a low-rank (16-dim) gaussian embedded in a higher-dimensional (128-dim) space
(panel[Ib). Indeed, in panel[Ic|we see that any linear model which receives the low-rank embedded
input has gradients which are bounded entirely by the rank of the input space.

Appendix F  Large Scale Demonstration

In this section, we include results on larger-scale networks and problem settings. Our goal is to
illustrate how architectural choices can affect rank not only in small models, but also in modern
architectures. These results highlight the relevance of our theoretical result to the deep learning
community at large.

ImageNet with ResNet18: In figure|2] we illustrate the effect of increasing the input image size on
the rank of the gradient in the ResNet18 architecture. In each panel the image size increases from top
to bottom, and as expected smaller image sizes produce smaller ranks.
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74 Additionally, we estimated the effect of artificially introduced Leaky-ReLU activations with different
75 levels of a; however, we observed little noticeable effect as long as the input image was large.
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76 ImageNet with VGGI11: In figure 3| we illustrate the effect of increasing the input image size on the
77 rank of the gradient in the ResNet18 architecture. In each panel the image size increases from top to
78 bottom, and as expected smaller image sizes produce smaller ranks.
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WikiText/M 130k with BERT/XLM: We have included a demonstration of decreasing the sequence
length in two large-scale NLP datasets (WikiText and Multi30K) for the BERT architecture with
standard pretraining and XLM pretraining. In figure 4] we include the estimated rank of the first two
and last two linear layers for BERT applied to the WikiText data set. The rank for all other layers and
for the4 XL.M/Multi30k application are included in separate PDFs along with this supplement. In
general we do not see much variation between linear layers in each architecture, except for near the
input (layers 73,72), in which length 1 sequences collapse the rank of the gradients down to 1.
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Figure 4: Illustration of the rank of the gradient at each layer in the BERT architecture used for
language modeling on the WikiText2 data set. Each panel shows the effect of increasing sequence

length (increasing from right to left) on the rank, illustrating that larger sequence lengths. provide
more accumulation of the gradient.
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