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APPENDIX: DECEPTIVE FAIRNESS ATTACKS ON
GRAPHS VIA META LEARNING

ORGANIZATION OF THE APPENDIX

The supplementary material contains the following information.

• Appendix A provides additional examples of graph learning models from the optimization perspec-
tive.

• Appendix B presents the pseudocode of FATE.

• Appendix C offers the detailed parameter settings regarding the reproducibility of this paper.

• Appendix D provides additional experimental results on using FairGNN (?) and evaluating under
macro F1 score and AUC score.

• Appendix E provides additional experimental results on using InFoRM-GNN (?) and evaluating
under macro F1 score and AUC score.

• Appendix F shows the transferability of using FATE to attack the statistical parity or individual
fairness of the non-convolutional aggregation-based graph attention network with linear GCN as
the surrogate model.

• Appendix G provides further discussions on (1) the relationship between fairness attacks and the
impossibility theorem as well as Metattack (?), (2) an alternative perturbation set selection strategy
via sampling, (3) the potential of FATE on attacking the fairness of a specific demographic group,
and (4) justification of applying kernel density estimation on non-IID graph data.

• Appendix H presents more details of statistical parity and individual fairness.

Code can be found at the following repository:

https://github.com/jiank2/FATE.

A GRAPH LEARNING MODELS FROM THE OPTIMIZATION PERSPECTIVE

Here, we discuss four additional non-parameterized graph learning models from the optimization
perspective, including PageRank, spectral clustering, matrix factorization-based completion and
first-order LINE.

Model #1: PageRank. It is one of the most successful random walk based ranking algorithm to
measure node importance. Mathematically, PageRank solves the linear system

r = cPr+ (1− c)e (1)

where c is the damping factor, P is the propagation matrix and e is the teleportation vector. In
PageRank, the propagation matrix P is often defined as the row-normalized adjacency matrix of a
graph G and the teleportation vector is a uniform distribution 1

n1 with 1 being a vector filled with 1.
Equivalently, given a damping factor c and a teleportation vector e, the PageRank vector Y = r can
be learned by minimizing the following loss function

min
r

crT (I−P)r+ (1− c)∥r− e∥22 (2)

where c
(
rT (I−P) r

)
is a smoothness term and (1− c) ∥r− e∥22 is a query-specific term. To attack

the fairness of PageRank with FATE, the attacker could attack a surrogate PageRank with different
choices of damping factor c and/or teleportation vector e.
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Model #2: Spectral clustering. It aims to identify clusters of nodes such that the intra-cluster
connectivity are maximized while inter-cluster connectivity are minimized. To find k clusters of
nodes, spectral clustering finds a soft cluster membership matrix Y = C with orthonormal columns
by minimizing the following loss function

min
C

Tr
(
CTLC

)
(3)

where L is the (normalized) graph Laplacian of the input graph G. It is worth noting that the columns
of learning result C is equivalent to the eigenvectors of L associated with smallest k eigenvalues. To
attack the fairness of spectral clustering with FATE, the attacker might attack a surrogate spectral
clustering with different number of clusters k.

Model #3: Matrix factorization-based completion. Suppose we have a bipartite graph G with n1

users, n2 items and m interactions between users and items. Matrix factorization-based completion
aims to learn two low-rank matrices an n1 × z matrix U and an n2 × z matrix V such that the
following loss function will be minimized

min
U,V

∥ projΩ
(
R−UVT

)
∥2F + λ1∥U∥2Fλ2 + ∥V∥2F (4)

where A =

(
0n1

R
RT 0n2

)
with 0n1 being an n1 × n1 square matrix filled with 0, Ω =

{(i, j)|(i, j) is observed} is the set of observed interaction between any user i and any item j,
projΩ (Z) [i, j] equals to Z[i, j] if (i, j) ∈ Ω and 0 otherwise, λ1 and λ2 are two hyperparameters
for regularization. To attack the fairness of matrix factorization-based completion with FATE, the
attacker could attack a surrogate model with different number of latent factors z.

Model #4: First-order LINE. It is a skip-gram based node embedding model. The key idea of
first-order LINE is to map each node into a h-dimensional space such that the dot product of the
embeddings of any two connected nodes will be small. To achieve this goal, first-order LINE
essentially optimizes the following loss function

max
H

n∑
i=1

n∑
j=1

A[i, j]
(
log g

(
H[j, :]H[i, :]T

)
+ kEj′∼Pn

[log g
(
−H[j′, :]H[i, :]T

)
]
)

(5)

where H is the embedding matrix with H [i, :] being the h-dimensional embedding of node i,
g(x) = 1/(1 + e−x) is the sigmoid function, k is the number of negative samples and Pn is the
distribution for negative sampling such that the sampling probability for node i is proportional to
its degree degi. For a victim first-order LINE, the attacker could attack a surrogate LINE (1st) with
different dimension h in the embedding space and/or a different number of negative samples g.

Remarks. Note that, for a non-parameterized graph learning model (e.g., PageRank, spectral
clustering, matrix completion, first-order LINE), we have Θ = {Y} which is the set of learning
results. For example, we have Θ = {r} for PageRank, Θ = {C} for spectral clustering, Θ = {U,V}
and Θ = {H} for LINE (1st). For parameterized graph learning models (e.g., GCN), Θ refers to the
set of learnable weights, e.g., Θ = {W(1), . . . ,W(L)} for an L-layer GCN.

B PSEUDOCODE OF FATE

Algorithm 1 summarizes the detailed steps on fairness attack with FATE. To be specific, after
initialization (line 1), we pre-train the surrogate graph learning model (lines 4 – 6) and get the
pre-trained surrogate model Θ(T ) as well as learning results Y(T ) (line 7). After that, we compute the
meta gradient of the bias function (lines 8 – 11) and perform either discretized attack or continuous
attack based on the interest of attacker (i.e., discretized poisoning attack in lines 12 – 15 or continuous
poisoning attack in lines 16 – 18).

C EXPERIMENTAL SETTINGS

In this section, we provide more detailed information about the experimental settings. These include
the hardware and software specifications, dataset descriptions, evaluation metrics as well as detailed
parameter settings. In all experiments, we evaluate our proposed FATE in the task of semi-supervised
node classification to answer the following questions:
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Algorithm 1: FATE

Given :an undirected graph G = {A,X}, the set of training nodes Vtrain, fairness-related
auxiliary information matrix F, total budget B, budget in step i δi, the bias function b,
number of pre-training epochs T ;

Find : the poisoned graph G̃;
1 poisoned graph G̃ ← G, cumulative budget ∆← 0, step counter i← 0;
2 while ∆ < B do
3 ∇G̃b← 0;
4 for t = 1 to T do
5 update Θ

(t)
sur to Θ

(t+1)
sur with a gradient-based optimizer (e.g., Adam);

6 end
7 get Y(T ) and Θ

(T )
sur ;

8 compute meta-gradient ∇Gb← ∇Θ
(T )
sur

b
(
Y,Θ

(T )
sur ,F

)
· ∇GΘ

(T )
sur ;

9 if attack the adjacency matrix then
10 compute the derivative∇Ãb← ∇Ãb+

(
∇Ãb

)T − diag
(
∇Ãb

)
;

11 end
12 if discretized poisoning attack then
13 compute the poisoning preference matrix∇Ã by Eq. equation ??;
14 select the edges to poison in∇Ã with budget δi by Eq. equation ??;
15 update the corresponding entries in G̃;
16 else
17 update G̃ by Eq. equation ?? with budget δi;
18 end
19 ∆← ∆+ δi;
20 i← i+ 1;
21 end
22 return G̃;

Q1. How effective is FATE in exacerbating bias under different perturbation rates?

Q2. How effective is FATE in maintaining node classification accuracy for deceptiveness under
different perturbation rates?

Q3. Can we characterize the properties of edges perturbed by FATE?

C.1 HARDWARE AND SOFTWARE SPECIFICATIONS

All codes are programmed in Python 3.8.13 and PyTorch 1.12.1. All experiments are performed on a
Linux server with 2 Intel Xeon Gold 6240R CPUs and 4 Nvidia Tesla V100 SXM2 GPUs, each of
which has 32 GB memory.

C.2 DATASET DESCRIPTIONS

We use three widely-used benchmark datasets for fair graph learning: Pokec-z, Pokec-n and Bail. For
each dataset, we use a fixed random seed to split the dataset into training, validation and test sets with
the split ratio being 50%, 25%, and 25%, respectively. The statistics of the datasets, including the
number of nodes (# Nodes), the number of edges (# Edges), the number of features (# Features), the
sensitive attribute (Sensitive Attr.) and the label (Label), are summarized in Table 1.

• Pokec-z and Pokec-n are two datasets collected from the Slovakian social network Pokec, each of
which represents a sub-network of a province. Each node in these datasets is a user belonging to
two major regions of the corresponding provinces, and each edge is the friendship relationship
between two users. The sensitive attribute is the user region, and the label is the working field of a
user.
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• Bail is a similarity graph of criminal defendants during 1990 – 2009. Each node is a defendant
during this time period. Two nodes are connected if they share similar past criminal records and
demographics. The sensitive attribute is the race of the defendant, and the label is whether the
defendant is on bail or not.

Table 1: Statistics of the datasets.

Dataset Pokec-z Pokec-n Bail
# Nodes 7, 659 6, 185 18, 876
# Edges 20, 550 15, 321 311, 870

# Features 276 265 17
Sensitive Attr. Region Region Race

Label Working field Working field Bail decision

C.3 EVALUATION METRICS

In our experiments, we aim to evaluate how effective FATE is in (1) attacking the fairness and (2)
maintaining the utility of node classification.

To evaluate the performance of FATE in attacking the group fairness, we evaluate the effectiveness
using ∆SP, which is defined as follows.

∆SP = |P [ŷ = 1 | s = 1]− P [ŷ = 1 | s = 0] | (6)

where s is the sensitive attribute value of a node and ŷ is the ground-truth and predicted class labels of
a node. While to evaluate the performance of FATE in attacking the individual fairness, we evaluate
the effectiveness using the InFoRM bias (Bias) measure (?), which is defined as follows.

Bias =
∑

i∈Vtest

∑
j∈Vtest

S [i, j] ∥Y [i, :]−Y [j, :]∥2F (7)

where Vtest is the set of test nodes and S is the oracle pairwise node similarity matrix. The intuition
of Eq. equation 7 is to measure the squared difference between the learning results of two test nodes,
weighted by their pairwise similarity.

To evaluate the performance of FATE in maintaining the utility, we use micro F1 score (Micro F1),
macro F1 score (Macro F1) and AUC score.

C.4 DETAILED PARAMETER SETTINGS

Poisoning the input graph. During poisoning attacks, we set a fixed random seed to control the
randomness. The random seed used for each dataset in attacking group/individual fairness are
summarized in Table 2.

• Surrogate model training. We run all methods with a perturbation rate from 0.05 to 0.25 with
a step size of 0.05. For FA-GNN (?), we follow its official implementation and use the same
surrogate 2-layer GCN (?) with 16 hidden dimensions for poisoning attack.1. The surrogate GCN
in FA-GNN is trained for 500 epochs with a learning rate 1e− 2, weight decay 5e− 4, and dropout
rate 0.5. For FATE, we use a 2-layer linear GCN (?) with 16 hidden dimensions for poisoning
attacks. And the surrogate linear GCN in FATE is trained for 500 epochs with a learning rate
1e− 2, weight decay 5e− 4, and dropout rate 0.5.

• Graph topology manipulation. For Random and DICE, we use the implementations provided in
the deeprobust package with the default parameters to add the adversarial edges.2. For FA-GNN,
we add adversarial edges that connect two nodes with different class labels and different sensitive
attributes, which provides the most promising performance as shown in (?). For FATE, suppose
we poison the input graph in p (p > 1) attacking steps. Then the per-iteration attacking budget in
Algorithm 1 is set as δ1 = 1 and δi =

r|E|−1
p−1 , ∀i ∈ {2, . . . , p}, where r is the perturbation rate

1https://github.com/mengcao327/attack-gnn-fairness
2https://deeprobust.readthedocs.io/
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Table 2: Parameter settings on the random seed for all baseline methods in poisoning attacks (Random
Seed) and the number of steps for poisoning attacks in FATE (Attacking Steps).

Dataset Fairness Definition Attacking Steps Random Seed

Pokec-n Statistical parity 3 25
Individual fairness 3 45

Pokec-z Statistical parity 3 25
Individual fairness 5 15

Bail Statistical parity 3 25
Individual fairness 3 5

and |E| is the number of edges. Detailed choices of p for each dataset in attacking group/individual
fairness are summarized in Table 2.

Training the victim model. We use a fixed list of random seed ([0, 1, 2, 42, 100]) to train each victim
model 5 times and report the mean and standard deviation. Regarding the victim models in group
fairness attacks, we train a 2-layer GCN (?) for 400 epochs and a 2-layer FairGNN (?) for 2000
epochs to evaluate the efficacy of fairness attacks. The hidden dimension, learning rate, weight
decay and dropout rate of GCN and FairGNN are set to 128, 1e − 3, 1e − 5 and 0.5, respectively.
The regularization parameters in FairGNN, namely α and β, are set to 100 and 1 for all datasets,
respectively. Regarding the victim models in individual fairness attacks, we train a 2-layer GCN (?)
and 2-layer InFoRM-GNN (??) for 400 epochs. The hidden dimension, learning rate, weight decay
and dropout rate of GCN and InFoRM-GNN are set to 128, 1e− 3, 1e− 5 and 0.5, respectively. The
regularization parameter in InFoRM-GNN is set to 0.1 for all datasets.

D ADDITIONAL EXPERIMENTAL RESULTS: ATTACKING STATISTICAL PARITY
ON GRAPH NEURAL NETWORKS

A – FATE with FairGNN as the victim model. Here, we study how robust FairGNN is in fairness
attacks against statistical parity with linear GCN as the surrogate model. Note that FairGNN is a
fairness-aware graph neural network that leverages adversarial learning to ensure statistical parity.

Main results. Similar to Section ??, for FATE, we conduct fairness attacks via both edge flipping
(FATE-flip) and edge addition (FATE-add). For all other baseline methods, edges are only added.
From Table 3, we have the following key observations: (1) Even though the surrogate model is
linear GCN without fairness consideration, FairGNN, which ensures statistical parity on graph neural
networks, cannot mitigate the bias caused by fairness attacks and is vulnerable to fairness attack. (2)
FATE-flip and FATE-add are effective and the most deceptive method in fairness attacks. (3) DICE-S,
FATE-flip, and FATE-add are all capable of successful fairness attacks. But FATE-flip and FATE-add
have better utility than DICE-S, making the fairness attacks more deceptive. Both Random and
FA-GNN fail in some cases (indicated by the underlined ∆SP in both tables). In short, even when the
victim model is FairGNN (a fair graph neural network), our proposed FATE framework are effective
in fairness attacks while being the most deceptive (i.e., highest micro F1 score).

Effect of the perturbation rate. From Table 3, we can find out that: (1) ∆SP tends to increase when
the perturbation rate increases, indicating the effectiveness of FATE-flip and FATE-add for attacking
fairness. (2) There is no clear correlation between the perturbation rate and the micro F1 scores of
FATE-flip and FATE-add, meaning that they are deceptive in maintaining the utility. As a consequence,
FATE is effective and deceptive in attacking fairness of FairGNN across different perturbation rates.

B – Performance evaluation under different utility metrics. Here we provide additional evaluation
results of utility using macro F1 score and AUC score. From Tables 4 and 5, we can see that macro F1
scores and AUC scores are less impacted by different perturbation rates. Thus, it provide additional
evidence that FATE can achieve deceptive fairness attacks by achieving comparable or even better
utility on the semi-supervised node classification.
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Table 3: Attacking statistical parity on FairGNN under different perturbation rates (Ptb.). FATE poi-
sons the graph via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other
baselines poison the graph via edge addition. Higher is better (↑) for micro F1 score (Micro F1) and
∆SP (bias). Bold font indicates the most deceptive fairness attack, i.e., increasing ∆SP and highest
micro F1. Underlined cell indicates the failure of fairness attack, i.e., decreasing ∆SP after fairness
attack.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑)

Pokec-n

0.00 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0
0.05 67.4± 0.8 8.2± 2.5 66.9± 0.9 7.4± 1.7 66.7± 1.2 2.8± 1.3 68.4± 0.2 8.9± 1.8 68.4± 0.2 8.9± 1.8
0.10 67.5± 0.5 8.3± 1.5 67.6± 0.3 8.4± 1.2 66.6± 0.5 5.9± 1.3 68.5± 0.4 9.5± 1.4 68.5± 0.4 9.5± 1.4
0.15 65.9± 0.6 10.4± 2.3 67.3± 0.3 9.9± 2.4 64.8± 1.6 9.0± 3.3 68.5± 0.8 10.5± 2.6 68.5± 0.8 10.5± 2.6
0.20 65.4± 0.5 10.0± 1.5 66.5± 0.4 9.0± 2.3 65.2± 0.2 11.6± 2.6 68.3± 0.3 10.7± 2.3 68.3± 0.3 10.7± 2.3
0.25 65.8± 1.1 7.5± 1.9 66.5± 0.8 9.7± 3.0 64.8± 0.8 14.2± 2.3 68.5± 0.3 9.1± 3.6 68.5± 0.3 9.1± 3.6

Pokec-z

0.00 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9
0.05 67.3± 0.6 8.7± 2.8 68.0± 0.7 9.4± 4.1 67.1± 1.0 1.7± 1.3 68.7± 0.4 8.0± 0.9 68.7± 0.4 8.0± 0.9
0.10 67.1± 0.2 8.6± 2.7 68.1± 0.5 8.2± 5.0 65.9± 0.8 6.8± 1.7 68.5± 0.5 9.0± 1.8 68.5± 0.5 9.0± 1.8
0.15 66.8± 0.8 8.9± 2.2 67.6± 0.6 9.6± 3.4 64.9± 0.9 10.0± 1.7 68.7± 0.5 9.5± 2.2 68.7± 0.5 9.5± 2.2
0.20 66.8± 0.7 8.6± 3.0 67.4± 0.7 9.1± 4.9 64.6± 0.8 14.2± 3.1 68.8± 0.2 10.4± 1.6 68.8± 0.2 10.4± 1.6
0.25 66.4± 0.4 7.9± 2.8 67.1± 0.6 8.7± 4.3 64.0± 1.1 14.0± 2.0 68.5± 0.3 10.3± 2.1 68.5± 0.3 10.3± 2.1

Bail

0.00 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2
0.05 90.6± 1.2 8.3± 0.2 90.5± 1.0 8.9± 0.5 89.1± 2.0 10.8± 1.1 93.6± 0.1 9.2± 0.2 93.6± 0.1 9.1± 0.2
0.10 90.1± 2.0 8.5± 0.6 90.1± 1.0 8.6± 0.2 87.3± 2.2 12.2± 1.2 93.4± 0.1 9.3± 0.2 93.4± 0.1 9.3± 0.2
0.15 90.0± 2.0 8.1± 0.5 90.6± 1.7 9.5± 0.6 87.8± 2.0 10.9± 2.1 93.3± 0.1 9.2± 0.3 93.3± 0.1 9.2± 0.3
0.20 89.2± 2.4 8.4± 0.7 90.0± 1.7 9.9± 0.6 86.0± 2.7 11.7± 2.4 93.1± 0.2 9.3± 0.3 93.0± 0.1 9.4± 0.2
0.25 88.8± 2.3 8.2± 0.7 89.9± 1.8 9.6± 0.5 87.0± 1.9 8.5± 2.6 93.0± 0.1 9.2± 0.4 93.0± 0.2 9.3± 0.3

Table 4: Macro F1 score and AUC score of attacking statistical parity on GCN under different
perturbation rates (Ptb.). FATE poisons the graph via both edge flipping (FATE-flip) and edge addition
(FATE-add) while all other baselines poison the graph via edge addition. Higher is better (↑) for
macro F1 score (Macro F1) and AUC score (AUC). Bold font indicates the highest macro F1 score or
AUC score.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5
0.05 65.7± 0.3 70.4± 0.4 65.4± 0.3 70.3± 0.3 64.9± 0.2 70.4± 0.2 66.0± 0.3 70.3± 0.6 66.0± 0.3 70.3± 0.6
0.10 64.6± 0.4 69.6± 0.3 65.7± 0.2 70.2± 0.2 64.1± 0.3 70.0± 0.1 66.1± 0.6 70.4± 0.6 66.1± 0.6 70.4± 0.6
0.15 65.1± 0.4 69.6± 0.1 64.9± 0.3 69.0± 0.3 64.3± 0.6 69.1± 0.5 66.1± 0.2 70.6± 0.6 66.1± 0.2 70.6± 0.6
0.20 64.5± 0.5 69.1± 0.1 64.2± 0.3 68.7± 0.4 63.5± 0.2 68.0± 0.2 66.4± 0.3 70.7± 0.4 66.4± 0.3 70.7± 0.4
0.25 64.5± 0.6 68.8± 0.1 63.7± 0.2 68.8± 0.2 65.0± 0.2 69.5± 0.3 66.3± 0.3 70.6± 0.6 66.3± 0.3 70.6± 0.6

Pokec-z

0.00 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3
0.05 68.5± 0.4 74.5± 0.4 68.7± 0.3 75.4± 0.4 67.9± 0.3 74.5± 0.2 68.6± 0.4 75.2± 0.4 68.6± 0.4 75.2± 0.4
0.10 68.5± 0.3 74.8± 0.3 67.6± 0.2 74.5± 0.3 67.5± 0.5 73.8± 0.3 68.6± 0.6 75.2± 0.3 68.6± 0.6 75.2± 0.3
0.15 67.8± 0.3 74.4± 0.3 67.6± 0.4 74.1± 0.4 66.1± 0.6 72.7± 0.2 68.9± 0.7 75.3± 0.2 68.9± 0.7 75.3± 0.2
0.20 68.2± 0.4 74.5± 0.6 66.8± 0.5 73.6± 0.3 66.1± 0.2 71.9± 0.1 68.4± 0.5 75.1± 0.3 68.4± 0.5 75.1± 0.3
0.25 68.0± 0.4 74.0± 0.4 67.1± 0.7 74.4± 0.3 65.3± 0.6 71.2± 0.3 68.4± 1.1 74.4± 1.4 68.4± 1.1 74.4± 1.4

Bail

0.00 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1
0.05 92.0± 0.2 95.3± 0.2 91.4± 0.3 95.1± 0.4 90.8± 0.1 94.4± 0.2 91.8± 0.1 97.1± 0.1 91.7± 0.1 97.1± 0.2
0.10 91.4± 0.2 94.7± 0.3 91.4± 0.3 94.7± 0.4 89.5± 0.1 93.5± 0.1 91.6± 0.2 96.9± 0.1 91.6± 0.2 96.9± 0.1
0.15 91.1± 0.2 94.2± 0.2 91.2± 0.2 94.5± 0.2 88.7± 0.3 92.5± 0.2 91.4± 0.2 96.9± 0.1 91.5± 0.1 96.9± 0.1
0.20 90.7± 0.2 94.1± 0.1 90.9± 0.2 94.4± 0.3 88.4± 0.1 92.2± 0.1 91.3± 0.2 96.8± 0.1 91.4± 0.2 96.8± 0.1
0.25 90.4± 0.2 93.4± 0.3 90.6± 0.3 94.3± 0.3 88.5± 0.2 92.0± 0.1 91.2± 0.1 96.8± 0.1 91.3± 0.2 96.8± 0.1

Table 5: Macro F1 score and AUC score of attacking statistical parity on FairGNN under different
perturbation rates (Ptb.). FATE poisons the graph via both edge flipping (FATE-flip) and edge addition
(FATE-add) while all other baselines poison the graph via edge addition. Higher is better (↑) for
macro F1 score (Macro F1) and AUC score (AUC). Bold font indicates the highest macro F1 score or
AUC score.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5
0.05 64.3± 0.6 68.3± 1.1 64.5± 0.4 69.5± 0.8 63.6± 0.7 68.2± 0.5 65.8± 0.5 70.7± 0.4 65.8± 0.5 70.7± 0.4
0.10 63.8± 0.2 67.3± 1.1 64.3± 0.7 69.6± 0.4 63.9± 0.4 68.3± 0.2 66.0± 0.7 70.8± 0.5 66.0± 0.7 70.8± 0.5
0.15 63.5± 0.2 67.8± 0.4 64.1± 0.7 68.5± 0.4 63.1± 0.6 67.2± 0.5 65.8± 1.0 70.8± 0.5 65.8± 1.0 70.8± 0.5
0.20 63.1± 0.6 67.8± 1.1 62.4± 1.5 67.5± 1.1 62.3± 0.6 66.7± 0.9 65.7± 0.7 70.4± 0.5 65.7± 0.7 70.4± 0.5
0.25 62.4± 0.3 66.8± 0.8 62.4± 1.6 67.2± 0.9 62.4± 1.4 67.6± 1.3 65.1± 1.2 70.1± 0.5 65.1± 1.2 70.1± 0.5

Pokec-z

0.00 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3
0.05 66.3± 0.9 73.5± 0.9 67.2± 0.7 73.9± 1.5 66.5± 1.4 72.6± 1.4 68.4± 0.4 74.7± 0.9 68.4± 0.4 74.7± 0.9
0.10 66.0± 0.7 72.9± 1.1 67.1± 0.5 73.4± 0.2 65.2± 0.9 71.3± 1.7 68.2± 0.8 75.3± 0.8 68.2± 0.8 75.3± 0.8
0.15 66.0± 0.8 71.8± 2.1 66.5± 0.9 73.4± 0.6 63.4± 1.5 70.0± 1.8 68.3± 0.5 75.2± 0.6 68.3± 0.5 75.2± 0.6
0.20 65.6± 0.9 71.9± 1.4 66.4± 1.0 73.0± 0.8 63.7± 0.9 68.9± 1.6 68.3± 0.3 75.5± 0.3 68.3± 0.3 75.5± 0.3
0.25 65.0± 0.7 71.2± 1.7 66.3± 1.0 73.3± 0.8 62.8± 1.8 69.4± 1.5 68.0± 0.5 75.3± 0.3 68.0± 0.5 75.3± 0.3

Bail

0.00 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1
0.05 89.5± 1.5 92.8± 1.8 89.5± 1.1 92.3± 1.7 87.8± 2.2 91.2± 1.8 93.0± 0.1 97.3± 0.1 93.0± 0.1 97.3± 0.1
0.10 89.1± 2.2 92.7± 2.5 88.8± 1.3 92.3± 1.6 85.6± 2.7 90.5± 1.7 92.7± 0.1 97.1± 0.1 92.7± 0.1 97.1± 0.1
0.15 88.8± 2.2 92.4± 2.5 89.6± 1.9 92.8± 2.2 86.1± 2.4 90.3± 2.2 92.6± 0.1 97.0± 0.1 92.6± 0.1 97.0± 0.1
0.20 87.8± 2.8 91.6± 2.5 88.9± 1.8 92.2± 1.6 84.1± 3.0 89.0± 1.5 92.5± 0.2 97.0± 0.1 92.3± 0.1 97.0± 0.1
0.25 87.5± 2.6 91.5± 2.6 88.7± 2.1 92.5± 2.3 85.1± 2.3 89.6± 1.3 92.3± 0.1 97.0± 0.1 92.3± 0.2 97.0± 0.1

6



Published as a conference paper at ICLR 2024

E ADDITIONAL EXPERIMENTAL RESULTS: ATTACKING INDIVIDUAL
FAIRNESS ON GRAPH NEURAL NETWORKS

A – FATE with InFoRM-GNN as the victim model. InFoRM-GNN is an individually fair graph
neural network that ensures individual fairness through regularizing the individual bias measure
defined in Section ??. Here, we study how robust InFoRM-GNN is in fairness attacks against
individual fairness with linear GCN as the surrogate model.

Main results. We attack individual fairness using FATE via both edge flipping (FATE-flip) and edge
addition (FATE-add), whereas edges are only added for all other baseline methods. From Table 6,
we can see that: (1) for Pokec-n and Pokec-z, FATE-flip and FATE-add are effective: they are the
only methods that could consistently attack individual fairness across different perturbation rates;
FATE-flip and FATE-add are deceptive by achieving comparable or higher micro F1 scores compared
with the micro F1 score on the benign graph (when perturbation rate is 0.00). (2) For Bail, almost
all methods fail the fairness attacks, except for FA-GNN with perturbation rates 0.20 and 0.25. A
possible reason is that the adjacency matrix A of Bail is essentially a similarity graph, which causes
pairwise node similarity matrix S being close to the adjacency matrix A. Even though FATE and other
baseline methods add adversarial edges to attack individual fairness, regularizing the individual bias
defined by S (a) not only helps to ensure individual fairness (b) but also provide useful supervision
signal in learning a representative node representation due to the closeness between S and A. (3)
Compared with the results in Table ?? where GCN is the victim model, InFoRM-GNN is more robust
against fairness attacks against individual fairness due to smaller individual bias in Table 6.

Effect of the perturbation rate. From Table 6, we can see that FATE can always achieve comparable
or even better micro F1 scores across different perturbation rates. In the meanwhile, the correlation
between the perturbation rate and the individual bias is relatively weak. One possible reason is that
the individual bias is computed using the pairwise node similarity matrix, which is not impacted by
poisoning the adjacency matrix. Though poisoning the adjacency matrix could affect the learning
results, the goal of achieving deceptive fairness attacks (i.e., the lower-level optimization problem
in FATE) may not cause the learning results obtained by training on the benign graph to deviate
much from the learning results obtained by training on the poisoned graph. Consequently, a higher
perturbation rate may have less impact on the computation of individual bias.

Table 6: Attacking individual fairness on InFoRM-GNN under different perturbation rates (Ptb.).
FATE poisons the graph via both edge flipping (FATE-flip) and edge addition (FATE-add) while all
other baselines poison the graph via edge addition. Higher is better (↑) for micro F1 score (Micro F1)
and InFoRM bias (Bias). Bold font indicates the most deceptive fairness attack, i.e., increasing bias
and highest micro F1. Underlined cell indicates the failure of fairness attack, i.e., decreasing bias
after fairness attack.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑)

Pokec-n

0.00 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1
0.05 67.3± 0.5 0.5± 0.0 68.0± 0.4 0.5± 0.1 68.3± 0.2 0.5± 0.0 68.4± 0.4 0.6± 0.1 68.3± 0.4 0.5± 0.1
0.10 67.0± 0.2 0.5± 0.1 67.4± 0.4 0.5± 0.1 67.2± 0.2 0.4± 0.0 68.3± 0.6 0.5± 0.1 68.4± 0.5 0.6± 0.1
0.15 66.7± 0.5 0.5± 0.1 67.7± 0.4 0.4± 0.1 66.1± 0.2 0.4± 0.0 68.3± 0.6 0.6± 0.1 68.1± 0.7 0.6± 0.1
0.20 66.9± 0.3 0.4± 0.1 67.2± 0.2 0.5± 0.1 66.5± 0.2 0.4± 0.0 67.9± 0.8 0.5± 0.1 68.1± 0.7 0.6± 0.1
0.25 66.6± 0.5 0.5± 0.0 66.7± 0.6 0.5± 0.1 65.1± 0.2 0.4± 0.0 68.7± 0.3 0.6± 0.0 68.5± 0.8 0.6± 0.1

Pokec-z

0.00 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0
0.05 68.9± 0.2 0.6± 0.1 68.9± 0.5 0.5± 0.1 68.1± 0.7 0.5± 0.1 68.7± 0.7 0.7± 0.1 68.9± 0.5 0.6± 0.0
0.10 67.9± 0.2 0.6± 0.1 69.0± 0.1 0.6± 0.1 68.0± 0.6 0.5± 0.0 68.9± 0.6 0.6± 0.0 68.8± 0.6 0.6± 0.0
0.15 67.6± 0.3 0.6± 0.1 68.2± 0.5 0.6± 0.1 66.8± 0.3 0.5± 0.1 69.1± 0.5 0.6± 0.0 69.0± 0.7 0.6± 0.1
0.20 67.7± 0.5 0.6± 0.1 68.5± 0.2 0.5± 0.0 66.4± 0.6 0.4± 0.1 69.1± 0.2 0.6± 0.0 69.3± 0.3 0.6± 0.0
0.25 66.8± 0.4 0.5± 0.1 68.5± 0.2 0.5± 0.0 65.3± 0.4 0.4± 0.0 68.9± 0.7 0.6± 0.0 69.4± 0.4 0.6± 0.0

Bail

0.00 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1
0.05 91.9± 0.1 0.4± 0.0 92.1± 0.1 1.7± 0.0 91.3± 0.1 1.5± 0.1 92.8± 0.3 1.7± 0.1 92.7± 0.1 1.6± 0.1
0.10 91.7± 0.1 0.3± 0.0 92.0± 0.1 1.6± 0.1 90.4± 0.2 1.5± 0.1 92.8± 0.1 1.6± 0.0 92.8± 0.1 1.6± 0.0
0.15 91.5± 0.1 0.3± 0.0 91.9± 0.1 1.6± 0.1 90.0± 0.1 1.7± 0.1 92.8± 0.0 1.6± 0.1 92.8± 0.1 1.6± 0.0
0.20 91.5± 0.1 0.3± 0.0 91.8± 0.1 1.7± 0.0 89.1± 0.1 1.7± 0.1 92.8± 0.1 1.6± 0.0 92.7± 0.1 1.5± 0.1
0.25 91.1± 0.2 0.3± 0.0 91.5± 0.1 1.6± 0.0 88.9± 0.1 1.8± 0.1 92.6± 0.1 1.6± 0.1 92.7± 0.0 1.6± 0.1

B – Performance evaluation under different utility metrics. Similar to Appendix D, we provide
additional results on evaluating the utility of FATE in attacking individual fairness with macro F1 score
and AUC score. From Tables 7 and 8, we can draw a conclusion that FATE can achieve comparable
or even better macro F1 scores and AUC scores for both GCN and InFoRM-GNN across different
perturbation rates. It further proves the ability of FATE on deceptive fairness attacks in the task of
semi-supervised node classification.
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Table 7: Macro F1 score and AUC score of attacking individual fairness on GCN under different
perturbation rates (Ptb.). FATE poisons the graph via both edge flipping (FATE-flip) and edge addition
(FATE-add) while all other baselines poison the graph via edge addition. Higher is better (↑) for
macro F1 score (Macro F1) and AUC score (AUC). Bold font indicates the highest macro F1 score or
AUC score.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5
0.05 65.2± 0.3 70.1± 0.2 65.7± 0.3 70.2± 0.2 65.6± 0.6 71.1± 0.2 65.7± 0.4 70.1± 0.6 65.5± 0.3 70.2± 0.8
0.10 65.2± 0.3 69.6± 0.5 64.7± 0.5 69.9± 0.2 65.4± 0.6 70.2± 0.3 65.5± 0.3 70.2± 0.7 65.8± 0.5 70.7± 0.6
0.15 65.4± 0.2 69.4± 0.3 64.9± 0.2 70.1± 0.4 64.6± 0.2 69.4± 0.1 65.6± 0.4 70.0± 0.5 65.4± 0.1 69.8± 0.7
0.20 64.9± 0.2 69.6± 0.3 65.1± 0.4 70.2± 0.3 63.7± 0.5 69.0± 0.1 65.2± 0.3 69.7± 0.6 65.6± 0.6 70.2± 0.7
0.25 64.7± 0.1 69.4± 0.2 64.1± 0.1 69.4± 0.2 63.3± 0.5 68.4± 0.3 65.4± 0.6 69.7± 0.7 65.6± 0.8 69.8± 0.8

Pokec-z

0.00 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3
0.05 68.7± 0.4 75.0± 0.4 68.7± 0.6 75.2± 0.4 68.0± 0.4 75.1± 0.5 68.5± 0.5 75.4± 0.2 68.5± 0.3 75.2± 0.4
0.10 68.5± 0.1 75.1± 0.5 68.9± 0.2 75.3± 0.1 67.9± 0.6 74.4± 0.5 68.8± 0.5 75.5± 0.3 68.8± 0.4 75.6± 0.2
0.15 67.5± 0.4 74.4± 0.3 67.9± 0.3 73.8± 0.1 66.8± 0.4 72.6± 0.2 68.4± 0.5 75.5± 0.4 68.8± 0.7 75.6± 0.3
0.20 67.5± 0.4 74.7± 0.4 67.7± 0.3 74.7± 0.2 66.1± 0.1 71.8± 0.2 68.7± 0.5 75.5± 0.3 69.0± 0.4 75.6± 0.3
0.25 67.2± 0.3 74.1± 0.3 68.0± 0.5 74.7± 0.2 64.8± 0.4 70.5± 0.4 68.9± 0.3 75.6± 0.2 69.1± 0.3 75.7± 0.3

Bail

0.00 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1
0.05 91.2± 0.3 94.8± 0.2 91.4± 0.2 95.0± 0.3 90.3± 0.2 94.1± 0.2 92.3± 0.4 97.3± 0.1 92.1± 0.3 97.3± 0.1
0.10 90.6± 0.1 94.2± 0.3 91.3± 0.2 94.9± 0.4 89.1± 0.1 92.9± 0.3 92.3± 0.1 97.3± 0.4 92.2± 0.2 97.3± 0.1
0.15 90.3± 0.1 94.1± 0.2 91.3± 0.3 94.7± 0.3 88.6± 0.2 92.4± 0.3 92.4± 0.1 97.3± 0.0 92.3± 0.2 97.3± 0.1
0.20 90.2± 0.0 93.9± 0.1 90.9± 0.2 94.2± 0.2 87.9± 0.2 91.8± 0.2 92.4± 0.1 97.3± 0.0 92.4± 0.2 97.3± 0.1
0.25 90.9± 0.1 93.5± 0.2 90.5± 0.1 94.1± 0.4 87.6± 0.1 91.6± 0.2 92.2± 0.2 97.2± 0.1 92.2± 0.2 97.3± 0.1

Table 8: Macro F1 score and AUC score of attacking individual fairness on InFoRM-GNN under
different perturbation rates (Ptb.). FATE poisons the graph via both edge flipping (FATE-flip) and edge
addition (FATE-add) while all other baselines poison the graph via edge addition. Higher is better
(↑) for macro F1 score (Macro F1) and AUC score (AUC). Bold font indicates the highest macro F1
score or AUC score.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8
0.05 65.1± 0.3 69.9± 0.2 65.7± 0.1 70.3± 0.1 65.6± 0.3 70.8± 0.1 65.9± 0.4 70.7± 0.8 65.8± 0.5 70.5± 0.9
0.10 64.9± 0.2 69.6± 0.5 65.2± 0.4 70.2± 0.2 64.8± 0.4 69.8± 0.3 65.8± 0.5 70.3± 1.0 66.0± 0.4 70.9± 1.1
0.15 64.8± 0.4 69.6± 0.4 65.1± 0.3 70.0± 0.5 64.4± 0.1 69.2± 0.3 65.7± 0.6 70.3± 0.7 65.8± 0.4 70.3± 0.9
0.20 65.1± 0.2 69.5± 0.3 64.9± 0.5 69.9± 0.2 63.4± 0.4 69.0± 0.2 65.5± 0.8 70.2± 0.9 65.6± 0.6 70.5± 0.7
0.25 64.6± 0.3 69.6± 0.2 64.5± 0.3 69.4± 0.2 63.6± 0.3 68.6± 0.2 66.0± 0.5 70.8± 0.3 65.9± 0.5 70.4± 0.8

Pokec-z

0.00 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2
0.05 68.6± 0.2 75.1± 0.3 68.9± 0.4 75.5± 0.2 67.8± 0.6 75.0± 0.3 68.6± 0.7 75.1± 0.6 68.7± 0.4 75.4± 0.3
0.10 67.6± 0.2 74.3± 0.4 68.9± 0.2 75.3± 0.3 67.7± 0.6 73.9± 0.6 68.6± 0.6 75.6± 0.3 68.6± 0.6 75.5± 0.3
0.15 67.2± 0.3 74.1± 0.4 67.9± 0.4 74.4± 0.3 66.7± 0.3 72.3± 0.1 68.9± 0.4 75.4± 0.4 68.9± 0.6 75.4± 0.4
0.20 67.3± 0.6 74.4± 0.4 68.3± 0.1 75.1± 0.3 66.0± 0.5 71.7± 0.2 69.0± 0.2 75.5± 0.2 69.2± 0.4 75.4± 0.4
0.25 66.3± 0.4 73.9± 0.4 68.2± 0.3 74.8± 0.1 65.0± 0.5 70.8± 0.2 68.8± 0.7 75.6± 0.3 69.3± 0.4 75.8± 0.1

Bail

0.00 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0
0.05 91.0± 0.1 94.2± 0.2 91.2± 0.1 95.0± 0.1 90.4± 0.1 94.2± 0.1 92.0± 0.0 97.1± 0.1 91.9± 0.2 97.0± 0.2
0.10 90.7± 0.2 93.9± 0.3 91.1± 0.1 94.7± 0.3 89.4± 0.2 93.3± 0.1 92.0± 0.1 97.0± 0.0 91.9± 0.1 97.0± 0.0
0.15 90.5± 0.1 93.8± 0.3 91.0± 0.2 94.5± 0.3 88.8± 0.2 92.4± 0.1 92.0± 0.1 97.0± 0.0 91.9± 0.2 97.0± 0.1
0.20 90.5± 0.2 93.7± 0.2 90.8± 0.1 94.3± 0.2 87.8± 0.1 91.8± 0.1 92.0± 0.1 96.9± 0.0 91.9± 0.1 96.8± 0.1
0.25 90.1± 0.2 93.4± 0.3 90.6± 0.1 94.0± 0.1 87.4± 0.1 91.4± 0.1 91.8± 0.1 96.8± 0.1 91.9± 0.1 96.9± 0.0
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F TRANFERABILITY OF FAIRNESS ATTACKS BY FATE

For the evaluation results shown in Sections ?? and ?? as well as Appendices D and E, both
the surrogate model (linear GCN) and the victim models (i.e., GCN, FairGNN, InFoRM-GNN)
are convolutional aggregation-based graph neural networks. In this section, we aim to test the
transferability of FATE by generating poisoned graphs on the convolutional aggregation-based
surrogate model (i.e., linear GCN) and testing on graph attention network (GAT), which is a non-
convolutional aggregation-based graph neural network (?).

More specifically, we train a graph attention network (GAT) with 8 attention heads for 400 epochs.
The hidden dimension, learning rate, weight decay and dropout rate of GAT are set to 64, 1e − 3,
1e− 5 and 0.5, respectively.

The results on attacking statistical parity or individual fairness with GAT as the victim model
are shown in Table 9. Even though the surrogate model used by the attacker is a convolutional
aggregation-based linear GCN, from the table, it is clear that FATE can consistently succeed in (1)
effective fairness attack by increasing ∆SP and the individual bias (Bias) and (2) deceptive attack
by offering comparable or even better micro F1 score (Micro F1) when the victim model is not a
convolutional aggregation-based model. Thus, it shows that the adversarial edges flipped/added by
FATE is able to transfer to graph neural networks with different type of aggregation function.

Table 9: Transferability of attacking statical parity and individual fairness with FATE on GAT under
different perturbation rates (Ptb.). FATE poisons the graph via both edge flipping (FATE-flip) and
edge addition (FATE-add). Higher is better (↑) for micro F1 score (Micro F1), ∆SP (bias for statistical
parity), and InFoRM bias (Bias, bias for individual fairness).

Attacking Statistical Parity

Dataset Ptb. Pokec-n Pokec-z Bail
Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑)

FATE-flip

0.00 63.8± 5.3 4.0± 3.2 68.2± 0.5 8.6± 1.1 89.7± 4.2 7.5± 0.6
0.05 63.9± 5.5 6.4± 5.1 68.3± 0.4 10.5± 1.3 90.1± 3.8 8.1± 0.6
0.10 63.6± 5.3 7.9± 6.7 67.8± 0.4 11.2± 1.7 90.3± 3.2 8.5± 0.6
0.15 63.7± 5.3 7.5± 6.1 68.2± 0.6 11.2± 1.5 90.2± 2.7 8.8± 0.3
0.20 64.1± 5.6 7.7± 6.3 67.8± 0.6 11.1± 0.9 90.0± 2.7 8.7± 0.6
0.25 63.6± 5.2 8.5± 7.0 68.0± 0.4 11.5± 1.2 89.9± 3.0 8.8± 0.5

FATE-add

0.00 63.8± 5.3 4.0± 3.2 68.2± 0.5 8.6± 1.1 89.7± 4.2 7.5± 0.6
0.05 63.9± 5.5 6.4± 5.1 68.3± 0.4 10.5± 1.3 90.2± 3.7 8.1± 0.7
0.10 63.6± 5.3 7.9± 6.7 67.8± 0.4 11.2± 1.7 90.3± 3.2 8.5± 0.6
0.15 63.7± 5.3 7.5± 6.1 68.2± 0.6 11.2± 1.5 90.3± 2.6 8.8± 0.3
0.20 64.1± 5.6 7.7± 6.3 67.8± 0.6 11.1± 0.9 90.1± 2.6 8.8± 0.5
0.25 63.6± 5.2 8.5± 7.0 68.0± 0.4 11.5± 1.2 89.9± 2.9 8.8± 0.5

Attacking Individual Fairness

Dataset Ptb. Pokec-n Pokec-z Bail
Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑)

FATE-flip

0.00 63.8± 5.3 0.4± 0.2 68.2± 0.5 0.5± 0.1 89.7± 4.2 2.5± 1.2
0.05 63.6± 5.3 0.5± 0.2 68.2± 0.8 0.6± 0.1 90.0± 4.2 2.7± 1.1
0.10 63.7± 5.3 0.5± 0.2 67.8± 0.5 0.6± 0.1 90.0± 4.0 2.8± 1.3
0.15 63.7± 5.4 0.5± 0.2 68.2± 0.5 0.6± 0.2 90.2± 3.6 2.8± 1.4
0.20 63.5± 5.1 0.5± 0.2 68.5± 0.5 0.6± 0.2 90.2± 3.4 2.8± 1.2
0.25 63.5± 5.1 0.5± 0.2 68.0± 0.6 0.6± 0.1 90.2± 3.1 2.7± 1.2

FATE-add

0.00 63.8± 5.3 0.4± 0.2 68.2± 0.5 0.5± 0.1 89.7± 4.2 2.5± 1.2
0.05 63.9± 5.4 0.5± 0.2 68.2± 0.7 0.6± 0.1 90.0± 4.6 2.7± 1.4
0.10 63.8± 5.4 0.5± 0.2 68.2± 0.5 0.6± 0.2 90.1± 4.0 2.8± 1.2
0.15 63.8± 5.4 0.5± 0.2 68.3± 0.2 0.6± 0.2 90.1± 3.9 2.8± 1.2
0.20 63.7± 5.3 0.5± 0.2 68.4± 0.3 0.6± 0.1 90.3± 3.2 2.8± 1.3
0.25 63.7± 5.3 0.5± 0.2 68.4± 0.3 0.6± 0.1 90.2± 3.1 2.8± 1.2
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G FURTHER DISCUSSIONS ABOUT FATE

A – Relationship between fairness attacks and the impossibility theorem of fairness. The
impossibility theorems show that some fairness definitions may not be satisfied at the same time.3
However, this may not always be regarded as fairness attacks. To our best knowledge, the impossibility
theorems prove that two fairness definitions (e.g., statistical parity and predictive parity) cannot be
fully satisfied at the same time, i.e., biases for two fairness definitions are both zero). However, there
is no formal theoretical guarantees that ensuring one fairness definition will always amplify the bias
of another fairness definition. Such formal guarantees might be nontrivial and beyond the scope of
our paper. As we pointed out in the abstract, the main goal of this paper is to provide insights into the
adversarial robustness of fair graph learning and can shed light for designing robust and fair graph
learning in future studies.

B – Relationship between FATE and Metattack. FATE bears subtle differences with Metattack (?),
which utilizes meta learning for adversarial attacks on utility. Note that Metattack aims to degrade the
utility of a graph neural network by maximizing the task-specific utility loss (e.g., cross entropy for
node classification) in the upper-level optimization problem. Different from Metattack, FATE aims to
attack the fairness instead of utility by setting the upper-level optimization problem as maximizing a
bias function rather than a task-specific utility loss.

C – Alternative edge selection strategy via sampling. Here we introduce an alternative perturbation
set selection strategy that is different from the greedy selection described in Section ??. The key idea
is to view each edge in the graph as a Bernoulli random variable (??). And the general workflow is
as follows. First, we follow Eq. ?? to get a poisoning preference matrix ∇A. Then, we normalize
∇A to a probability matrix PA. Finally, for the i-th attacking step, we can sample δi entries without
replacement using PA as the set of edges to be manipulated (i.e., added/deleted/flipped).

D – The potential of FATE on attacking a specific demographic group in group fairness. To
attack a specific group, there can be two possible strategies: (1) decreasing the acceptance rate of
the corresponding group and (2) increasing the gap between the group to be attacked and another
demographic group. For (1), following our strategy of modeling acceptance rate as the CDF of
Gaussian KDE, we can set the bias function to be maximize as the negative of acceptance rate, i.e.,
b (Y,Θ∗,F) = −P [ỹ = 1 | s = a], where a is the sensitive attribute value denoting the demographic
group to be attacked. For (2), suppose we want to attack the group with sensitive attribute value.
We can also attack this demographic group by setting the bias function to be b (Y,Θ∗,F) =
P [ỹ = 1 | s = 1]−P [ỹ = 1 | s = 0]. In this way, we can increase the acceptance rate of demographic
group (s = 1) while minimizing the acceptance rate of the group (s = 0).

E – The potential of FATE on attacking the best/worst accuracy group. To attack the best/worst
accuracy group, the general idea is to set the bias function to be the loss of the best/worst group. It is
worth noting that such attack is conceptually similar to adversarial attacks on the utility as shown in
Metattack (?), but only focusing on a subgroup of nodes determined by the sensitive attribute rather
than the validation set.

F – Justification of applying kernel density estimation on non-IID graph data. To date, it
remains an open problem whether the learned node representations follow IID assumption on the
low-dimensional manifold or not. Empirically from the experimental results, using KDE-based
bias approximation effectively helps maximize the bias for fairness attacks. Meanwhile, relaxing
the IID assumption is a common strategy in computing the distributional discrepancy of node
representations. For example, MMD is a widely used distributional discrepancy measures, whose
accurate approximation also requires IID assumption (?), and recent studies (??) show that we can
also adapt it on non-IID data which shows promising empirical performance.

G – Possible defense strategies against deceptive fairness attacks. FATE demonstrate that it is
possible to achieve deceptive fairness attacks on graph learning models by deliberately perturbing the
input graph. Given its potential negative societal impacts, we discuss few possible defense strategies
against such deceptive fairness attacks. To defend against deceptive fairness attacks for statistical
parity, one possible strategy is to preprocess the input graph by either learning a bias-free graph
(e.g., ?) or sampling over the neighborhood (e.g., ???) to control which node representations to
aggregate during message passing. The reason for such possible design is that Figure ?? reveals the

3https://machinesgonewrong.com/fairness/
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properties of injected edges that are likely to be incident to nodes in the minority class and/or protected
group. Following similar principles, it is also possible to develop a selective or probabilistic message
passing strategy to achieve the same goal during model optimization. To defend against deceptive
fairness attacks for individual fairness, we can apply similar neighborhood sampling strategy or
selective/probabilistic message passing strategy. Instead, for individual fairness, the neighborhood
sampling or selective message passing would consider the class label rather than the sensitive attribute
(i.e., sample edges that connect nodes in the minority class as shown in Figure ??).

H – How does FATE maintain the performance for deceptiveness? We assume there is a diver-
gence in optimizing the task-specific loss function l (G,Y,Θ, θ) and optimizing the bias function
b (Y,Θ∗,F). Thus, maximizing b (Y,Θ∗,F) may not affect l (G,Y,Θ, θ) too much. Since we are
minimizing the task-specific loss function in the inner loop (i.e., lower-level optimization), it helps
to maintain the performance in the downstream task for deceptive fairness attacks. We think such
assumption is reasonable for the following reason. In fair machine learning, a common strategy is
to solve a regularized optimization problem, where the objective function to be minimized is often
defined as l (G,Y,Θ, θ) + αb (Y,Θ∗,F) with α being the regularization hyperparameter. If there
is no divergence between the optimization of l (G,Y,Θ, θ) and b (Y,Θ∗,F), it would be sufficient
to optimize one of them to obtain fair and high-utility learning results, or it would be impossible to
achieve a good trade-off between fairness and utility if they are completely conflicting with each other.
All in all, we believe that optimizing the task-specific loss function l (G,Y,Θ, θ) in the lower-level
optimization problem could help maintain deceptiveness both intuitively and empirically as shown in
Section ??, Section ??, Appendix D, and Appendix E.

H MORE DETAILS ON FAIRNESS DEFINITIONS

We discuss more details about statistical parity and individual fairness here.

A – Statistical parity. Mathematically, statistical parity is equivalent to the statistical independence
between the learning results (e.g., predicted labels of a classification algorithm) and the sensitive
attribute. Consider a classification problem with ỹ being the predicted label, s being the sensitive
attribute whose attribute value is in the set S. Statistical parity is defined as follows.

P [ỹ = 1] = P [ỹ = 1|s = a] , ∀a ∈ S (8)

B – Individual fairness. Other than group fairness, individual fairness studies fairness in a finer-
grained individual level. It asks for similar individuals to be treated similarly ?. Such principle is
often formulated as a Lipschitz inequality

d1 (Y [i, :] ,Y [j, :]) ≤ ϵd2 (i, j) (9)

where Y is the learning results, ϵ is the Lipschitz constant, the left hand side d1 (Y [i, :] ,Y [j, :])
measures the distance between the learning results Y [i, :] and Y [j, :] of data points i and j, respec-
tively, and d2 (i, j) measures the distance between the two data points. Given a graph G = {A,X}
with adjacency matrix A and node feature matrix X, Kang et al. ? further define d1 as the squared
Frobenius distance and assume the existence of an oracle pairwise node similarity matrix S. Then,
the overall individual bias of G is further defined as Tr

(
YTLSY

)
where LS is the graph Laplacian

of similarity matrix S.
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