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Supplementary Materials

This supplementary material contains additional details of Sec. 4, 6.1 and 7, and illustrations of the
effectiveness for the proposed method.

A SIZE-AWARE SEARCH SPACE EXPLORATION

Besides the descriptions in Sec. 4, we also provide the full pseudo code of the proposed method for
search space evolution (i.e., step 1 to step 3) during architecture search in Algorithm 1.

Algorithm 1 Size-Aware Search Space Exploration
Input: Infinite search space, Ω; Max number of the iterations, T ; Number of sampling times, N ;

Model Constraint, M; Search dimensions in search space, β1, . . . , βn; Candidate choices in the
kth search dimension, Vk; Evolving steps for each search dimension, τ1, . . . , τn;

Output: The most promising search space A∗

1: Initialize a search space A0 from Ω
2: for t = 1, 2, . . . , T do
3: Get the set of legal search space candidates C = {Aj |Aj − At−1 =[

γt−1,j
1 τ1 γt−1,j

2 τ2 . . . γt−1,j
n τn

]
,M(A) ≤ M}, where γt−1,j

k ∈ {−1, 0, 1}.
4: Optimize the weights WAt

of supernet corresponding to the space At

5: for k = 1, 2, . . . , n do
6: for i = 1, 2, . . . , N do
7: Randomly sample an architecture α from the trained supernet.
8: Get the set S of architectures according to βcand where βcand

k ∈ Vk and βcand
k ̸= βα

k ,
while the other dimensions are the same as α.

9: Get the inherited accuracy y of each architecture in S.
10: Calculate the slopek = (∆y

∆β )k = y2−y1

β2
k−β1

k
for each pair β1, β2 in S.

11: end for
12: end for
13: Get the final accuracy gradient −→z according to Eq. 5
14: Find the update direction −→γ ∗ according to Eq. 6
15: if

−→z ·−→γ ∗

||−→z ||·||−→γ ∗|| ≤ 0 then
16: break
17: end if
18: A∗ = At−1 + [γ∗

1τ1 γ∗
2τ2 . . . γ∗

nτn]
19: At = A∗

20: end for

B MORE DETAILS OF SEARCH SPACE

B.1 DISCUSSION OF SEARCH SPACE DESIGN

Swin Transformer and Shunted Transformer. We observe that the released Swin-T, Swin-S,
Swin-B and Swin-L models all having 2 for the depth of the 1st, 2nd and 4th stages. Thus we
design the initial search space of Swin Transformer with only the depth of the 3rd stage exploring.
Similarly, the released Shunted-T, Shunted-S, and Shunted-B models feature a depth of 2 for the 1st
and 4th stages, while the depth of the 3rd stage is three times that of the 2nd stage. Thus we explore
the depth of the 2nd and 3rd stages following this pattern.

CLIP. The decoder blocks in our experiment is served as the adapters of CLIP, allowing users to
leverage foundational models without extensive fine-tuning, especially when resources are limited.
Thus, finding constrained-size models while remaining excellent performance is vital, which is the
essence of this paper.

12



Under review as a conference paper at ICLR 2024

B.2 RELATIONSHIP BETWEEN NEIGHBORS

The detailed relationship between a search space and its neighbors is shown in Fig. 4. The neigh-
boring search space can be at most one step away from the original search space in each search
dimension. The search dimensions are discrete, and in practice, we search for architectures with
integer values for them.

Figure 4: Detailed illustration of the relationship between initial search space and its neighbors.
Neighbor search space can be at most one step away from the original search space in each discrete
search dimension.

C MODEL SIZE FUNCTION

Vision Transformer Dosovitskiy et al. (2021) has the same embedding dimension in every block,
while Swin Transformer Liu et al. (2021) and Shunted Transformer Ren et al. (2021) have different
embedding dimensions in different stages. There is a Patch Merging module between the stages,
and the dimension gets doubled. The architectures are illustrated in Figure 2 in the main paper.
Assume that the value of depth, MLP ratio, number of head, and embedding dimension are a, b, c, d,
respectively.

Vision Transformer. Before the 1st block, there is a patch embedding module, which transforms
an input image into a feature embedding, implemented by a CNN layer, where the number of pa-
rameters is d × (16 × 16 × 3) + d, 16 × 16 is a given patch size, and 3 is the number of input
channels. Two parameters, class token and positional embedding, are also calculated, which are
d, d × (#patches + 1), respectively. In each block, it consists of multiple modules, two Layer-
Norms, an attention module, and an MLP module. The number of parameters in aforementioned
modules are 4d, 256cd+ 192c+ 5d+ 7680, 2bd2 + bd+ d, respectively. At last, there are a Layer-
Norm module and a prediction head, which includes 2d and #classes × (d + 1) parameters. The
overall number of parameters is thus

mvit(a, b, c, d) = 1, 539d+a(4d+256cd+192c+5d+7, 680+2bd2+bd+d)+2d+#class×(d+1),
(7)

where #class is the number of classes when applying ViT to a classification problem.

Swin Transformer. We set the patch size to 4, window size to 7, number of heads to 3, 6, 12, 12 in
4 stages, respectively. Before the 1st stage, there is also a patch embedding module, implemented
by a CNN layer, where the number of parameters is d × (4 × 4 × 3) + d with 4 × 4 a given
patch size, and 3 the number of input channel, respectively. Swin Transformer does not have class
tokens. In each block, there is an extra parameter, relative positional bias, which contains 13 ×
13 × #heads parameters, where 13 comes from 2 × window size − 1, and each block consists
of multiple modules, two LayerNorm, an attention module, and an MLP module. The number of
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parameters in aforementioned modules are 2× 2d, 4d2 + 4d, 2bd2 + bd+ d, respectively. Thus, the
number of parameter is 169c + 2bd2 + 4d2 + bd + 9d in one block. After each stage except the
last one, there is a patch merging module and a LayerNorm layer, whose number of parameter are
8d2, 8d, respectively. At last, there are a LayerNorm module and a prediction head, which include
2d4 and #classes× (d4+1) parameters, respectively. Therefore, the overall number of parameters
is given in Eq. 8.

mswin(a, b, d) = 49d1 + 2(169c1 + 2bd21 + 4d21 + bd1 + 9d1) + 8d21 + 8d1

+ 2(169c2 + 2bd22 + 4d22 + bd2 + 9d2) + 8d22 + 8d2

+ a(169c3 + 2bd23 + 4d23 + bd3 + 9d3) + 8d23 + 8d3

+ 2(169c4 + 2bd24 + 4d24 + bd4 + 9d4) + 2d4 +#classes× (d4 + 1),
(8)

where #class is the number of classes when applying Swin Transformer to a classification problem,
and [c1 c2 c3 c4] = [3 6 12 12], [d1 d2 d3 d4] = [d 2d 4d 8d].

Shunted Transformer. We set the window size to 7, number of heads to 2, 4, 8, 16 in 4 stages,
respectively. Before the 1st stage, there is a patch embedding module, implemented by two CNN
layer with the respective number of parameters 3×3×64×3, 2×2×64×d+d, and a LayerNorm
with the number of parameters 2d. Shunted Transformer does not have class tokens and positional
embedding. In each block, two LayerNorms, an attention module and an MLP module are included,
which have the sizes 2 × 2d, 4d2 + 8d, 2bd2 + bd + d, respectively. After each stage, there is
a LayerNorm layer as well, whose number of parameters is 2d. Between two stage, there are a
patch merging module, making the embedding dimension doubled, and LayerNorm layer, containing
3× 3× di× di+1, 2× di+1. At last, there is a prediction head, which includes #classes× (d4+1)
parameters. Therefore, the overall number of parameters is shown in Eq. 9.

mshunt(a, b, d) = 1728 + 259d1 + 2(2bd21 + 4d21 + bd1 + 13d1) + 2d1

+ 9d1 × d2 + 2d2 + a(2bd22 + 4d22 + bd2 + 13d2) + 2d2

+ 9d2 × d3 + 2d3 + 3a(2bd23 + 4d23 + bd3 + 13d3) + 2d3

+ 9d3 × d4 + 2d4 + (2bd24 + 4d24 + bd4 + 13d4) + 2d4 +#classes× (d4 + 1),
(9)

where #class is the number of classes when applying Swin Transformer to a classification problem,
and [c1 c2 c3 c4] = [2 4 8 16], [d1 d2 d3 d4] = [d 2d 4d 8d].

CLIP. The Ladder-side decoder is composed of a cross-attention module and a MLP module with
LayerNorms. The cross attention module can be calculated as 8d2+7d and the MLP module can be
calculated as bd2. LayerNorms is calculated as 6d. At last, there are another LayerNorm module and
a prediction head, which includes 2d and #classes × (d + 1) parameters, respectively. Therefore,
the overall number of parameters is given in Eq. 10.

mCLIP (a, b, d) = 24d+ b1d
2
1 + 8d21 + 7d1 + 6d1

+ b2d
2
2 + 8d22 + 7d2 + 6d2

+ b3d
2
3 + 8d31 + 7d3 + 6d3

+ b4d
4
1 + 8d41 + 7d4 + 6d4 + 2d4 +#classes× (d4 + 1),

(10)
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Table 7: Comparison of S3 and S4 under model constraint in each exploration iteration on Cifar10.
We report the retrained accuracy of architectures sampled from the tth search space.

Model Exploring approach Search iteration #Params.(M) Cifar 10 Accuracy

ViT (Dosovitskiy et al., 2021) S3 1 28.78 94.17
ViT S3 2 29.32 94.23
ViT S3 3 - -

ViT S4 (ours) 1 23.17 94.09
ViT S4 (ours) 2 25.25 94.25
ViT S4 (ours) 3 25.39 94.32

Swin (Liu et al., 2021) S3 1 29.88 95.61
Swin S3 2 - -
Swin S3 3 - -

Swin S4 (ours) 1 27.09 95.55
Swin S4 (ours) 2 27.7 95.63
Swin S4 (ours) 3 28.33 95.65

Shunted (Ren et al., 2021) S3 1 21.28 97.6
Shunted S3 2 - -
Shunted S3 3 - -

Shunted S4 (ours) 1 20.3 97.58
Shunted S4 (ours) 2 21.98 97.67

Table 8: Comparison of S3 and S4 under model constraint in each exploration iteration on Cifar100.
We report the retrained accuracy of architectures sampled from the tth search space.

Model Exploring approach Search iteration #Params.(M) Cifar 100 Accuracy

ViT (Dosovitskiy et al., 2021) S3 1 29.1 78.02
ViT S3 2 - -
ViT S3 3 - -

ViT S4 (ours) 1 24.32 78.11
ViT S4 (ours) 2 26.44 78.52
ViT S4 (ours) 3 26.45 78.68

Swin (Liu et al., 2021) S3 1 28.47 79.52
Swin S3 2 - -
Swin S3 3 - -

Swin S4 (ours) 1 25.6 79.63
Swin S4 (ours) 2 25.56 79.98
Swin S4 (ours) 3 26.24 80.31

Shunted (Ren et al., 2021) S3 1 19.4 84.78
Shunted S3 2 - -
Shunted S3 3 - -

Shunted S4 (ours) 1 20.16 84.8
Shunted S4 (ours) 2 21.7 85.57
Shunted S4 (ours) 3 21.56 85.66

D MORE EXPERIMENTAL RESULTS

D.1 RESULTS IN SEARCH ITERATIONS

In the main paper, we provide the comparison of S3 and S4 in each exploration iteration on Tiny Im-
ageNet for ViT in Fig. 4. Here we list the complete results for ViT, Swin Transformer and Shunted
Transformer on Cifar10, Cifar100 and Tiny ImageNet in Tab. 7, Tab. 8 and Tab. 9, respectively.
Similar results can be seen that our method consistently outperforms S3 after three iterations of
search space exploration, while S3 fails to discover models adhering to the size constraint.

D.2 RESULTS WITH BACKTRACKING

In the main paper, we provide the comparison of S3 and S4 on Tiny ImageNet and SUN397, with
backtracking applied on S3 to meet the model constraints. We further list the result on Cifar10 and
Cifar100 in Tab. 10 and Tab. 11. Results are consistent with the performance on Tiny ImageNet and
SUN397. Though S3 could find models under the size limit with backtracking, they are suboptimal.
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Table 9: Comparisons of S3 and S4 under model constraint in each exploration iteration on Tiny
ImageNet. We report the retrained accuracy of architectures sampled from the tth search space.

Model Exploring approach Search iteration #Params.(M) Tiny ImageNet Accuracy

ViT (Dosovitskiy et al., 2021) S3 1 27.88 67.36
ViT S3 2 - -
ViT S3 3 - -

ViT S4 (ours) 1 26.14 67.39
ViT S4 (ours) 2 26.19 67.55
ViT S4 (ours) 3 27.45 67.92

Swin (Liu et al., 2021) S3 1 27.58 72.4
Swin S3 2 - -
Swin S3 3 - -

Swin S4 (ours) 1 25.34 72.31
Swin S4 (ours) 2 27.11 72.58
Swin S4 (ours) 3 28.43 73.09

Shunted (Ren et al., 2021) S3 1 21.32 75.16
Shunted S3 2 - -
Shunted S3 3 - -

Shunted S4 (ours) 1 20.09 75.28
Shunted S4 (ours) 2 20.78 75.42
Shunted S4 (ours) 3 21.27 75.59

Table 10: Comparisons of search space exploration of ViT, Swin Transformer, and Shunted Trans-
former using S3 and S4, with backtracking for S3. Results are conducted on Cifar10.

Model Exploring approach backtrack time Model Constraint(M) #Params.(M) Cifar 10 Accuracy

ViT (Dosovitskiy et al., 2021) - - 30 28.71 93.59
ViT S3 1 30 29.32 94.23
ViT S4 (ours) 0 30 25.39 94.32 (+0.09)

Swin (Liu et al., 2021) - - 30 27.52 94.39
Swin S3 2 30 29.88 95.61
Swin S4 (ours) 0 30 28.33 95.65 (+0.04)

Shunted (Ren et al., 2021) - - 22 21.89 97.39
Shunted S3 2 22 21.28 97.6
Shunted S4 (ours) 0 22 21.98 97.67 (+0.07)

Table 11: Comparisons of search space exploration of ViT, Swin Transformer, and Shunted Trans-
former using S3 and S4, with backtracking for S3. Results are conducted on Cifar100.

Model Exploring approach backtrack time Model Constraint(M) #Params.(M) Cifar100 Accuracy

ViT (Dosovitskiy et al., 2021) - - 30 28.89 76.45
ViT S3 2 30 29.1 78.02
ViT S4 (ours) 0 30 26.45 78.68 (+0.66)

Swin (Liu et al., 2021) - - 30 27.6 79.03
Swin S3 2 30 28.47 79.52
Swin S4 (ours) 0 30 26.24 80.31 (+0.79)

Shunted (Ren et al., 2021) - - 22 21.93 84.36
Shunted S3 2 22 19.4 84.78
Shunted S4 (ours) 0 22 21.56 85.66 (+0.88)

E EVALUATING PERFORMANCE IMPROVEMENT DURING SEARCH SPACE
EVOLUTION

To evaluate the effectiveness of our method, we sample 300 architectures and report the average
of their inherited accuracy from supernet in each search iteration. Fig. 5 and Fig. 6 show the
results of Swin Transformer and Shunted Transformer on Tiny ImageNet throughout the search
space evolution process. In these figures, each data point represents an inherited accuracy of a
sampled architecture, while the pink points represent the average results. It can be observed that
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Exploring iteration

Accuracy (%)

Figure 5: Accuracy on Tiny ImageNet when
applying our method to Swin Transformer’s
search space exploration.

Exploring iteration

Accuracy (%)

Figure 6: Accuracy on Tiny ImageNet
when applying our method to Shunted Trans-
former’s search space exploration.

with an increase in exploration iterations, the performance of the highest and lowest models has
improved, leading to an overall upward trend in performance. This once again demonstrates the
effectiveness of our method.
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