
Under review as a conference paper at ICLR 2024

In the appendix section, we provide detailed information on the following aspects of our
study. In Appendix A, we present the background and curation details for the 8 tasks
included in ToolBench. Appendix B focuses on the performance evaluation of an extensive
suite of LLMs on ToolBench. In Appendix C, we delve into the details of model alignment,
including the process of generating the training data and training details. We also provided
the full spectrum of results for the experiments in Section 6. Finally, in Appendix D, we
introduce the API selection complexity score system, and demonstrate its effectiveness and
implication in measuring task complexity.

A Benchmark Details

A.1 OpenWeather

This task involves using the REST API to interact with OpenWeather website8. We include 9
types of API calls that cater to 9 categories of queries, including but not limited to retrieving
current weather data in a city, obtaining air quality data at a specific longitude and latitude,
and acquiring weather forecast data for a location specified by a zip code. Making each type
of API calls involves correctly filling 2 to 3 required parameters (such as lon for longitude
and lat for latitude) and 0 to 3 optional parameters (such as lang for language and units

for units of measurement), depending on the requirements specified in each query. In total,
we develop 100 unique queries for the 9 categories and 2 demonstration examples for each
category. To assess the quality of the LLM’s generation, we look for the first line beginning
with the word "curl", if it exists. We then execute this line using the shell process. If the
shell process returns a non-zero value, we declare "not executable" for this generation. On
the other hand, if the code can be executed, we compare the returned response with the
corresponding result from the ground-truth Curl request. The model’s generation will be
considered successful if the output matches the expected result precisely.

A.2 The Cat API

This task is a similar REST API task as the OpenWeather, but it involves making all the GET,
DELETE, or POST request to The Cat API website9. There are 6 types of API calls for 6 types
of queries, including deleting a cat image from the user’s list of favorites, adding an image
to the user’s list of favorites, returning the list of favorite images, voting up or down to an
image, and searching for cat images with filtering requirements. We develop 100 queries for
the test set and 2 demonstration examples for each category. To evaluate the executability
and success of the LLM’s generation in these scenarios, we follow a similar procedure as that
of the Open Weather task. It is worth noting that for queries related to removing an image
from the list of favorites, we compare the LLM’s generation verbatim with the ground-truth
label since duplicated deletion would inevitably lead to failure if executed.

A.3 Home Search

This task is designed to replicate the process of searching for homes at a specific location
based on certain criteria. We design the API with 15 functions, including

• set_location which sets the desired location;
• set_but_or_rent which specifies whether the user is looking to buy or rent a home;
• 12 functions for setting criteria, such as home prices, number of bedrooms, and home

square footage;
• search which submits the criteria to get search results.

We consider executability and f1 score of the generated action. To ensure executable searches,
the agent should make a sequence of function calls that starts with set_location and
set_buy_or_rent, followed by the criterion-setting functions, and then ends with a call to
the search function. If executable, an f1 score is computed between the criteria set by the

8https://openweathermap.org/api
9https://thecatapi.com

15

Under review as a conference paper at ICLR 2024

generated program and that by the ground-truth program. We develop a test set consisting
of 100 queries that asked for home options with varying criteria combinations and provide
10 demonstration examples. To test the LLM’s ability to utilize unseen API functions, we
intentionally exclude 3 criterion-setting functions from all demonstration examples.

A.4 Trip Booking

The Trip Booking task is similar to the Home Search task but with more advanced dependency
requirements among function calls. It simulates the process of submitting search requests for
transportation tickets, hotel rooms, or both based on specific requirements like locations,
dates, and the number of tickets required. We design 20 functions for the three types of
booking scenarios. Depending on the scenario, some function calls may be required while
others are optional. Missing any required function call or mistake the order of some function
calls results in a non-executable search, while missing optional function calls lead to an
unsuccessful search. We include 120 queries in the test set and provide 11 demonstration
examples.

A.5 Google Sheets

This task is to manipulate the real worksheets from the Google Sheets10, via the gspread
library11. We include 100 distinct API function calls from the gspread library, but we only
create tests for the most common use cases, including updating cell values, sorting, adding
or deleting rows and columns, merging cells, filtering, formatting and creating pivot tables.
There are 70 test cases and 10 examples in total. We also encourage the model to utilize
Pandas DataFrame12 and gspread-dataframe13 for advanced manipulations, by explicitly
providing 8 additional API functions and certain examples for them. The manipulation is
considered as correct only if both the value and the format of each cell match the expectation.

A.6 Virtual Home

This task is inherited from the setting of the VirtualHome14 simulator and asks the LLM to
generate sequences of actions for completing household activities. We develop API definitions,
demonstration examples, and a test set based on the list of available examples15 curated in
[30]. The API consists of 40 functions, each of which corresponds to a specific action used
in the examples. These functions can take up to two arguments, and we collect the list of
valid object names for each argument based on all examples. Some examples of the functions
include Sleep(), Push(object), and PourInto(object1, object2).

The original example list contains 202 household activities, represented by 5088 examples,
with each example being a series of actions to complete a specific activity. However, some
activities have exactly the same solution as another activity. After deduplication, we are left
with 183 unique activities with non-overlapping solutions between any two activities. We
randomly select 100 activities to form the test set, while the remaining 83 tasks with their
512 solutions are used as demonstration examples.

When evaluating the LLM’s generation for a given task, we consider both executability and
correctness. The generation is considered executable if it can be correctly parsed into a series
of valid actions, where each action involves only recognizable objects. Regarding correctness,
we measure the similarity between the generated program and the ground-truth solution,
using the longest common subsequence (LCS) [29] normalized by the maximum length of the
two. For tasks with multiple solutions, we consider the highest LCS score from any solution.

10https://www.google.com/sheets/about/
11https://docs.gspread.org/
12https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
13https://gspread-dataframe.readthedocs.io/en/latest/
14http://virtual-home.org/
15https://github.com/huangwl18/language-planner/blob/main/src/available_examples.json

16

Under review as a conference paper at ICLR 2024

A.7 WebShop

This is a multi-step task inherited from Webshop [31], a simulated online shopping envi-
ronment. The task requires an agent to navigate through a series of webpages to find and
purchase a desired product based on a text instruction that outlines the item description.The
agent can perform two primary types of actions: search[text], which involves entering a
text query, and click[button] which involves selecting a button on the page.

We generate demonstration examples based on this file16, which contains trajectories collected
from humans performing the online shopping tasks. We formulate each trajectory into a
series of (instruction, webpage description, action) tuples in plain text format. The Long
version of the demonstration set consists of 1533 full trajectories, which often exceed the
input sequence length limit of the LLM. To address this issue, we provide a Short version
of the demonstration examples, by first removing 80% of the non-targeted items from any
webpage description, and selecting only the 200 shortest trajectories from the complete set.

For evaluation, we use the predefined simple mode of the WebShop environment17 and set up
the environment with the provided option of using only 1000 random products. We include
100 instructions from sessions with ID numbers 0 to 99 in the test set. We define success as
making a purchase which receives a positive reward from the environment within 25 steps.

A.8 Tabletop

This task is developed based on the simulated tabletop manipulation domain presented by
[50] and outlined in their Appendix K. In this simulation environment, a UR5e robot with a
Robotiq 2F85 jaw gripper can perform pick and place actions parameterized by 2D top-down
positions. We reuse their API definitions and prompts as demonstration examples. We
iterate on the 14 instruction templates used in their evaluation benchmark and create 15
types of tasks that involve manipulating up to 4 colored blocks and 4 colored bowls. For
each type of task, we generate 7 valid initial setups of blocks and bowls for the test set,
ensuring that no collisions occur during the execution of a valid solution. The success of the
LLM’s generated program is determined by whether all objects are within a small threshold
of their target positions after execution.

B Comprehensive Model Evaluation on the ToolBench

In this section, we want to compare the performance of different models on the ToolBench.
Specifically, we selected 27 representative LLMs from both closed and open-source community,
and evaluate them on the ToolBench in 3-shot scenario.

B.1 System Prompt
Figure 5: System prompt with guidelines
to only generate code in a desired format.

… As the AI API Assistant, my focus is on assembling the APIs in
the correct order to achieve the desired outcome without
introducing any new APIs or unnecessary information. …

Here is a list of API functions:
{A list of API functions}

To guide me in generating the executable code snippet, use the
following format. Within the three ticks I will be generate code only:
Task: Goal
Action:
```
API_function_name1(args1, args2)
API_function_name2(args3)
```

Here is a list of demonstration examples:
{A list of demonstration examples}

Task: {Goal}
Action:
```

We regularize open-source LLMs to exclusively
generate API calls with a system prompt in Fig-
ure 5, where the black part is the template shared
across all tasks and the red rows are instantiated
during inference for a certain goal. Our system
prompt first defines a format that combines text
sections containing goals, demonstrations, and
generations. It then provides explicit guidelines
in natural language, instructing the LLMs to gen-
erate code exclusively. The system prompt in-
corporates the goal description and the retrieved
API functions directly for each request, reducing
the human development effort to a one-time task.

16https://github.com/princeton-nlp/WebShop/blob/master/baseline_models/data/il_trajs_finalized_images.zip
17https://github.com/princeton-nlp/WebShop#text-environment-simple-mode

17



Under review as a conference paper at ICLR 2024

Table 7: The achitecture and training data of all the models in our evaluation. The models
are grouped by their architecture and training data.

Model Architecture Data
Family Size Max SS # Tokens Pretraining Finetuning

Closed-source

text-davinci-003 gpt3 175b 4096 - - -
gpt-3.5-turbo gpt3 - 4096 - - -
text-curie-001 gpt3 6.7b 2048 - - -

gpt4 gpt4 - 8192 - - -
Open-source

bloomz bloom 176b 2048 366B bloom corpus xP3
llama-65b llama 65b 2048 1.4T CCNet, C4,

GitHub, Wikipedia,
Books, ArXiv,
Stack Exchange

-
llama-30b llama 30b 2048 1.4T -
llama-13b llama 13b 2048 1.4T -

llama-13b-alpaca llama 13b 2048 1.4T GPT-4 responses, Alpaca
starcoderbase bigcode 15.5b 8192 1T The Stack -

starcoder bigcode 15.5b 8192 1T The Stack (Python)
opt-30b opt 30b 2048 300B The Pile, BookCorpus,

CC-Stories, Reddit,
CCNewsV2

-
opt-1.3b opt 1.3b 2048 300B -

opt-iml-30b opt 30b 2048 300B OPT-IML Benchopt-iml-1.3b opt 1.3b 2048 300B
gpt-neox-20b neox 20b 2048 450B

The Pile

-
GPT-NeoXT-Chat-Base-20B neox 20b 2048 460B OpenChatKit IT

codegen-16B-nl neox 16b 2048 700B -
codegen-16B-multi neox 16b 2048 1T BigQuery
codegen-16B-mono neox 16b 2048 1T BigQuery, BigPython

pythia-12b neox 12b 2048 300B -
dolly-v2-12b neox 12b 2048 300B Dolly IT

pythia-6.9b/2.8b1.4b neox multi 2048 300B -
stablelm-base-alpha-7b neox 7b 4096 800B

The Pile (1.5T)

-
stablelm-base-alpha-3b neox 3b 4096 800B -
stablelm-tuned-alpha-7b neox 7b 4096 800B Alpaca, GPT4All,

Anthropic, Dolly, ShareGPTstablelm-tuned-alpha-3b neox 3b 4096 800B

B.2 Models

As listed in Table 7, we select a set of representative LLMs from both closed-source and
open-source community.

The closed models are the (Generative Pre-trained Transformer) GPT series from OpenAI,
especially the GPT-3[22] and its successors[13]. GPT-3 is a state-of-the-art language model
developed by OpenAI, with 175 billion parameters, making it the largest and most powerful
language model ever created. It is capable of performing a wide range of natural language
processing tasks and has the potential to revolutionize the way we interact with and
understand language. Due to the lack of detailed information about its training, we are
motivated to study methods to build models achieving similar capabilities, especially using
open-source models.

We select the representative and the most advanced open-source models from recent years
in our work. They are all decoder-only models, based on transformers[51] architecture.
Bloomz[52] is the largest open-source LLM built upon the large-scale multilingual pretrained
BLOOM[53]. Bloomz is funtuned on xP3[52], a crosslingual task mixture, for crosslingual
generalization to unseen tasks and languages. StarCoder[33] is a family of models developed
for purely code generation and synthesis with 8K context length. They exhibit superior
performance on common code generation benchmarks. LLaMA[32] is a family of pretrained
models, that are performant on quite a few NLP benchamrks. Although they are not as large
as Bloomz, they are all trained for almost 4 times longer than Bloom. This is an important
reason why they are able to outperform several top peer models on many NLP tasks. Alpaca
[54, 55] is fine-tuned LLaMA-13b model on 52K instruction-following data as well responses
from GPT-4. OPT-IML[56] is the finetuned version of the original OPT[57], which is the first
family of large-scale (176 billion parameters) open-source models that are trained on publicly
available datasets. OPT-IML significatly improves the instruction following capability of

18



Under review as a conference paper at ICLR 2024

OPT by training on a large benchmark of 2000 NLP tasks for Instruction MetaLearning
(IML). We only select the publicly accessibile checkpoints from the OPT families in our work.

Another important family of models are all developed from the NeoX toolkit[58] and
pretrained using the PILE dataset[59]. GPT-NeoX-20B[60] is only pretrained on the PILE,
while GPT-NeoXT-Chat-Base-20B[7] is further finetuned on the OIG-43M[61], a dataset
targetting better instruction following capability. CodeGen family[34] is designed for superior
capability on code generation, as they are heavily finetuned on large code datasets. Pythia
family[62] is a suite of models designed for analyzing LLMs across training and scaling. They
are all pretrained on the Pile in the same way, but have different model sizes and intermediate
checkpoints released during training. We use those variants in our ablation study. Dolly[63]
is finetuned beyond Pythia-12b on a new, high-quality human generated instruction following
dataset, crowdsourced among Databricks employees. The StableLM family[64] is pre-trained
on an experimental version of the PILE datasets which has 1.5 trillion tokens in total. The
models have a sequence length of 4096 to push beyond the context window limitations of the
existing open-source language models. The instruction tuned counterpart of each model is
also released. By the time we publish this work, only 7b and 3b models are released, while
the team behind them is training larger models.

There are other notable models, such as FlanT5[28], the T0 family[23], and the T5 family[65],
that have shown promising performance. We do not include all of them in our baseline
comparison, as some of their features are not designed for the task at hand. For example,
their tokenizers do not distinguish between spaces, tabs and new lines, making it hard for
them to generate executable code based on API function calls.

B.3 Evaluation

To collect the baseline results, we exploit the naive approach described in section 2 as the
action generator. We give each LLM sufficient max tokens to generate on each task and
retrieve as many API functions as possible in the prompt. The detailed information is listed
in Table 8. We evaluate all the models on a mixture of GPUs and RDUs[66, 67, 68]. In
particular, the 176b-parameter bloomz is evaluated on RDU, while all the other models are
evaluated on NVIDIA A100 GPUs with 80GB RAM.

For these models, We only conduct the few-shot evaluation described Section 6 because 1)
zero-shot results are not representative, as most of them are zero, 2) it is not practical to
tune all the models on our training data, and 3) few-shot results can be used as a great
proxy of the model performance in all the other settings. For the conversation-oriented
models, including gpt-3.5-turbo, chavinlo/gpt4-x-alpaca, GPT-NeoXT-Chat-Base-20B and
dolly-v2-12b, we additionally add <human>: and <bot>: key words in the prompt to better
align with their training data format for better performance.

After we get the completion from the LLMs given a prompt, only minimal post-processing
steps are applied to the completion: 1) Properly truncate the completion, given the list
of task-specific stop sequences and 2) Replace the {API_KEY} keywords in the completion
with the real API key, so as to execute the code properly. Finally, as shown in Figure 1, to
validate the action generated for the single-step tasks, we execute the generated API calls
and compare its output against the ground truth; while for the multi-step tasks, the actions
are used to interact with the environment directly and only the final status is evaluated. For
each task, we report the metrics described in Section 5 for each task. Note that we only
evaluate the top 1 generated action with sampling disabled. This is because, in practice,
action can only be executed once and there is no chance to reset things and try another
action.

B.4 ToolBench performance of different models

The performance of different models are summarized in Table 8. Below we show several
observations.

Capability Gap Currently, the GPT family of models stands out as the leading players in
the field, and there is a significant gap between GPT-4, GPT-3.5 and all the other open-source

19



Under review as a conference paper at ICLR 2024

Table 8: The performance on ToolBench of different models in 3-shot scenario. The models
are group by their architecture and training data.

Open The Cat Home Trip Google WebShopTask Weather API Search Booking Sheets VirtualHome Long Short Tabletop

max tokens to generate 128 128 128 300 256 128 128 256
num API function all all all all 10 10 all 0
Closed-source

gpt4 93.0 96.0 97.0 96.7 62.9 23.0 / 23.5 0.0 81.0
text-davinci-003 99.0 98.0 97.0 89.2 62.9 31.0 / 25.1 0.0 66.7
gpt-3.5-turbo 90.0 92.0 80.0 85.8 51.4 20.0 / 18.9 0.0 1.8 33.3
text-curie-001 8.0 58.0 6.0 6.7 1.4 12.0 / 4.1 0.0 0.0 1.0
Open-source

Llama-2-70b-hf 90.0 84.39 83.0 71.67 58.57 35.0 / 24.74 1.53 30.45 45.4
Llama-2-13b-hf 85.0 77.0 68.0 53.33 30.0 33.0 / 21.67 0.6 31.67 23.81
Llama-2-7b-hf 76.0 83.0 58.0 33.33 22.86 25.0 / 21.49 0.0 6.92 14.39

llama-65b 90.0 80.0 84.0 65.8 32.9 32.0 / 20.3 0.0 41.2 30.5
llama-30b 78.0 84.0 66.0 45.0 37.1 27.0 / 21.7 0.0 30.6 34.3
llama-13b 70.0 74.0 45.0 35.8 5.7 28.0 / 18.9 0.0 27.6 17.1

llama-13b-alpaca 62.0 43.0 44.0 40.8 11.4 1.0 / 1.6 0.0 2.7 9.5
starcoder 91.0 84.0 82.0 51.7 48.0 23.0 / 19.4 2.6 0.0 21.9

starcoderbase 90.0 86.0 79.0 63.3 42.9 24.0 / 16.3 5.8 23.1 17.1
codegen-16B-nl 51.0 75.0 37.0 21.7 7.1 43.0 / 18.0 0.0 0.0 16.2

codegen-16B-multi 56.0 75.0 47.0 7.5 21.4 31.0 / 14.1 0.0 0.5 8.6
codegen-16B-mono 63.7 72.0 52.0 28.3 31.5 28.0 / 15.7 1.5 6.6 15.2

bloomz 58.0 85.0 36.0 22.5 14.3 9.0 / 4.9 0.0 1.0 1.0
opt-iml-30b 44.0 48.0 5.0 3.3 2.9 13.0 / 8.3 0.0 0.0 1.0

opt-30b 46.0 35.0 2.0 3.3 8.6 24.0 / 11.7 0.0 0.0 1.0
opt-iml-1.3b 20.0 28.0 0.0 0.0 4.3 13.0 / 3.1 0.0 0.0 1.0

opt-1.3b 18.0 30.0 0.0 0.0 1.4 31.0 / 9.7 0.0 0.0 1.0
neox-20b 55.0 69.0 27.0 10.8 18.6 28.0 / 15.3 0.0 8.8 6.7

GPT-NeoXT-Chat-Base-20B 43.0 73.0 28.0 10.8 4.3 26.0 / 13.1 0.0 0.7 7.6
pythia-12b 53.0 65.0 12.0 0.8 11.4 17.0 / 12.1 0.0 0.0 1.9

dolly-v2-12b 0.0 1.0 10.0 5.0 7.1 11.0 / 8.9 0.0 0.0 7.6
pythia-12b 53.0 65.0 12.0 0.8 11.4 17.0 / 12.1 0.0 0.0 1.9
pythia-6.9b 41.0 72.0 8.0 7.5 4.3 29.0 / 14.0 0.0 0.0 8.6
pythia-2.8b 49.0 54.0 7.0 3.3 12.9 24.0 / 14.8 0.0 0.0 7.6
pythia-1.4b 37.0 48.0 4.0 5.0 10.0 22.0 / 10.7 0.0 5.2 7.6

stablelm-base-alpha-7b 22.0 47.0 0.0 0.0 4.3 28.0 / 10.3 0.0 0.0 2.9
stablelm-tuned-alpha-7b 23.0 38.0 0.0 0.0 1.4 26.0 / 7.3 0.0 0.0 3.8
stablelm-base-alpha-3b 6.0 28.0 0.0 0.0 1.4 29.0 / 5.3 0.0 0.0 1.0
stablelm-tuned-alpha-3b 14.0 31.0 0.0 0.8 0.0 8.0 / 5.6 0.0 0.0 1.0

20



Under review as a conference paper at ICLR 2024

Table 9: The statistics of model alignment data

Task Open The Cat Home Trip Google VirtualHome WebShop TabletopWeather API Search Booking Sheets
Templates 90 40 100 30 1 1 2 1

Repeat 20 45 18 60 118 512 900 74
Training samples 1800 1800 1800 1800 118 512 1800 74
Complexity score 1.1 1.0 6.4 10.1 12.1 12.3 0.0 4.6

models. While open-source models may demonstrate competitiveness on some simpler tasks,
they lag far behind on more challenging tasks such as Google Sheets and Tabletop.

Instruction tuning on conventional NLP tasks doesn’t help Comparing the models
between chavinlo/gpt4-x-alpaca and LLaMA-13b, OPT-IML and OPT, StableLM-tuned and
StableLM-base, NeoX-Chat-Base-20b and NeoX, and dolly and pythia, the former model in
each pair is intentionally optimized to enhance instruction following capability compared to
the latter model. However, no significant accuracy improvement is observed on the ToolBench.
Further, the LLaMA family, despite not undergoing any specific instruction tuning during
training, still achieves relatively good quality compared to other public models.

Model size is important By comparing the performance of models from GPT faimily,
LLaMA family, OPT family, Pythia family and StableLM family, we can clearly see the trend
that the larger models tend to perform better on the ToolBench, given the same quantity
and quality of their training data.

Code generation is important StarCoder and CodeGen faimily stand out among other
models with similar sizes on ToolBench, while StarCoderBase is even on par with the llama-
65b model which is more than 4 times larger in size. CodeGen-16B-mono is overall better
than its base model CodeGen-16B-nl, which is not specifically tuned for code generation. It
is also surprisingly better than CodeGen-16B-multi on almost all the tasks, indicating that it
is highly beneficial for action generation if the model is heavily tuned on Python-style code
generation.

C Experiment Details

In this section, we extended Section 6 with more details about model training and results.

C.1 Training data

For the OpenWeather, The Cat API, Trip Booking, and Home Search tasks, we generate
the training data by converting or expanding the demonstration examples of each task into
templates and populating them with various sets of variable values. For the remaining four
tasks, we format the training samples directly from the demonstration example set described
in section 5. We exclude any test samples from the training data and minimize the overlap
of the API function call combinations between any training and test samples. For example,
we make sure that the API function combinations used in each test case for the Home Search
task are never present in the training data. However, for the OpenWeather task, it was
unavoidable to have some overlap because each test case only involved a single function call
and the training examples covered all the API functions. The numbers of templates and
training samples for each task are summarized in table 9. Example templates and variable
values are shown in table 10. The training sets for all tasks, except for the Google Sheets
and WebShop task, reduce the complexity score of their respective test sets when compared
to the example sets. As expected, the model’s accuracy shows improvement after fine-tuning.

C.2 All-shot loss

To construct the training samples, we concatenate API documents and multiple pairs of
goal and API calls as one input sequence to the LLMs. We use an all-shot loss formulation
illustrated in Figure 6 which learns to generate the API calls for every goal in a sequence.
We use this loss formulation because it empirically delivers better success rate, especially

21



Under review as a conference paper at ICLR 2024

Table 10: Training template examples of different tools

Goal Action Variable values

Open
Weather

What is the present weather situation
in {city}? Please respond in {lang}
and use {units} units.

curl -X GET ’https://api.openweathermap.org/data/
2.5/weather?q={city_formatted}&appid=
{API_KEY}&lang={lang_abbr}&units={units}’

{city: "Palo Alto",
city_formatted: "palo+alto",
lang: "English",
lang_abbr: "en",
units: "imperial"}

The Cat
API

Add the cat photo with id={image_id}
to my list of favorites.

curl -X POST ’https://api.thecatapi.com/v1/favourites’
–data ’{"image_id":"{image_id}"}’ {image_id: "MTUyNTA1OA"}

Home
Search

Looking for homes for sale in
{location} with {num_beds}
bedrooms and {num_baths} bathrooms,
between ${min_price} and ${max_price}.

API.set_location({location})
API.set_buy_or_rent("buy")
API.set_num_beds({num_beds})
API.set_num_baths({num_baths})
API.set_min_price({min_price})
API.set_max_price({max_price})
API.search()

{location: "Palo Alto",
num_beds: 4,
num_baths: 5,
min_price: 7000000,
max_price: 8000000}

Trip
Booking

Search for {means_of_transportation}
tickets for {num_adults} adults
from {location_from} to
{location_to}, on {departure_date}.

API.select_booking_type("trip tickets")
API.select_transportation({means_of_transportation})
API.set_num_adults({num_adults})
API.set_origin(Loc({location_from}))
API.set_destination(Loc({location_to}))
date = Date({departure_date})
API.set_departure_date(date)
API.search()

{means_of_transportation: "flight",
max_price_ticket: 150,
num_adults: 2,
location_from: "San Francisco",
location_to: "Los Angeles",
departure_date: "2023-08-15"}

Google
Sheet {task} {action}

{task: "
| Product | Cost | Price |
| beef | 1 | 3 |
| pork | 5 | 4 |
| chicken | 10 | 11 |
| lamb | 3 | 15 |
| duck | 12 | 2 |
| fish | 2 | 100 |

Task:
Sum B1:B4 and write the result below B4
Action:",
action: "
worksheet.update(’B5’, ’=SUM(B1:B4)’,
raw=False)"}

VirtualHome {task} {action}

{task: "
Task: Read book
Action:",
action: "
Agent.Find(novel)
Agent.Grab(novel)
Agent.Find(chair)
Agent.SitOn(chair)
Agent.Read(novel)"}

WebShop {task} {action}

{task: "Instruction: i’m looking to
buy a high resolution marine
animal themed backdrop. the size
should be 12x10ft, and price lower
than 100.00 dollars
[button] Search [button_]
Action:",
action: "
search[12x10ft high resolution
marine animal backdrop]"}

Tabletop {task} {action}

{task: "objects = [’yellow block’,
’green block’, ’yellow bowl’,
’blue block’, ’blue bowl’, ’green bowl’]
# move the green block to the
top right corner.",
action: "
corner_pos = parse_position(
’top right corner’)
put_first_on_second(
’green block’, corner_pos)"}

22



Under review as a conference paper at ICLR 2024

Figure 6: We use all-shot loss for model alignment. We concatenate several examples into
a single training sample and backpropagate through the loss on the blue actions in every
example. There is no separator token between examples.

API Definition Goal 1 Goal N API calls N...Normal:

API Definition Goal 1 API calls 1 Goal N API calls N...All shot:

API calls 1 Goal 2 API calls 2

Goal 2 API calls 2

Table 11: The detailed performance on the ToolBench of models with different techniques
applied. Mean(standard deviation) values are provided for each task. There exists some
inevitable randomness, but it won’t cange the results by too much.

Open The Cat Home Trip Google WebShopTask Weather API Search Booking Sheets VirtualHome Long Short Tabletop

Zero-shot Baseline

gpt4 81.3(1.7) 97.4(0.3) 76.6(1.1) 91.5(0.5) 5.7(0.0) 40.8(0.6) / 8.0(0.2) 0.0(0.0) - -
llama-30b 39.0(0.0) 49.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 78.0(0.0) / 0.3(0.0) 0.0(0.0) - -
starcoder 32.0(0.0) 71.0(0.0) 7.0(0.0) 13.3(0.0) 5.9(1.1) 22.0(0.0) / 3.7(0.0) 0.0(0.0) - -

codegen-16B-mono 7.0(0.0) 78.0(0.0) 0.0(0.0) 0.0(0.0) 1.4(0.0) 4.0(0.0) / 1.0(0.0) 0.0(0.0) - -
Sys. Prompt

gpt4 78.4(0.3) 94.2(0.8) 72.7(2.0) 89.6(0.9) 28.6(0.0) 42.8(0.6) / 8.6(0.1) 0.0(0.0) - -
llama-30b 50.0(0.0) 88.0(0.0) 0.0(0.0) 0.0(0.0) 11.4(0.0) 24.0(0.0) / 2.5(0.0) 0.0(0.0) - -
starcoder 71.0(0.0) 91.0(0.0) 2.0(0.0) 7.5(0.0) 15.9(0.2) 26.0(0.0) / 4.9(0.0) 0.0(0.0) - -

codegen-16B-mono 32.0(0.0) 69.0(0.0) 0.0(0.0) 0.0(0.0) 7.1(0.0) 5.0(0.0) / 1.6(0.0) 0.0(0.0) - -
3-shot

gpt4 93.0(0.0) 96.0(0.0) 97.0(0.0) 96.7(0.0) 62.9(0.0) 23.0(0.0) / 23.5(0.0) 0.0(0.0) 0.0(0.0) 81.0(0.0)
llama-30b 78.0(0.0) 84.0(0.0) 66.0(0.0) 45.0(0.0) 37.1(0.0) 27.0(0.0) / 21.7(0.0) 0.0(0.0) 30.6(0.0) 34.3(0.0)
starcoder 91.0(0.0) 84.0(0.0) 82.0(0.0) 51.7(0.0) 48.0(1.1) 23.0(0.0) / 19.4(0.0) 2.6(0.0) 0.0(0.0) 21.9(0.0)

codegen-16B-mono 63.7(0.5) 72.0(0.0) 52.0(0.0) 28.3(0.0) 31.5(0.5) 28.0(0.0) / 15.7(0.0) 1.5(0.0) 6.6(0.0) 15.2(0.0)
Alignment

llama-30b 100.0(0.0) 94.0(0.0) 85.0(0.0) 87.5(0.0) 4.3(0.0) 14.0(0.0) / 10.6(0.0) 20.8(0.0) - -
starcoder 95.0(0.0) 98.0(0.0) 78.0(0.0) 85.0(0.0) 10.0(0.0) 28.0(0.0) / 13.4(0.0) 0.0(0.0) - -

codegen-16B-mono 99.0(0.0) 95.8(0.6) 78.0(0.0) 73.3(0.0) 10.0(0.0) 10.0(0.0) / 11.5(0.0) 30.3(0.0) - -
Sys. Prompt + 3-shot -

gpt4 99.0(0.0) 98.0(0.0) 98.0(0.0) 99.2(0.0) 68.6(0.0) 29.0(0.0) / 21.7(0.0) 0.0(0.0) 0.0(0.0) 83.8(0.0)
llama-30b 66.0(0.0) 82.0(0.0) 63.0(0.0) 45.8(0.0) 27.1(0.0) 34.0(0.0) / 20.5(0.0) 0.0(0.0) 0.0(0.0) 34.6(0.2)
starcoder 92.0(0.0) 91.0(0.0) 73.0(0.0) 54.2(0.0) 50.0(0.2) 28.0(0.0) / 15.0(0.0) 0.0(0.0) 0.0(0.0) 23.4(0.3)

codegen-16B-mono 64.2(0.3) 70.0(0.0) 45.0(0.0) 22.5(0.0) 28.6(0.9) 27.0(0.0) / 15.7(0.0) 0.0(0.0) 0.0(0.0) 14.6(0.2)
Sys. Prompt + Alignment

llama-30b 100.0(0.0) 94.0(0.0) 79.0(0.0) 80.8(0.0) 5.7(0.0) 10.0(0.0) / 10.3(0.0) 0.6(0.0) - -
starcoder 98.7(0.2) 97.0(0.0) 79.0(0.0) 84.2(0.0) 10.0(0.0) 18.0(0.0) / 10.3(0.0) 0.0(0.0) - -

codegen-16B-mono 99.0(0.0) 96.0(0.0) 77.0(0.0) 75.8(0.0) 8.6(0.0) 7.0(0.0) / 10.0(0.0) 25.7(0.0) - -
3-shot + Alignment

llama-30b 100.0(0.0) 94.0(0.0) 88.0(0.0) 89.2(0.0) 4.3(0.0) 20.0(0.0) / 26.3(0.0) 19.5(0.0) 15.1(0.0) 6.9(0.2)
starcoder 100.0(0.0) 96.0(0.0) 91.0(0.0) 84.2(0.0) 15.7(0.0) 48.0(0.0) / 21.3(0.0) 0.0(0.0) 0.0(0.0) 13.9(0.3)

codegen-16B-mono 99.0(0.0) 97.9(0.2) 80.0(0.0) 77.5(0.0) 16.4(0.9) 38.0(0.0) / 18.6(0.0) 6.5(0.0) 17.5(0.0) 16.2(0.0)
Prompt + 3-shot + Alignment

llama-30b 100.0(0.0) 94.0(0.0) 87.0(0.0) 85.8(0.0) 2.9(0.0) 16.0(0.0) / 24.3(0.0) 0.0(0.0) 0.0(0.0) 7.5(0.1)
starcoder 99.0(0.0) 97.0(0.0) 83.0(0.0) 80.8(0.0) 21.2(0.3) 31.0(0.0) / 18.4(0.0) 0.0(0.0) 0.0(0.0) 13.9(0.3)

codegen-16B-mono 97.7(0.2) 99.0(0.0) 82.0(0.0) 77.5(0.0) 19.8(0.3) 29.0(0.0) / 17.2(0.0) 0.0(0.0) 3.5(0.0) 16.2(0.0)

when using in-context demonstrations, than the conventional loss which only backpropagates
the loss associated with the API calls for the last goal.

C.3 Training details

We finetune each model on the same dataset created with the method described in Section
C.1 for 8 epochs. We use a max sequence length of 2048 without packing and mix the
data from all the tasks into a single dataset with random shuffling. In each sample, all the
goal-action pairs are from the same task. We report the validation accuracy on the best
checkpoint. We use a batch size of 16 and a constant learning rate of 1e� 5 for each model
and train on an internal cluster of 4 A100 GPU’s, each with 80GB RAM.

C.4 Extended results for Section 6

We list out the detailed results of Section 6 in Table 11, where we report the model
performance on all the possible combinations of the three proposed techniques. The main
observations are all covered in Section 6. We run each job 3 times, and report the mean and
standard deviation of the main metrics. Their are some inevitable randomness happens in
API or example retrieval, public API services and the environment provided in Webshop

23



Under review as a conference paper at ICLR 2024

and Tabletop. Even though randoness exists, we observe that they barely change the final
results. Thus, we only report the mean value everywhere else in the paper.

24



Under review as a conference paper at ICLR 2024

D API Selection Complexity Score

D.1 Complexity score

This section introduces a complexity score system designed to measure the intrinsic complexity
and difficulty of the tasks from ToolBench. The complexity score system aims to provide a
quantitative measure of the intrinsic complexity of the tests given the examples by calculating
the probability of the tests being derived or converted from the examples; and the derivation
or conversion is performed in a random system with all possible outcomes equally likely.
This score serves to assess the inherent level of difficulty involved in transitioning from one
scenario to another, thereby assisting researchers and developers in benchmark evaluation
and analysis.

D.1.1 The likelihood of a test being derived from an example

In the complexity score system proposed herein, the calculation of the complexity score
involves assessing the probability or likelihood of the tests being derived from an example in
the particular task. Given a demonstration example e and a set of API functions D, the
derivation of a particular test sample t involves two major steps: 1) remove all the unused
API calls while keeping all the necessary ones and 2) insert the new API calls that e does not
cover. Given a random system, where all possible outcomes are equally likely, we suppose
the deletion possibility of each API call from e is 50%, while the insertion possibilities of
the correct API call is 1/|D|, where |D| is the total number of API functions of the given
task. If t or e contains multiple calls to the same API function, we consider them as different
API calls, because they are usually not interchangeable. Based on these assumptions, the
likelihood of generating a test sample t is calculated using Equation (1).

p(t | e,D) =

✓
1

2

◆|e| ✓ 1

|D|

◆|t\e|
(1)

where |e| represents the number of API calls in the example e, and |t \ e| is the number of
uncovered API calls in the test sample. Suppose we have a task that has 10 API functions
in total {ai}101 , and the demonstration example covers {a1, a2, a3, a4}, but the test sample
requires {a1, a2, a6, a4, a5}. In the first step, the probability of successfully dropping a3 while
keeping the rest ones in e is

�
1
2

�4. Then, the probability of correctly adding in the uncovered
ones, a5 and a6, is

�
1
10

�2. Note that we do not take the order of API calls into consideration
for the purpose of being simple without losing generosity.

D.1.2 The distance between a test and example pair

We first define the distance d between one particular test and example pair by take the
logarithm of the reciprocal of Equation (1) as:

d(t, e) = log


1

p(t | e,D)

�
(2)

The use of the reciprocal in the expression aligns the complexity score with the definition
of complexity, where a higher score indicates a greater level of complexity. Additionally,
applying the logarithm to the reciprocal value aids in addressing the magnitude gap. The
logarithm function compresses the range of values, reducing the impact of extreme values
and creating a more manageable scale. This normalization ensures that the complexity score
is not disproportionately influenced by outliers or extreme values, providing a more balanced
representation of complexity across the range of input values. By combining the reciprocal
and logarithm, the expression effectively balances the score by aligning it with the definition
of complexity and mitigating the impact of magnitude differences in the input values.

25



Under review as a conference paper at ICLR 2024

D.1.3 Complexity score of a task

Based on the complexity score of generating a test from an example, we can construct the
complexity score S of a given task. The score S = f(T ,X ,D) is a function of the test
samples T , the demonstration examples X and the API functions D of each task.

S(T ,X ,D) = Et2T mine2X d(t, e)

= Et2T mine2X log


1

p(t | e,D)

�

= �Et2T maxe2X log

"✓
1

2

◆|e| ✓ 1

|D|

◆|t\e|
# (3)

This score ranges from zero to infinity. The larger the score is, the more challenging a task is
in terms of API selection. We calculate this score for both the original ToolBench (Table 3)
and the training data we created for alignment Table 9. They share the same D and T , but
have a different X , so that their API selection complexities are different for each task.

D.2 Complexity score on the ToolBench

In this section we demonstrate how the complexity score behaves on the ToolBench.

D.2.1 Computation details

For the Trip Booking, Home Search, Virtual Home, and Google Sheets tasks, the set of API
functions D is the same as described in appendix A. For the single-step, single-API-call tasks,
Open Weather and The Cat API, each valid URL with parameters is treated as a unique
API option in set D. In total, Open Weather has 37 API options, while The Cat API has 52
API options. In the case of the Tabletop task, since there are no predefined correct answers
for the test cases, we divide the three set of "Tabletop Manipulation" examples18 into 65
single-step samples. Note that for the WebShop task, since there are only two API functions
always covered by the example set, the complexity score is 0 by definition.

D.2.2 Reversed-F1 Score

For comparison purpose, we also consider the simple Reversed-F1 (r-F1) distance dr�F1,
derived from the conventional F1 score[69], between one particular test and example pair as

dr�F1(t, e) = (1� F1(t, e)) ⇤ 100 (4)
We multiply 100 to the score to align with the range of the complexity score defined above.
Follow the same definition proposed in appendix D.1.3, we can construct the r-F1 score
Sr�F1 of a given task as:

Sr�F1(T ,X ) = Et2T mine2X dr�F1(t, e)

= Et2T mine2X [(1� F1(t, e)) ⇤ 100]
(5)

D.2.3 Measurements

Table 12: Spearman’s Correlation Coefficients

GPT-4 LLaMA CodeGen StarCoder
Complexity 0.2 1.0 1.0 0.7

r-F1 -0.3 0.7 0.7 0.3

In this section, Spearman’s Cor-
relation Coefficient (SCC) [70]
is employed to assess the effec-
tiveness of the proposed com-
plexity score. The evaluation
involves the analysis of five dif-
ferent tasks using three models:
GPT-4, LLaMA-30b, CodeGen-16b, and StarCoder. We only include the five tasks without

18https://code-as-policies.github.io/

26



Under review as a conference paper at ICLR 2024

Figure 7: Spearman’s correlation coefficient(SCC) is computed separately for two comparisons:
(1) complexity score and error rate, and (2) reversed F1 score and error rate on five tasks: (1)
Open Weather, (2) The Cat API, (3) Home Search, (4) Trip Booking, and (5) Virtual Home.

advanced reasoning from table 3, as the advanced reasoning breaks the correlation between
the API selection difficulty and the final model performance. The complexity score and the
r-F1 score are calculated for each task. SCC is then computed separately for two comparisons:
(1) complexity score and error rate, and (2) reversed F1 score and error rate, for all five
tasks. The results are illustrated in fig. 7 and table 12.

The findings of the study reveal near-perfect Spearman’s correlation coefficient (SCC)
between the complexity score and the error rate for the LLaMA-30b, CodeGen-16b and
StarCoder models. This strong correlation indicates that the proposed complexity score
system accurately captures the intrinsic difficulty of these tasks.

For more powerful models like GPT4, which exhibit near-perfect accuracy (above 93%) for
low-complexity tasks (complexity < 12) such as Open Weather, The Cat API, Home Search,
and Trip Booking, the SCC becomes relatively sensitive to any randomness or turbulence
during the experiments. Consequently, the complexity score system shows a non-perfect
SCC of 0.2 in this case.

Despite the sensitivity of the SCC in the GPT4 experiments, the complexity score remains a
superior indicator of task difficulty compared to the r-F1 score. It effectively captures the
inherent difficulty of each task and provides valuable insights into task complexity. Overall,
complexity score is more effective at capturing the inherent difficulty of each task, thus
providing valuable insights into task complexity.

The obtained results provide empirical evidence supporting the validity and reliability of the
proposed complexity score system. The high SCC values signify a consistent relationship
between the complexity score and the error rate across different models and tasks. This
correlation strengthens the argument that the complexity score accurately captures the
complexity and difficulty of the benchmarks, enabling researchers and developers to assess
and compare the inherent challenges associated with different tasks.

27


	Introduction
	Background
	Challenges for open-source LLMs
	Boosting Open-source LLMs for Tool Manipulation
	Multi-tool model alignment with programmatic data curation
	Demonstration retrieval
	Generation regulation with system prompts

	ToolBench: A New Tool Manipulation Benchmark
	Software tools and evaluation infrastructure
	Level of challenges

	Experiment
	Experiment Setup
	Capability Gap
	Boosting open-source LLMs
	Ablation Study

	Related work
	Conclusion
	Benchmark Details
	OpenWeather
	The Cat API
	Home Search
	Trip Booking
	Google Sheets
	Virtual Home
	WebShop
	Tabletop

	Comprehensive Model Evaluation on the ToolBench
	System Prompt
	Models
	Evaluation
	ToolBench performance of different models

	Experiment Details
	Training data
	All-shot loss
	Training details
	Extended results for sec:experiments

	API Selection Complexity Score
	Complexity score
	The likelihood of a test being derived from an example
	The distance between a test and example pair
	Complexity score of a task

	Complexity score on the ToolBench
	Computation details
	Reversed-F1 Score
	Measurements



