
Under review as a conference paper at ICLR 2024

A RELATED WORKS

Poisoning/backdoor attacks and defenses in FL. Various methods for compromising the integrity
of a federated learning target model have been introduced, including targeted poisoning attacks which
strive to misclassify a particular group of inputs, as explored in the studies by (Bhagoji et al., 2019;
Baruch et al., 2019). Other techniques, such as those studied by (Fang et al., 2020; Xie et al., 2020;
Shejwalkar & Houmansadr, 2021), focus on untargeted attacks with the aim of diminishing the overall
model accuracy. The majority of existing strategies often utilize heuristics-based methods (e.g., (Xie
et al., 2020)), or they focus on achieving a short-sighted goal ( (Fang et al., 2020; Shejwalkar &
Houmansadr, 2021)). On the other hand, malicious participants can easily embed backdoors into
the aggregated model while maintaining the model’s performance on the main task with model
replacement Bagdasaryan et al. (2020). To enhance the surreptitious nature of these poisoned updates,
triggers can be distributed across multiple cooperative malicious devices, as discussed by Xie et
al. (2019)(Xie et al., 2019), and edge-case backdoors can be employed, as demonstrated by Wang
et al. (2020) (Wang et al., 2020). However, these methods can be sub-optimal, especially when
there’s a need to adopt a robust aggregation rule. Additionally, these traditional methods typically
demand access to the local updates of benign agents or precise parameters of the global model for
the upcoming round (Xie et al., 2020; Fang et al., 2020) in order to enact a significant attack. In
contrast to these methods, RL-based approach Li et al. (2022a); Shen et al. (2021); Li et al. (2023)
employs reinforcement learning for the attack, reducing the need for extensive global knowledge
while focusing on a long-term attack goal.
Several defensive strategies have been suggested to counter model poisoning attacks, which broadly
fall into two categories: those based on robust aggregation and those centered around detection.
Robust-aggregation-based defenses encompass techniques such as dimension-wise filtering. These
methods treat each dimension of local updates individually, as explored in studies by (Bernstein
et al., 2018; Yin et al., 2018). Another strategy is client-wise filtering, the goal of which is to limit
or entirely eliminate the influence of clients who might harbor malicious intent. This approach
has been examined in the works of (Blanchard et al., 2017; Pillutla et al., 2022; Sun et al., 2019).
Some defensive methods necessitate the server having access to a minimal amount of root data,
as detailed in the study by Cao et al. (2021). Naive backdoor attacks are limited by even simple
defenses like norm-bounding (Sun et al., 2019) and weak differential private (Geyer et al., 2017)
defenses. Despite to the sophisticated design of state-of-the-art non-addaptive backdoor attacks
against federated learning, post-training stage defenses (Wu et al., 2020; Nguyen et al., 2021; Rieger
et al., 2022) can still effectively erase suspicious neurons/parameters in the backdoored model.

Multi-agent meta learning. Meta-learning, and in particular meta-reinforcement-learning aim to
create a generalizable policy that can fast adapt to new tasks by exploiting knowledge obtained from
past tasks Duan et al. (2016); Finn et al. (2017). The early use cases of meta-learning have been
primarily single-agent tasks, such as few-shot classification and single-agent RL Finn et al. (2017).
A recent research thrust is to extend the meta-learning idea to multi-agent systems (MAS), which
can be further categorized into two main directions: 1) distributed meta-learning in MAS Kayaalp
et al. (2022); Zhang et al. (2022); 2) meta-learning for generalizable equilibrium-seeking Gupta et al.
(2021); Harris et al. (2022); Zhao & Zhu (2022); Ge et al. (2023). The former focuses on a decentral-
ized operation of meta-learning over networked computation units to reduce computation/storage
expenses. The latter is better aligned with the original motivation of meta-learning, which considers
how to solve a new game (or multi-agent decision-making) efficiently by reusing past experiences
from similar occasions.
In stark contrast to the existing research efforts, our work leverages the adaptability of meta-learning
to address information asymmetry in dynamic games of incomplete information, leading to a new
equilibrium concept: meta-equilibrium (see Definition 2.1). What distinguishes our work from the
aforementioned ones is that 1) every entity in our meta-SG is a self-interest player acting rationally
without any coordination protocol; 2) meta-learning in our work is beyond a mere solver for computing
long-established equilibria (e.g., Stackelberg equilibrium); it brings up a non-Bayesian approach to
processing information in dynamic games (see Appendix C), which is computationally more tractable.
This meta-equilibrium notion has been proven effective in combating information asymmetry in
adversarial FL. Since asymmetric information is prevalent in security studies, our work can shed light
on other related problems.

First-order methods in bilevel optimization. The meta-SG problem in (3) amounts to a stochastic
bilevel optimization. The meta-SL in Algorithm 1 admits a much simpler gradient estimation than
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what one would often observe in the bilevel optimization literature (Chen et al., 2023; Kwon et al.,
2023), where the gradient estimate for the upper-level problem involves a Hessian inverse (Chen
et al., 2023) or some first-order correction terms (Kwon et al., 2023). The key intuition behind
this simplicity lies in the strict competitiveness (see Assumption 3.3). Informally speaking, (3) is
more akin to minimax programming (Nouiehed et al., 2019; Li et al., 2022b), even though it is
a general-sum game. However, the data-driven meta-adaptation within the value function in (3)
leads to a more involved gradient estimation. since the data induces extra randomness in addition to
policy gradient estimates (Fallah et al., 2021a). Perhaps, the closest to our work is (Li et al., 2022b),
where the authors investigate adversarial meta-RL and arrive at a similar Stackelberg formulation.
However, Li et al. (2022b) consider a minimax relaxation to the original Stackelberg formulation,
leading to simpler nonconvex programming. Our work is among the first endeavors to investigate
fully first-order algorithms for solving general-sum Stackelberg games.

B ALGORITHMS

This section elaborates on meta-learning defense in equation 1 and meta-Stackelberg learning in
equation 3. To begin with, we first review the policy gradient method Sutton et al. (2000) in RL
and its Monte-Carlo estimation. To simplify our exposition, we fix the attacker’s policy ϕ, and then
BSMG reduces to a single-agent MDP, where the optimal policy to be learned is the defender’s θ.

Policy Gradient The idea of the policy gradient method is to apply gradient ascent to the value
function JD. Following Sutton et al. (2000), we obtain ∇θJD := Eτ∼q(θ)[g(τ ; θ)], where g(τ ; θ) =∑H

t=1∇θ log π(a
t
D|st; θ)R(τ) and R(τ) =

∑H
t=1 γ

tr(st, atD). Note that for simplicity, we suppress
the parameter ϕ, ξ in the trajectory distribution q, and instead view it as a function of θ. In numerical
implementations, the policy gradient∇θJD is replaced by its Monte-Carlo (MC) estimation using
sample trajectory. Suppose a batch of trajectories {τi}Nb

i=1, and Nb denotes the batch size, then the
MC estimation is

∇̂θJD(θ, τ) := 1/Nb

∑
τi

g(τi; θ). (B1)

The same deduction also holds for the attacker’s problem when fixing the defense θ.

Meta-Learning FL Defense As discussed in Section 2.3, meta-learning-based defense (meta
defense) mainly targets non-adaptive attack methods, where πA(·;ϕ, ξ) is a pre-fixed attack strategy
following some rulebook, such as IPM Xie et al. (2020) and LMP Fang et al. (2020). In this case, the
BSMG reduces to single-agent MDP for the defender, where the transition kernel is determined by
the attack method. Mathematically, the meta-defense problem is given by

max
θ,Ψ

Eξ∼Q(·)[JD(Ψ(θ, τ), ϕ, ξ)]. (B2)

Since the attack type is hidden from the defender, the adaptation mapping Ψ is usually defined in a
data-driven manner. For example, Ψ(θ, τ) can be defined as a one-step stochastic gradient update
with learning rate η: Ψ(θ, τ) = θ + η∇̂JD(τξ) Finn et al. (2017) or a recurrent neural network in
Duan et al. (2016). This work mainly focuses on gradient adaptation for the purpose of deriving
theoretical guarantees in Appendix D.
With the one-step gradient adaptation, the meta-defense problem in equation B2 can be simplified as

max
θ

Eξ∼Q(·)Eτ∼q(θ)[JD(θ + η∇̂θJD(τ), ϕ, ξ)]. (B3)

Recall that the attacker’s strategy is pre-determined, ϕ, ξ can be viewed as fixed parameters, and
hence, the distribution q is a function of θ. To apply the policy gradient method to equation B3, one
needs an unbiased estimation of the gradient of the objective function in equation B3. Consider the
gradient computation using the chain rule:

∇θEτ∼q(θ)[JD(θ + η∇̂θJD(τ), ϕ, ξ)]

= Eτ∼q(θ){∇θJD(θ + η∇̂θJD(τ), ϕ, ξ)(I + η∇̂2
θJD(τ))︸ ︷︷ ︸

①

+ JD(θ + η∇̂θJD(τ))∇θ

H∑
t=1

π(at|st; θ)︸ ︷︷ ︸
②

}.
(B4)
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The first term results from differentiating the integrand JD(θ + η∇̂θJD(τ), ϕ, ξ) (the expectation is
taken as integration), while the second term is due to the differentiation of q(θ). One can see from the
first term that the above gradient involves a Hessian ∇̂2JD, and its sample estimate is given by the
following. For more details on this Hessian estimation, we refer the reader to Fallah et al. (2021a).

∇̂2JD(τ) =
1

Nb

Nb∑
i=1

[g(τi; θ)∇θ log q(τi; θ)
T +∇θg(τi; θ)] (B5)

Finally, to complete the sample estimate of∇θEτ∼q(θ)[JD(θ + η∇̂θJD(τ), ϕ, ξ)], one still needs to
estimate ∇θJD(θ + η∇̂θJD(τ), ϕ, ξ) in the first term. To this end, we need to first collect a batch
of sample trajectories τ ′ using the adapted policy θ′ = θ + η∇̂θJD(τ). Then, the policy gradient
estimate of ∇̂θJD(θ

′) proceeds as in equation B1. To sum up, constructing an unbiased estimate of
equation B4 takes two rounds of sampling. The first round is under the meta policy θ, which is used
to estimate the Hessian equation B5 and to adapt the policy to θ′. The second round aims to estimate
the policy gradient∇θJD(θ + η∇̂θJD(τ), ϕ, ξ) in the first term in equation B4.
In the experiment, we employ a first-order meta-learning algorithm called Reptile Nichol et al. (2018)
to avoid the Hessian computation. The gist is to simply ignore the chain rule and update the policy
using the gradient ∇θJD(θ

′, ϕ, ξ)|θ′=θ+η∇̂θJD(τ). Naturally, without the Hessian term, the gradient
in this update is biased, yet it still points to the ascent direction as argued in Nichol et al. (2018),
leading to effective meta policy. The advantage of Reptile is more evident in multi-step gradient
adaptation. Consider a l-step gradient adaptation, the chain rule computation inevitably involves
multiple Hessian terms (each gradient step brings a Hessian term) as shown in (Fallah et al., 2021a,
Theorem 2). In contrast, Reptile only requires first-order information, and the meta-learning algorithm
(l-step adaptation) is given by Algorithm 2.

Algorithm 2 Reptile Meta-Reinforcement Learning with l-step adaptation
1: Input: the type distribution Q(ξ), step size parameters κ, η
2: Output: θT
3: randomly initialize θ0

4: for iteration t = 1 to T do
5: Sample a batch Ξ̂ of K attack types from Q(ξ);
6: for each ξ ∈ Ξ̂ do
7: θtξ(0)← θt

8: for k = 0 to l − 1 do
9: Sample a batch trajectories τ of the horizon length H under θtξ(k);

10: Evaluate ∇̂θJD(θ
t
ξ(k), τ) using MC in equation B1;

11: θtξ(k + 1)← θtξ(k) + κ∇̂θJD(θ
t, τ)

12: end for
13: end for
14: Update θt+1 ← θt + 1/K

∑
ξ∈Ξ̂(θ

t
ξ(l)− θt);

15: end for

Meta-Stackelberg Learning Recall that in meta-SE, the attacker’s policy ϕ∗
ξ is not pre-fixed.

Instead, it is the best response to the defender’s adapted policy as shown in equation 3. To obtain
this best response, one needs alternative training: fixing the defense policy, and applying gradient
ascent to the attacker’s problem until convergence. It should be noted that the proposed meta-SL
utilizes the unbiased gradient estimation in equation B5, which paves the way for theoretical analysis
in Appendix D. Yet, we turn to the Reptile to speed up pre-straining in the experiments. We present
both algorithms in Algorithm 3, and only consider one-step adaptation for simplicity. The multi-step
version is a straightforward extension of Algorithm 3.

C FURTHER JUSTIFICATION ON META EQUILIBRIUM

This section offers further justification for the meta-equilibrium, and we argue that meta-equilibrium
provides a data-driven approach to address incomplete information in dynamic games. Note that
information asymmetry is prevalent in the adversarial machine learning context, where the attacker
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Algorithm 3 (Reptile) Meta-Stackelberg Learning with one-step adaptation
1: Input: the type distribution Q(ξ), initial defense meta policy θ0, pre-trained attack policies
{ϕ0

ξ}ξ∈Ξ, step size parameters κD, κA, η, and iterations numbers NA, ND;
2: Output: θND

3: for iteration t = 0 to ND − 1 do
4: Sample a batch Ξ̂ of K attack types from Q(ξ);
5: for each ξ ∈ Ξ̂ do
6: Sample a batch of trajectories using ϕt and ϕt

ξ;
7: Evaluate ∇̂θJD(θt, ϕt

ξ, ξ) using equation B1;
8: Perform one-step adaptation θtξ ← θt + η∇̂θJD(θtξ(k), ϕ

t
ξ, ξ);

9: ϕt
ξ(0)← ϕt

ξ;
10: for k = 0, . . . , NA − 1 do
11: Sample a batch of trajectories using θtξ and ϕt

ξ(k);
12: ϕt

ξ(k + 1)← ϕt
ξ(k) + κA∇̂ϕJA(θ

t
ξ, ϕ

t
ξ(k), ξ);

13: end for
14: if Reptile then
15: Sample a batch of trajectories using θtξ and ϕt

ξ(NA);
16: Evaluate ∇̂JD(ξ) := ∇̂θJD(θ, ϕ

t
ξ(NA), ξ)|θ=θt

ξ
using equation B1;

17: else
18: Sample a batch of trajectories using θt and ϕt

ξ(NA);
19: Evaluate the Hessian using equation B5;
20: Sample a batch of trajectories using θtξ and ϕt

ξ(NA);
21: Evaluate ∇̂JD(ξ) := ∇̂θJD(θ

t
ξ, ϕ

t
ξ(NA), ξ) using equation B4;

22: end if
23: θ̄tξ ← θt + κD∇̂JD(ξ);
24: end for
25: θt+1 ← θt + 1/K

∑
ξ∼Ξ̂(θ̄

t
ξ − θt), ϕt+1

ξ ← ϕt
ξ(NA);

26: end for

enjoys an information advantage (e.g., the attacker’s type). The proposed meta-equilibrium notion
can shed light on these related problems beyond the adversarial FL context.

We begin with the insufficiency of Bayesian Stackelberg equilibrium equation 2 in handling informa-
tion asymmetry, a customary solution concept in security studies Li et al. (2022d). One can see from
equation 2 that such an equilibrium is of ex-ante type: the defender’s strategy is determined before the
game starts. It targets an “representative” attacker (an average of all types). As the game unfolds, new
information regarding the attacker’s private type is revealed (e.g., through the global model updates).
However, this ex-ante strategy does not enable the defender to handle this emerging information as
the game proceeds. Using game theory language, the defender fails to adapt its strategy in the interim
stage.

To create interim adaptability in this dynamic game of incomplete information, one can consider
introducing the belief system to capture the defender’s learning process on the hidden type. Let It
be the defender’s observations up to time t, i.e., It := (sk, akD)

t
k=1s

t+1. Denote by B the belief
generation operator bt+1(ξ) = B[It]. With the Bayesian equilibrium framework, the belief generation
can be defined recursively as below

bt+1(ξ) = B[st, atD, bt] :=
bt(ξ)πA(a

t
A|st; ξ)T (st+1|st, atA, atD)∑

ξ′ b
t(ξ′)πA(atA|st; ξ′)T (st+1|st, atA, atD)

. (C1)

Since bt is the defender’s belief on the hidden type at time t, its belief-dependent Markovian strategy
is defined as πD(s

t, bt). Therefore, the interim equilibrium, also called Perfect Bayesian Equilibrium
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(PBE) Fudenberg & Tirole (1991) is given by a tuple (π∗
D, π

∗
A, {bt}Ht=1) satisfying

π∗
D = argmaxEξ∼QEπD,π∗

A
[

H∑
t=1

rD(s
t, atD, a

t
A)b

t(ξ)]

π∗
A = argmaxEπD,πA [

H∑
t=1

rA(s
t, atD, a

t
A)],∀ξ,

{bk}Hk=1 satisfies (C1) for realized actions and states.

(PBE)

In contrast with (2), this perfect Bayesian equilibrium notion (PBE) enables the defender to make
good use of the information revealed by the attacker, and subsequently adjust its actions according
to the revealed information through the belief generation. From a game-theoretic viewpoint, both
(PBE) and (3) create strategic online adaptation: the defender can infer and adapt to the attacker’s
private type through the revealed information since different types aim at different objectives, hence,
leading to different actions. Compared with PBE, the proposed meta-equilibrium notion is better
suited for large-scale complex systems where players’ decision variables can be high-dimensional
and continuous, as argued in the ensuing paragraph.
To achieve the strategic adaptation, PBE relies on the Bayesian-posterior belief updates, which soon
become intractable as the denominator in equation C1 involves integration over high-dimensional
space and discretization inevitably leads to the curse of dimensionality. Despite the limited practicality,
PBE is inherently difficult to solve, even in finite-dimensional cases. It is shown in Bhaskar et al.
(2016) that the equilibrium computation in games with incomplete information is NP-hard, and
how to solve for PBE in dynamic games remains an open problem. Even though there have been
encouraging attempts at solving PBE in two-stage games Li & Zhu (2023), it is still challenging to
address PBE computation in generic Markov games.

D THEORETICAL RESULTS

D.1 EXISTENCE OF META-SG
Theorem D.1 (Theorem 3.2). Under the conditions that Θ and Φ are compact and convex, the
meta-SG admits at least one meta-FOSE.

Proof. Clearly, Θ × Φ|Ξ| is compact and convex, let ϕ ∈ Φ|Ξ|, ϕξ ∈ Φ be the (type-aggregated)
attacker’s strategy, since the consider twice continuously differentiable utility functions ℓD(θ, ϕ) :=
Eξ∼QLD(θ, ϕξ, ξ) and ℓξ(θ, ϕ) := LA(θ, ϕξ, ξ) for all ξ ∈ Ξ. Then, there exists a constant γc > 0,
such that the auxiliary utility functions:

ℓ̃D(θ; (θ
′, ϕ′)) ≡ ℓD(θ, ϕ)−

γc
2
∥θ − θ′∥2

ℓ̃ξ(ϕξ; (θ
′, ϕ′) ≡ ℓξ(θ

′, (ϕξ, ϕ
′
−ξ))−

γc
2
∥ϕξ − ϕ′

ξ∥2 ∀ξ ∈ Ξ
(D2)

are γc-strongly concave in spaces θ ∈ Θ, ϕξ ∈ Φ for all ξ ∈ Ξ, respectively for any fixed (θ′, ϕ′) ∈
Θ× Φ|Ξ|.
Define the self-map h : Θ× Φ|Ξ| → Θ× Φ|Ξ| with h(θ′, ϕ′) ≡ (θ̄(θ′, ϕ′), ϕ̄(θ′, ϕ′)), where

θ̄(θ′, ϕ′) = argmax
θ∈Θ

ℓ̃D(θ, ϕ
′), ϕ̄ξ(θ

′, ϕ′) = argmax
ϕξ∈Φ

ℓ̃ξ(θ
′, (ϕξ, ϕ

′
−ξ)).

Due to compactness, h is well-defined. By strong concavity of ℓ̃D(·; (θ′, ϕ′)) and ℓ̃ξ(·; (θ′, ϕ′)), it
follows that θ̄, ϕ̄ are continuous self-mapping from Θ × Φ|Ξ| to itself. By Brouwer’s fixed point
theorem, there exists at least one (θ∗, ϕ∗) ∈ Θ× Φ|Ξ| such that h(θ∗, ϕ∗) = (θ∗, ϕ∗). Then, one can
verify that (θ∗, ϕ∗) is a meta-FOSE of the meta-SG with utility function ℓD and ℓξ , ξ ∈ Ξ, in view of
the following inequality

⟨∇θ ℓ̃D(θ
∗; (θ∗, ϕ∗)), θ − θ∗⟩ = ⟨∇θℓD(θ

∗, ϕ∗), θ − θ∗⟩
⟨∇ϕξ

ℓ̃ξ(θ
∗; (θ∗, ϕ∗)), ϕξ − ϕ∗

ξ⟩ = ⟨∇ϕξ
ℓξ(θ

∗, ϕ∗), ϕξ − ϕ∗
ξ⟩,

therefore, the equilibrium conditions for meta-SG with utility functions ℓ̃D and {ℓ̃ξ}ξ∈Ξ are the same
as with utility functions ℓD and {ℓξ}ξ∈Ξ, hence the claim follows.
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D.2 PROOFS: NON-ASYMPTOTIC ANALYSIS

In the sequel, we make the following smoothness assumptions for every attack type ξ ∈ Ξ. In
addition, we assume, for analytical simplicity, that all types of attackers are unconstrained, i.e., Φ is
the Euclidean space with proper finite dimension.
Assumption D.2 ((ξ-wise) Lipschitz smoothness). The functions LD and LA are continuously
diffrentiable in both θ and ϕ. Furthermore, there exists constants L11, L12, L21, and L22 such that
for all θ, θ1, θ2 ∈ Θ and ϕ, ϕ1, ϕ2 ∈ Φ, we have, for any ξ ∈ Ξ,

∥∇θLD (θ1, ϕ, ξ)−∇θLD (θ2, ϕ, ξ)∥ ≤ L11 ∥θ1 − θ2∥ (D3)
∥∇ϕLD (θ, ϕ1, ξ)−∇ϕLD (θ, ϕ2, ξ)∥ ≤ L22 ∥ϕ1 − ϕ2∥ (D4)
∥∇θLD (θ, ϕ1, ξ)−∇θLD (θ, ϕ2, ξ)∥ ≤ L12 ∥ϕ1 − ϕ2∥ (D5)
∥∇ϕLD (θ1, ϕ, ξ)−∇ϕLD (θ2, ϕ, ξ)∥ ≤ L12 ∥θ1 − θ2∥ (D6)
∥∇ϕLA(θ, ϕ1, ξ)−∇ϕLA(θ, ϕ2, ξ)∥ ≤ L21∥ϕ1 − ϕ2∥. (D7)

Lemma D.3 (Implicit Function Theorem (IFT) for Meta-SG). Suppose for (θ̄, ϕ̄) ∈ Θ × Φ|Ξ|,
ξ ∈ Ξ we have ∇ϕLA(θ̄, ϕ̄, ξ) = 0 the Hessian ∇2

ϕLA(θ̄, ϕ̄, ξ) is non-singular. Then, there exists
a neighborhood Bε(θ̄), ε > 0 centered around θ̄ and a C1-function ϕ(·) : Bε(θ̄)→ Φ|Ξ| such that
near (θ̄, ϕ̄) the solution set {(θ, ϕ) ∈ Θ× Φ|Ξ| : ∇ϕLA(θ, ϕ, ξ) = 0} is a C1-manifold locally near
(θ̄, ϕ̄). The gradient∇θϕ(θ) is given by −(∇2

ϕLA(θ, ϕ, ξ))
−1∇2

ϕθLA(θ, ϕ, ξ).
Lemma D.4. Under assumptions D.2, 3.4, there exists {ϕξ : ϕξ ∈ argmaxϕ LA(θ, ϕ, ξ)}ξ∈Ξ, such
that

∇θV (θ) = ∇θEξ∼Q,τ∼qJD(θ + η∇̂θJD(τ), ϕξ, ξ).

Moreover, the function V (θ) is L-Lipschitz-smooth, where L = L11 +
L12L21

µ

∥∇θV (θ1)−∇θV (θ2)∥ ≤ L∥θ1 − θ2∥.

Proof of Lemma D.4. First, we show that for any θ1, θ2 ∈ Θ, ξ ∈ Ξ, and ϕ1 ∈
argmaxϕ LA(θ1, ϕ, ξ), there exists ϕ2 ∈ argmaxϕ LA(θ2, ϕ, ξ) such that ∥ϕ1 − ϕ2∥ ≤ L12

µ ∥θ1 −
θ2∥. Indeed, based on smoothness assumption equation D7 and equation D6,

∥∇ϕLA(θ1, ϕ1, ξ)−∇ϕLA(θ2, ϕ1, ξ)∥ ≤ L21∥θ1 − θ2∥,
∥∇ϕLD(θ1, ϕ1, ξ)−∇ϕLD(θ2, ϕ1, ξ)∥ ≤ L12∥θ1 − θ2∥.

Since ϕ2 ∈ argmaxϕ LA(θ2, ϕ, ξ),∇ϕLA(θ2, ϕ2, ξ) = 0. Apply PL condition to ∇ϕLA(θ, ϕ2, ξ),

max
ϕ
LA(θ1, ϕ, ξ)− LA(θ1, ϕ2, ξ) ≤

1

2µ
∥∇ϕLA(θ1, ϕ2, ξ)∥2

=
1

2µ
∥∇ϕLA(θ1, ϕ2, ξ)−∇ϕLA(θ2, ϕ2, ξ)∥2

≤ L2
21

2µ
∥θ1 − θ2∥2 by equation D7.

Since PL condition implies quadratic growth, we also have

LA(θ1, ϕ1, ξ)− LA(θ1, ϕ2, ξ) ≥
µ

2
∥ϕ1 − ϕ2∥2.

Combining the two inequalities above we obtain the Lipschitz stability for ϕ∗
ξ(·), i.e.,

∥ϕ1 − ϕ2∥ ≤
L21

µ
∥θ1 − θ2∥.

Second, show that∇θV (θ) can be directly evaluated at {ϕ∗
ξ}ξ∈Ξ. Inspired by Danskin’s theorem, we

first made the following argument, consider the definition of directional derivative. Let ℓ(θ, ϕ) :=
∇θEξ,τJD(θ + η∇̂JD(τ), ξ). For a constant τ and an arbitrary direction d,

ℓ(θ + τd, ϕ∗(θ + τd))− ℓ(θ, ϕ∗(θ)))

= ℓ(θ + τd, ϕ∗(θ + τd))− ℓ(θ + τd, ϕ∗(θ)) + ℓ(θ + τd, ϕ∗(θ))− ℓ(θ, ϕ∗(θ))

= ∇ϕℓ(θ + τd, ϕ∗(θ))⊤ [ϕ∗(θ + τd)− ϕ∗(θ))]︸ ︷︷ ︸
∆ϕ

+o(∆ϕ2)

+ τ∇θℓ(θ, ϕ
∗(θ))T d+ o(d2).
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Hence, a sufficient condition for the first equation is∇ϕℓ(θ + τd, ϕ∗(θ)) = 0, meaning that ℓD(θ, ϕ)
and LA(θ, ϕ, ξ) share the first-order stationarity at every ϕ when fixing θ. Indeed, by Lemma D.3,
we have, the gradient is locally determined by

∇θV = Eξ∼Q[∇θLD(θ, ϕξ, ξ) + (∇θϕξ(θ))
⊤∇ϕLD(θ, ϕξ, ξ)]

= Eξ∼Q

[
∇θLD(θ, ϕξ, ξ)− [(∇2

ϕLA(θ, ϕ, ξ))
−1∇2

ϕθLA(θ, ϕ, ξ)]
⊤∇ϕLD(θ, ϕξ, ξ)

]
.

Given a trajectory τ := (s1, atD, a
t
A, . . . , a

H
D , aHA , sH+1), let RD(τ, ξ) :=

∑H
t=1 γ

t−1rD(st, at, ξ)

and RD(τ, ξ) :=
∑H

t=1 γ
t−1rD(st, at, ξ). Denote by µ(τ ; θ, ϕ) the trajectory distribution, that the

log probability of µ is given by

logµ(τ ; θ, ϕ) =

H∑
t=1

(log πD(a
t
D|st; θ + η∇̂θJD(τ)) + log πA(a

t
A|st;ϕ) + logP (st+1|atD, atA, st)

According to the policy gradient theorem, we have

∇ϕLD(θ, ϕ, ξ) = Eµ[RD(τ, ξ)

H∑
t=1

∇ϕ log(πA(a
t
A|st;ϕ))],

∇ϕLA(θ, ϕ, ξ) = Eµ[RA(τ, ξ)

H∑
t=1

∇ϕ log(πA(a
t
A|st;ϕ))].

By SC Assumption 3.3, when∇ϕLA(θ, ϕ, ξ) = 0, there exists c < 0, d, such that∇ϕLD(θ, ϕ, ξ) =

Eµ[cRA(τ, ξ)
∑H

t=1∇ϕ log(πA(a
t
A|st;ϕ))] + Eµ[

∑H
t=1 γ

t−1d
∑H

t=1∇ϕ log(πA(a
t
A|st;ϕ))] = 0.

Hence∇θV = Eξ∼Q[∇θLD(θ, ϕξ, ξ)].
Third, V (θ) is also Lipschitz smooth. As we notice that, ℓD is Lipschitz smooth since Eξ∼Q is a
linear operator, we have,

∥∇θV (θ1)−∇θV (θ2)∥
≤ ∥∇θEξ∼QLD(θ1, ϕ1, ξ)−∇θEξ∼QLD(θ2, ϕ2, ξ)∥
= ∥∇θℓD(θ1, ϕ1)−∇θℓD(θ2, ϕ1) +∇θℓD(θ2, ϕ1)−∇θℓD(θ2, ϕ2)∥
≤ ∥∇θℓD(θ1, ϕ1)−∇θℓD(θ2, ϕ1)∥+ ∥∇θℓD(θ2, ϕ1)−∇θℓD(θ2, ϕ2)∥
≤ L11∥θ1 − θ2∥+ L12∥ϕ1 − ϕ2∥

≤ (L11 +
L12L21

µ
)∥θ1 − θ2∥,

which implies the Lipschitz constant L = L11 +
L12L21

µ .

It is impossible to present the convergence theory without the assistance of some standard assumptions
in batch reinforcement learning, of which the justification can be found in (Fallah et al., 2021a). We
also require some additional information about the parameter space and function structure. These
assumptions are all stated in Assumption D.5.
Assumption D.5.

(a) The following policy gradients are bounded, ∥∇ϕLD(θ, ϕ, ξ)∥ ≤ G2, ∥LA(θ, ϕ, ξ)∥ ≤ G2

for all θ, ϕ ∈ Θ× Φ and ξ ∈ Ξ.
(b) The policy gradient estimations are unbiased.
(c) The variances for the stochastic gradients are bounded, i.e., for all thetatξ, ϕ

t
ξ, ξ,

E[∥∇̂ϕJ(θ
t
ξ, ϕ

t
ξ, ξ)−∇ϕJ(θ

t
ξ, ϕ

t
ξ, ξ)∥2] ≤

σ2

Nb
.

(d) The parameter space Θ has diameter DΘ := supθ1,θ2∈Θ ∥θ1 − θ2∥; the initialization θ0

admits at most DV function gap, i.e., DV := maxθ∈Θ V (θ)− V (θ0).
(e) It holds that the parameters satisfy 0 < µ < −cL22.

Equipped with Assumption D.5 we are able to unfold our main result Theorem 3.6, before which
we show in Lemma D.6 that ϕ∗

ξ can be efficiently approximated by the inner loop in the sense that
∇θEξ∼QLD(θ

t, ϕt
ξ(NA), ξ) ≈ ∇θV (θt), where ϕt

ξ(NA) is the last iterate output of the attacker
policy.
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Lemma D.6. Under Assumption D.5, 3.4, 3.3, and D.2, let ρ := 1 + µ
cL22

∈ (0, 1), L̄ =

max{L11, L12, L22, L21, V∞} where V∞ := max{max ∥∇V (θ)∥, 1}. For all ε > 0, if the attacker
learning iteration NA and batch size Nb are large enough such that

NA ≥
1

log ρ−1
log

32D2
V (2V∞ + LDΘ)

4L̄|c|G2

L2µ2ε4

Nb ≥
32µL2

21D
2
V (2V∞ + LDΘ)

4

|c|L2
22σ

2L̄Lε4
,

then, for zt := ∇θEξ∼QLD(θ
t, ϕt

ξ(NA), ξ)−∇θV (θt),

E[∥zt∥] ≤
Lε2

4DV (2V∞ + LDΘ)2
,

and
E[∥∇ϕLA(θ

t, ϕt
ξ(N), ξ)∥] ≤ ε.

Proof of Lemma D.6. Fixing a ξ ∈ Ξ, due to Lipschitz smoothness,

LD(θ
t, ϕt

ξ(N), ξ)− LD(θ
t, ϕt

ξ(N − 1), ξ)

≤ ⟨∇ϕLD(θ
t, ϕt

ξ(N − 1), ξ), ϕt
ξ(N)− ϕt

ξ(N − 1)⟩+ L22

2
∥ϕt

ξ(N)− ϕt
ξ(N − 1)∥2.

The inner loop updating rule ensures that when κA = 1
L21

, ϕt
ξ(N) − ϕt

ξ(N − 1) =
1

L21
∇̂ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ). Plugging it into the inequality, we arrive at

LD(θ
t, ϕt

ξ(N), ξ)− LD(θ
t, ϕt

ξ(N − 1), ξ)

≤ 1

L21
⟨∇ϕLD(θ

t, ϕt
ξ(N − 1), ξ), ∇̂ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)⟩+ L22

2L2
21

∥∇̂ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2.

Therefore, we let (F t
n)0≤n≤N be the filtration generated by σ({ϕt

ξ(τ)}ξ∈Ξ|τ ≤ n) and take condi-
tional expectations on F t

n:

E[V (θt)− ℓD(θ
t, ϕt(N))|F t

N−1] ≤ V (θt)− ℓD(θ
t, ϕt(N − 1))

Eξ

[
1

L21
⟨∇ϕLD,∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)⟩+ L22

2L2
21

∥∇̂ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2

]
.

By variance-bias decomposition, and Assumption D.5 (b) and (c),

E[∥∇̂ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2|F t

N−1]

= E[∥∇̂ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)−∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ) +∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)∥2|F t

N−1]

= E[∥(∇̂ϕ −∇ϕ)JA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2|F t

N−1] + E[∥∇ϕJA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ)∥2|F t

N−1]

+ E[2⟨(∇̂ϕ −∇ϕ)JA(θ
t
ξ, ϕ

t
ξ(N − 1), ξ),∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)⟩|F t

N−1]

≤ σ2

Nb
+ ∥∇ϕJA(θ

t
ξ, ϕ

t
ξ(N − 1), ξ)∥2.

Applying the PL condition (Assumption 3.4), and Assumption D.5 (a) we obtain

E[V (θt)− ℓD(θ, ϕ
t(N))|ϕN−1]− V (θt)− ℓD(θ, ϕ

t(N − 1))

≤ Eξ

[
1

L21
⟨∇ϕLD,∇ϕLA(θ

t, ϕt
ξ(N − 1), ξ)⟩+ L22

2L2
21

(
σ2

Nb
+ ∥∇ϕLA(θ

t, ϕt
ξ(N − 1), ξ)∥2)

]
= Eξ

[
− 1

2L22
∥∇ϕLD∥2 +

1

2L22
∥∇ϕ(LD +

L22

L21
LA)(θ

t, ϕt
ξ(N − 1), ξ)∥2 + L22σ

2

2L2
21Nb

]
≤ µ

cL21
(max

ϕ
ℓD(θ

t, ϕ)− ℓD(θ
t, ϕt(N − 1))) +

L22σ
2

2L2
21Nb

,
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rearranging the terms yields

E[V (θt)− ℓD(θ
t, ϕt(N))|F t

n] ≤ ρ(V (θt)− ℓD(θ
t, ϕt(N − 1))) +

L22σ
2

2L2
21Nb

,

where we use the fact that −maxϕ ℓD(θ
t, ϕ) ≤ −V (θt). Telescoping the inequalities from τ = 0 to

τ = N , we arrive at

E[V (θt)− ℓD(θ
t, ϕt(N))] ≤ ρN (V (θt)− ℓD(θ

t, ϕt(0))) +
1− ρN

1− ρ

(
L22σ

2

2L2
21Nb

)
.

PL-condition implies quadratic growth, we also know that V (θt) − ℓD(θ
t, ϕt(N)) ≤

Eξ
1
2µ∥∇ϕLD(θ

t, ϕt
ξ(N), ξ)∥2 ≤ 1

2µG
2, by Assumption 3.3,

∥ϕ∗
ξ(θ

t)− ϕt
ξ(N)∥2 ≤ 2

µ
(LA(θ

t, ϕ∗
ξ , ξ)− LA(θ

t, ϕt
ξ(N), ξ))

≤ 2|c|
µ

∣∣LD(θ
t, ϕ∗

ξ , ξ)− LD(θ
t, ϕt

ξ(N), ξ)
∣∣

Hence, with Jensen inequality and choice of NA and Nb,

E[∥zt∥] = E[∥∇θV (θt)− Eξ∇θLD(θ
t, ϕt

ξ(NA), ξ)∥]
≤ L12E[∥ϕt

ξ(NA)− ϕ∗
ξ∥]

≤ L12

√
2|c|
µ

E[V (θt)− ℓD(θt, ϕt(NA))]

≤ L12

√
|c|
µ2

ρNAG2 + (1− ρNA)
|c|L2

22σ
2

µL2
21Nb

.

Now we adjust the size of NA and Nb to make E[∥zt∥] small enough, to this end, we set

ρNA
|c|G2

µ2
≤ ε4L2

32D2
V (2V∞ + LDΘ)4L̄

|c|L2
22σ

2

L2
21Nb

≤ ε4L2µ2

32D2
V (2V∞ + LDΘ)4L̄

,

which further indicates that

NA ≥
1

log ρ−1
log

32D2
V (2V∞ + LDΘ)

4L̄|c|G2

L2µ2ε4

Nb ≥
32µL2

21D
2
V (2V∞ + LDΘ)

4

|c|L2
22σ

2L̄Lε4
.

In the setting above, it is not hard to verify that

E[∥zt∥] ≤
Lε2

4DV (2V∞ + LDΘ)2
≤ ε.

Also note that ∥∇ϕLA(θ
t, ϕt

ξ(NA), ξ)∥ = ∥∇ϕLA(θ
t, ϕt

ξ(NA), ξ)−∇ϕLA(θ
t, ϕ∗

ξ , ξ)∥, given the
proper choice of NA and Nb, one has

E∥∇ϕLA(θ
t, ϕt

ξ(NA), ξ)−∇ϕLA(θ
t, ϕ∗

ξ , ξ)∥

≤ L21E[∥ϕt
ξ(NA)− ϕ∗

ξ∥] ≤
Lε2

4DV (2V∞ + LDΘ)2
≤ ε,

which indicates the ξ-wise inner loop stability.

Now we are ready to provide the convergence guarantee of the first-order outer loop.
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Theorem D.7. Under Assumption D.5, Assumption 3.3, and Assumption D.2, let the stepsizes be,
κA = 1

L22
, κD = 1

L , if ND, NA, and Nb are large enough,

ND ≥ ND(ε) ∼ O(ε−2) NA ≥ NA(ε) ∼ O(log ε−1), Nb ≥ Nb(ε) ∼ O(ε−4)

then there exists t ∈ N such that (θt, {ϕt
ξ(NA)}ξ∈Ξ) is ε-meta-FOSE.

Proof. According to the update rule of the outer loop, (here we omit the projection analysis for
simplicity)

θt+1 − θt =
1

L
∇̂θℓD(θ

t, ϕt(NA)),

one has, due to unbiasedness assumption, let (Ft)0≤t≤ND be the filtration generated by σ(θt|k ≤ t)

E[⟨∇θℓD(θ
t, ϕt(NA)), θ

t+1 − θt⟩|Ft] =
1

L
E[∥∇θℓD(θ

t, ϕt(NA))∥2|Ft]

= LE∥θt+1 − θt∥2|Ft],

which leads to

E[⟨∇θℓD(θ
t, ϕ∗), θt+1 − θt⟩|Ft] = E[⟨zt, θt − θt+1⟩|Ft] + LE[∥θt+1 − θt∥2∥].

Since V (·) is L-Lipschitz smooth,

E[V (θt)− V (θt+1)] ≤ E[⟨∇θV (θt), θt − θt+1⟩] + L

2
E[∥θt+1 − θt∥2]

≤ E[⟨zt, θt+1 − θt⟩]− E[⟨∇θℓD(θ
t, ϕt(NA)), θ

t+1 − θt⟩] + L

2
E[∥θt+1 − θt∥2]

≤ E[⟨zt, θt+1 − θt⟩]− L

2
E[∥θt+1 − θt∥2].

(D8)

Fixing a θ ∈ Θ, let et := ⟨∇θℓD(θ
t, ϕt(NA)), θ − θt⟩, we have

E[et|Ft] = LE[⟨θt+1 − θt, θ − θt⟩|Ft]

= E[⟨∇θℓD(θ
t, ϕt(NA))−∇θV (θt), θt+1 − θt⟩+ ⟨∇θV (θt), θt+1 − θt⟩]

+ LE[⟨θt+1 − θt, θ − θt+1⟩]
≤ E[(∥zt∥+ V∞ + LDΘ)∥θt+1 − θt∥]

(D9)

By the choice of Nb, we have, since V∞ = max{maxθ ∥∇V (θ)∥, 1},

E[∥zt∥] ≤ L12E[∥ϕN − ϕ∗∥] ≤ Lε2

4DV (2V∞ + LDΘ)
≤ V∞.

Thus, the relation equation D9 can be reduced to

E[et] ≤ (2V∞ + LDΘ)E[∥θt+1 − θt∥].

Telescoping equation D8 yields

−DV ≤ E[V (θ0)− V (θND )] ≤ DΘ

T−1∑
t=0

E[∥zt∥]−
L

2(2V∞ + LDΘ)2
E[

T−1∑
t=0

E[e2t |Ft].

Thus, setting ND ≥ 4DV (2V∞+LDΘ)2

Lε2 , and then by Lemma D.6, we obtain that,

1

ND

ND−1∑
t=0

E[e2t ] ≤
ε2

2
+

2DV (2V∞ + LDΘ)
2

LND
≤ ε2

which implies there exists t ∈ {0, . . . , ND − 1} such that E[e2t ] ≤ ε2.
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D.3 GENERALIZATION TO UNSEEN ATTACKS

In this section, we give a more concrete presentation of Proposition 2.2. Our main goal is to quantify
the value discrepancy under an attack type that is out of empirical distribution. We consider attack
types ξ1, . . . , ξm to be empirically sampled from distribution Q(·) during the pre-training stage, and
an unseen attack type ξm+1 in the online stage. The quantification of distance C(ξm+1, {ξi}mi=1)
relies on the total variation,
Definition D.8 (total variation). For two distributions P and Q, defined over the sample space Ω and
σ-field F , the total variation between P and Q is ∥P −Q∥TV := supU∈F |P (U)−Q(U)|.
The celebrated result shows the following characterization of total variation,

∥P −Q∥TV = sup
f :0≤f≤1

Ex∼P [f(x)]− Ex∼Q[f(x)].

Let the fixed attack policies ϕi, i = 1, . . . ,m+ 1 corresponding to each attack type. To formalize
the generalization error, for each θ ∈ Θ, we define populational values

V̂ (θ) :=
1

m

m∑
i=1

Eτ∼qθi
JD(θ − η∇̂θJD(τ), ϕi, ξi)

V̂m+1(θ) := Eτ∼qθm+1
JD(θ − η∇̂θJD(τ), ϕm+1, ξm+1)

where qθi (·) : (S × A × S)H−1 × S → [0, 1] is the trajectory distribution determined by state
dependent policies πD(·|s; θ), πA(·|s;ϕi, ξi) and transition kernel T . Since qθi is factorizable, we
have Lemma D.9 to eliminate ∥qθi − qθm+1∥TV dependence on θ by upper bounding it using another
pair of mariginal distributions.
Lemma D.9. For any θ ∈ Θ, there exist marginals di, dm+1 : (S ×AA × S)H−1 × S → [0, 1] total
variation ∥qθi − qθm+1∥TV can be bounded by ∥di − dm+1∥TV .

Proof. By factorization, for a trajectory τ , any θ ∈ Θ, and any type index i = 1, . . . ,m+ 1:

qθi (τ) =

H−1∏
t=1

πD(a
t
D|st; θ)

H−1∏
t=1

πA(a
t
A|st, ϕi, ξi)

H−1∏
t=1

T (st+1|st, at),

thus, by the inequality of product measure,

∥qθi − qθm+1∥TV ≤
H−1∑
t=1

∥πD(·|st; θ)− πD(·|st; θ)∥TV︸ ︷︷ ︸
0

+∥di − dm+1∥TV ,

where di and dm+1 are the residue factors after removing πA(·|st; θ).

Assumption D.10. For any ξ ∈ Ξ and ϕξ, the function JD(θ, ϕξ, ξ) is G-Lipschitz continuous w.r.t.
θ ∈ Θ;
Proposition D.11. Under assumption 3.4 and certain regularity conditions, fixing a policy θ ∈ Θ,
we have, there exist some marginal distribution of

|V̂m+1(θ)− V̂ (θ)| ≤ C(dm+1, {di}mi=1),

where the constant C depending on the total variation between dm+1 and {di}mi=1:

C(dm+1, {di}mi=1) :=
2ηG2

m

m∑
i=1

∥dm+1 − di∥TV +
1− γH

1− γ
∥dm+1 −

1

m

m∑
i=1

di∥TV ,

here, G is the Lipschitz parameter of JD w.r.t. both θ.

Proof. We start with the decomposition of the generalization error, for an arbitrary attack type ξi,
i = 1, . . . ,m, fixing a policy θ ∈ Θ determines jointly with each ϕi the trajectory distribution qθi .
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Denoting the one-step adaptation policy θ′(τ) = θ− η∇JD(τ) as a function of trajectory τ , we have
the following decomposition,

V̂m+1(θ)− V̂ (θ) = Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕm+1, ξm+1)−
1

m

m∑
i=1

Eτi∼qθi
JD(θ

′(τi), ϕi, ξi)

= Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕm+1, ξm+1)−
1

m

m∑
i=1

Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕi, ξi)︸ ︷︷ ︸
(i)

+
1

m

m∑
i=1

Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕi, ξi)−
1

m

m∑
i=1

Eτi∼qθi
JD(θ

′(τi), ϕi, ξi)︸ ︷︷ ︸
(ii)

.

We assume (τm+1, τi) is drawn from a joint distribution which has marginals qθm+1 and qθi and is
corresponding to the maximal coupling of these two. Then,

τm+1 ∼ qθm+1, τi ∼ qθi , P(τm+1 ̸= τi) = ∥qθi − qθm+1∥TV ,

if τm+1 disagrees with τi, for (ii), we have, since Jθ
D is Lipschitz with respect to θ,

∥JD(θ′(τm+1), ϕi, ξi)− JD(θ
′(τi), ϕi, ξi)∥

≤ ηG∥∇̂θJD(τm+1)− ∇̂θJD(τi)∥
≤ 2ηG2,

as a result, denoting the maximal coupling of qθm+1 and qθi as gives,

[Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕi, ξi)− Eτi∼qθi
JD(θ

′(τi), ϕ, ξi)]

= E(τm+1,τi)∼
∏

(qθm+1,q
θ
i )
[JD(θ

′(τm+1), ϕi, ξi)− JD(θ
′(τi), ϕ, ξi)]

≤ 2ηG2∥qθm+1 − qθi ∥TV ≤ 2ηG2∥di − dm+1∥TV ,

where the last inequality is due to Lemma D.9. Averaging the m empirical ξi’s yeilds the result:

(ii) ≤ 2ηG2

m

m∑
i=1

∥di − dm+1∥TV .

Since the trajectory distribution is a product measure, the difference between qθi and qθm+1 only lies

by attacker’s type, ∥qθ
′(τm+1)

m+1 − q
θ′(τm+1)
i ∥TV = ∥qθm+1 − qθi ∥TV ≤ ∥dm+1 − di∥TV .

Now we bound (i), for ease of exposition we let q′′ = q
θ′(τm+1)
m+1 and q′i := q

θ′(τm+1)
i . By the

finiteness of total trajectory reward R(τ) for any trajectory τ , R(τ) ≤ 1−γH

1−γ , hence,

(i) = Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕm+1, ξm+1)−
1

m

m∑
i=1

Eτm+1∼qθm+1
JD(θ

′(τm+1), ϕi, ξi)

= Eτm+1∼qθm+1

[
Eτ ′′∼q′′RD(τ

′′)− 1

m

m∑
i=1

Eτ ′
i∼q′i

RD(τ
′
i)

]

≤ Eτm+1∼qθm+1

1− γH

1− γ
∥q′′m+1 −

1

m

m∑
i=1

q′i∥TV

≤ 1− γH

1− γ
∥dm+1 −

1

m

m∑
i=1

di∥TV .
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E EXPERIMENT SETUP

Datasets. We consider two datasets: MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky et al.,
2009), and default i.i.d. local data distributions, where we randomly split each dataset into n groups,
each with the same number of training samples. MNIST includes 60,000 training examples and
10, 000 testing examples, where each example is a 28×28 grayscale image, associated with a label
from 10 classes. CIFAR-10 consists of 60,000 color images in 10 classes of which there are 50, 000
training examples and 10,000 testing examples. For the non-i.i.d. setting (see Figure 9(d)), we follow
the method of (Fang et al., 2020) to quantify the heterogeneity of the data. We split the workers into
C = 10 (for both MNIST and CIFAR-10) groups and model the non-i.i.d. federated learning by
assigning a training instance with label c to the c-th group with probability q and to all the groups
with probability 1− q. A higher q indicates a higher level of heterogeneity.

Federated Learning Setting. We use the following default parameters for the FL environment:
local minibatch size = 128, local iteration number = 1, learning rate = 0.05, number of workers = 100,
number of backdoor attackers = 5, number of untargeted model poisoning attackers = 20, subsampling
rate = 10%, and the number of FL training rounds = 500 (resp. 1000) for MNIST (resp. CIFAR-10).
For MNIST, we train a neural network classifier of 8×8, 6×6, and 5×5 convolutional filter layers with
ReLU activations followed by a fully connected layer and softmax output. For CIFAR-10, we use
the ResNet-18 model (He et al., 2016). We implement the FL model with PyTorch (Paszke et al.,
2019) and run all the experiments on the same 2.30GHz Linux machine with 16GB NVIDIA Tesla
P100 GPU. We use the cross-entropy loss as the default loss function and stochastic gradient descent
(SGD) as the default optimizer. For all the experiments except Figures 9(c) and 9(d), we fix the initial
model and random seeds of subsampling for fair comparisons. we apply Neural Cleanse (Wang et al.,
2019b) to reverse engineer the backdoor trigger.

Baselines. We evaluate our defense method against various state-of-the-art attacks, including non-
adaptive and adaptive untargeted model poison attacks (i.e., IPM Xie et al. (2020), LMP Fang et al.
(2020), RL Li et al. (2022a)), as well as backdoor attacks (BFL Bagdasaryan et al. (2020) without
model replacement, BRL Li et al. (2023), with tradeof’?
f parameter λ = 0.5, DBA (Xie et al., 2019) where each selected attacker randomly chooses a
sub-trigger as shown in Figures 7, PGD attack (Wang et al., 2020) with a projection norm of 0.05),
and a combination of both types. To establish the effectiveness of our defense, we compare it with
several strong defense techniques. These baselines include defenses implemented during the training
stage, such as Krum Blanchard et al. (2017), Clipping Median Yin et al. (2018); Sun et al. (2019); Li
et al. (2022a) (with norm bound 1), FLTrust Cao et al. (2021) with 100 root data samples and bias
q = 0.5, training stage CRFL Xie et al. (2021) with norm bound of 0.02 and noise level 1e− 3 as
well as post-training defenses like Neuron Clipping Wang et al. (2022) and Pruning Wu et al. (2020).
We use the original clipping thresholds 7 in Wang et al. (2022) and set the default pruning number to
256.

Reinforcement Learning Setting. In our RL-based defense, since both the action space and state
space are continuous, we choose the state-of-the-art Twin Delayed DDPG (TD3) (Fujimoto et al.,
2018) algorithm to individually train the untargeted defense policy and the backdoor defense policy.
We implement our simulated environment with OpenAI Gym (Brockman et al., 2016) and adopt
OpenAI Stable Baseline3 (Raffin et al., 2021) to implement TD3. The RL training parameters are
described as follows: the number of FL rounds = 300 rounds, policy learning rate = 0.001, the policy
model is MultiInput Policy, batch size = 256, and γ = 0.99 for updating the target networks. The
default λ = 0.5 when calculating the backdoor rewards.

Meta-learning Setting. The attack domains (i.e., potential attack sets) are built as following: For
meta-RL, we consider IPM (Xie et al., 2020), LMP (Fang et al., 2020), EB (Bhagoji et al., 2019) as
three possible attack types. For meta-SG against untargeted model poisoning attack, we consider RL-
based attacks (Li et al., 2022a) trained against Krum (Blanchard et al., 2017) and Clipping Median (Li
et al., 2022a; Yin et al., 2018; Sun et al., 2019) as initial attacks. For meta-SG against backdoor
attack, we consider RL-based backdoor attacks Li et al. (2023) trained against Norm-bounding (Sun
et al., 2019) and Neuron Clipping (Wang et al., 2022) (Pruning Wu et al. (2020)) as initial attacks.
For meta-SG against mix type of attacks, we consider both RL-based attacks (Li et al., 2022a) and
RL-based backdoor attacks Li et al. (2023) described above as initial attacks.
At the pre-training stage, we set the number of iterations T = 100. In each iteration, we uniformly
sample K = 10 attacks from the attack type domain (see Algorithm 2 and Algorithm 1). For each
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Figure 5: Self-generated MNIST images using conditional GAN Mirza & Osindero (2014) (second
row) and CIFAR-10 images using a diffusion model Sohl-Dickstein et al. (2015) (fourth row).

Figure 6: Generated backdoor triggers using GAN-based models Doan et al. (2021). Original image
(first row). Backdoor image (second row). Residual (third row).
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Figure 7: CIFAR-10 fixed backdoor trigger patterns.The global trigger is considered the default poison pattern
and is used for online adaptation stage backdoor accuracy evaluation. The sub-triggers are used by pre-training
and DBA only.
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(a) (b) (c) (d)
Figure 8: Comparisons of defenses against untargeted model poisoning attacks (i.e., IPM and RL) on MNIST
and CIFAR-10. RL-based attacks are trained before epoch 0 against the associate defenses (i.e., Krum and
meta-policy of meta-RL/meta-SG). All parameters are set as default.

attack, we generate a trajectory of length H = 200 for MNIST (H = 500 for CIFAR-10), and update
both attacker’s and defender’s policies for 10 steps using TD3 (i.e., l = NA = ND = 10). At the
online adaptation stage, the meta-policy is adapted for 100 steps using TD3 with T = 10, H = 100
for MNIST (H = 200 for CIFAR-10), and l = 10. Other parameters are described as follows: single
task step size κ = κA = κD = 0.001, meta-optimization step size = 1, adaptation step size = 0.01.

Space Compression. Following the BSMG model, it is most generally to use wt
g or (wt

g, I
t) as

the state, and {g̃tk}
M1+M2

k=1 or wt+1
g as the action for the attacker and the defender, respectively, if

the federated learning model is small. However, when we use federated learning to train a high-
dimensional model (i.e., a large neural network), the original state/action space will lead to an
extremely large search space that is prohibitive in terms of training time and memory space. We
adopt the RL-based attack in (Li et al., 2022a) to simulate an adaptive model poisoning attack and
the RL-based local search in (Li et al., 2023) to simulate an adaptive backdoor attack, both having a
3-dimensioanl real action spaces after action comparison. We further restrict all malicious devices
controlled by the same attacker to take the same action. To compress the state space, we reduce wt

g to
only include its last two hidden layers for both attacker and defender and reduce It to the number of
malicious clients sampled at round t.

Self-generated Data. We begin by acknowledging that the server only holds a small amount of
initial data (200 samples with q = 0.1 in this work) learned from first 20 FL rounds using inverting
gradient Geiping et al. (2020), to simulate training set with 60,000 images (for both MNIST and
CIFAR-10) for FL. This limited data is augmented using several techniques such as normalization,
random rotation, and color jittering to create a larger and more varied dataset, which will be used as
an input for generative models.

For MNIST, we use the augmented dataset to train a Conditional Generative Adversarial Network
(cGAN) model Mirza & Osindero (2014); Odena et al. (2017) built upon the codebase in Lacerda
(2018). The cGAN model for the MNIST dataset comprises two main components - a generator and a
discriminator, both of which are neural networks. Specifically, we use a dataset with 5,000 augmented
data as the input to train cGAN, keep the network parameters as default, and set the training epoch as
100.

For CIFAR-10, we leverage a diffusion model implemented in Crowson (2018) that integrates several
recent techniques, including a Denoising Diffusion Probabilistic Model (DDPM) Ho et al. (2020),
DDIM-style deterministic sampling Song et al. (2020), continuous timesteps parameterized by the
log SNR at each timestep Kingma et al. (2021) to enable different noise schedules during sampling.
The model also employs the ‘v’ objective, derived from Progressive Distillation for Fast Sampling of
Diffusion Models Salimans & Ho (2022), enhancing the conditioning of denoised images at high
noise levels. During the training process, we use a dataset with 50,000 augmented data samples as
the input to train this model, keep the parameters as default, and set the training epoch as 30.

Backdoor Attacks. We consider the trigger patterns shown in Figure 6 and Figure 7 for backdoor
attacks. For triggers generated using GAN (see Figure 6), the goal is to classify all images of different
classes to the same target class (all-to-one). For fixed patterns (see Figure 7), the goal is to classify
images of the airplane class to the truck class (one-to-one). The default poison ratio is 0.5 in both
cases. The global trigger in Figure 7 is considered the default poison pattern and is used for the online
adaptation stage for backdoor accuracy evaluation.
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(a) (b) (c) (d)
Figure 9: Ablation studies. (a)-(b): uncertain backdoor target and unknown backdoor triggers, where the
meta-policies are trained by distributions of triggers generated by GAN-based models Doan et al. (2021) targeting
multiple labels on CIFAR-10. The baseline defense combines the training-stage norm bounding with bound 2
and the post-training Neuron Clipping with clip range 7. (c)-(d): meta-SG trained by the number of malicious
clients in [40, 50, 60] and non-i.i.d. level in q = [0.5, 0.6, 0.7] on MNIST compared with Krum and Clipping
Median under the known LMP attack. Other parameters are set as default.

F ADDITIONAL EXPERIMENT RESULTS

More untargetd model poisoning results. Similar to results in Figure 3 as described in Section 4,
meta-RL achieves the best performance (slightly better than meta-SG) under IPM attacks for both
MNIST and CIFAR-10. On the other hand, meta-SG performs the best (significantly better than
meta-RL) against RL-based attacks for both MNIST and CIFAR-10. Notably, Krum can be easily
compromised by RL-based attacks by a large margin. In contrast, meta-RL gradually adapts to
adaptive attacks, while meta-SG displays near-immunity against RL-based attacks.

Blackbox backdoor defense. In the ablation study, we exam the meta-policy of meta-SG trained
by using reverse engineering targeting all 10 possible labels in CIFAR-10. Figure 9(a) shows the
defense performance of the meta-policy against a GAN-based attack targeting label 0 in the real
FL environment. Although meta-SG reduces the backdoor accuracy by a large amount (nearly
two-thirds), its performance is unstable due to the fact that the meta-policy will occasionally target a
wrong label, even with adaptation. In Figure 9(b), the meta-policy is trained using GAN-based BRL
attacks and tested against the BRL attack with a fixed global pattern Li et al. (2023) (see Appendix E
for details). Even though the defense performance of meta-SG against backdoor attack is significantly
better than the baseline, the backdoor accuracy still reaches nearly 50% at the end of FL training.

Number of malicious clients/Non-i.i.d. level. Here we apply our meta-SG framework to study the
impact of inaccurate knowledge of the number of malicious clients and the non-i.i.d. level of clients’
local data distribution. With rough knowledge that the number of malicious clients is in the range of
5-60, we consider three cases with 40, 50, and 60 malicious clients, respectively, during meta-learning.
Similarly, we assume the non-i.i.d. level is between 0.1-0.7 and consider q= 0.5, 0.6, 0.7 during
meta-learning. As illustrated in Figures 9(c) and 9(d), meta-SG reaches the highest model accuracy
for all numbers of malicious clients and non-i.i.d. levels under LMP, where the attack type is known
to the defender.

G BROADER IMPACTS AND LIMITATIONS

Meta Equilibrium and Information Asymmetry. Information asymmetry is a prevailing phe-
nomenon arising in a variety of contexts, including adversarial machine learning (e.g. FL discussed in
this work), cyber security (Manshaei et al., 2013), and large-scale network systems (Li et al., 2022c).
Our proposed meta-equilibrium (Definition 2.1) offers a data-driven approach tackling asymmetric
information structure in dynamic games without Bayesian-posterior beliefs. Achieving the strategic
adaptation through stochastic gradient descent, the meta-equilibrium is computationally superior
to perfect Bayesian equilibrium and better suited for real-world engineering systems involving
high-dimensional continuous parameter spaces. It is expected that the meta-equilibrium can also be
relevant to other adversarial learning contexts, cyber defense, and decentralized network systems.

First-order Method with Strict Competitiveness. Due to the hardness of the stochastic bilevel
optimization problem, we have expanded our search scope with an alternative solution concept that
merely involves the first-order necessary conditions for meta-SE. Our analytical result relies on the
special game structure induced by the strict competitiveness assumption, which essentially “aligns”
the defender/attacker objectives leveraging the nature of policy gradient, despite them being general-
sum. Relaxing this assumption allows our framework to deal with a more general class of problems,
yet may potentially disrupt the Danskin-type structure of gradient estimation. For simplicity of
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exposition, we neglected the stochastic analysis for the defender policy gradient estimation in the
outer loop of the algorithm, the concentration of which depends on the trajectory batch size and
attacker-type sample size. We leave the outer loop sample-complexity analysis to future work.

Incomplete Universal Defense. Our aim is to establish a comprehensive framework for universal
federated learning defense. This framework ensures that the server remains oblivious to any details
pertaining to the environment or potential attackers. Still, it possesses the ability to swiftly adapt and
respond to uncertain or unknown attackers during the actual federated learning process. Nevertheless,
achieving this universal defense necessitates an extensive attack set through pre-training, which
often results in a protracted convergence time toward a meta-policy. Moreover, the effectiveness
and efficiency of generalizing from a wide range of diverse distributions pose additional challenges.
Considering these, we confine our experiments in this paper to specifically address a subset of
uncertainties and unknowns. This includes variables such as the type of attacker, the number of
attackers, the level of independence and identically distributed data, backdoor triggers, backdoor
targets, and other relevant aspects. However, we acknowledge that our focus is not all-encompassing,
and there may be other factors that remain unexplored in our research.
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