
Bandits with Costly Reward Observations Supplementary Material

Aaron D. Tucker Caleb Biddulph* Claire Wang* Thorsten Joachims

Department of Computer Science, Cornell University, Ithaca NY USA
*Equal contribution, authors listed alphabetically

A APPENDIX

A.1 EXPERIMENTAL APPENDIX

A.1.1 Comparison to BAMCP++

Schulze and Evans [2018] presents the BAMCP++ algorithm for the Active RL setting, which is built on top of Bayesian
Monte-Carlo Tree Search, and is applicable to MDP settings as well as bandits. However, it is much more computationally
expensive than the algorithms discussed throughout this paper, and the original publication only evaluated its performance
on bandits up to 40 timesteps. In Figure 6 we show experiments which are directly comparable to the experiment presented
in Figure 3 of Schulze and Evans [2018]. We find that the MCCH heuristic Krueger et al. [2016] is able to achieve higher
performance than BAMCP++, since it also stays close to the line corresponding to requesting 3 labels then performing
optimally, however it also does so in earlier horizons rather than performing at chance until roughly T = 15. All other
algorithms presented perform below chance with their typical hyperparameter settings. While the δ hyperparameter for
the UCB algorithms represents a bound on the probability of the Azuma-Hoeffding bounds failing [Agarwal et al., 2023],
treating it as a freely-chosen hyperparameter and setting δ to higher values causes the DMR and Fixed-N algorithms to
perform comparably to or better than MCCH and BAMCP++.

(a) δ = 0.5 (b) δ = 50 (c) δ = 250

Figure 6: Replication of Figure 3 of Schulze and Evans [2018] with varying settings for the hyperparameter δ. As in Schulze
and Evans [2018], mean and standard error are presented over 100 trials.

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<aarondtucker@cs.cornell.edu>?Subject=Your UAI 2023 paper

(a) d = 5 (b) d = 50 (c) d = 100

Figure 7: Final average per step regret for varying noises σ2, standard error from 20 trials. Note the logarithmic y scale.
T = 10000, k = 5

A.1.2 Impact of Dimension on Linear Contextual Bandit Results

Figure 7 shows that DMR maintains its advantage over the Fixed N algorithm over a variety of context dimensions d and
noise scales. Note that both have lower regret with higher dimensions, likely because the randomly drawn vectors become
more orthogonal with increasing dimension, resulting in smaller differences between the rewards and lower regret.

A.1.3 Hyperparameters

The only hyperparameter for the Fixed N and Worth it Width algorithms is the parameter δ, which is set to 0.5. The MCCH
heuristic from Krueger et al. [2016] also has a single parameter α which is set to 0.1 which appeared to be the best setting in
the paper’s experiments, though they note that the algorithm appears robust to parameter choice.

A.1.4 Impact of Labeling Cost

Figure 8 shows that Fixed-N and WiW have an advantage over MCCH in low cost (c ≤ 1) settings, but that MCCH does
better in higher cost settings. Increasing the episode length generally improves the performance of all algorithms, with more
dramatic impacts for the WiW algorithm in the regime near the predicted worst-case ∆ = 3

√
c/T .

A.1.5 Worth-it-Width Ablations

Figure 9 repeats the Worth-it-Width ablation experiments across a variety of parameter settings, demonstrating that all steps
of the Worth-it-Width algorithm are necessary for best performance.

A.2 PROOF OF THEOREM 3

Define k bandit problem instances, with each arm being associated with a flip from one of k coins. If the selected coin lands
heads then the agent receives reward 1, and otherwise it receives reward 0. Our bandit problem is then drawn with uniform
probability from these k settings. We additionally analyze a base instance 0 in which all coins are unbiased and have reward
1/2, and in instance j coin j has expected reward (1 + ϵ)/2. Denote the probability of an event A in instance j as Prj(A),
and the expectation of a random variable X in instance j as Ej(X).

We will analyze how often an algorithm plays a given arm j∗ in the base instance 0, then use the fact that the coins have
similar probability distributions to bound the performance in the instance j∗ where the coin is preferred. In order to establish
the bound, we first need to prove a KL divergence lemma. This proof and lemma are again based on Slivkins [2019], and
adapted to the BwCRO setting.

Lemma 1 (KL Bound). For any event A based on n observations of the coin flips, for any j ∈ [1..k],

|Pr
0
(A)− Pr

j
(A)| ≤ ϵ

√
n.

(a) c = 0.01, T = 1000 (b) c = 0.01, T = 10000 (c) c = 0.01, T = 100000

(d) c = 0.1, T = 1000 (e) c = 0.1, T = 10000 (f) c = 0.1, T = 100000

(g) c = 1, T = 1000 (h) c = 1, T = 10000 (i) c = 1, T = 100000

(j) c = 10, T = 1000 (k) c = 10, T = 10000 (l) c = 10, T = 100000

(m) c = 100, T = 1000 (n) c = 100, T = 10000 (o) c = 100, T = 100000

Figure 8: Final average per step regret for varying values of gaps ∆, across many different horizons T and costs c. Standard
error from 20 trials. Dashed vertical red line is at the predicted worst-case ∆ = 3

√
c/T . Other dashed lines correspond to

using the doubling trick.

(a) c = 0.01, T = 1000 (b) c = 0.01, T = 10000 (c) c = 0.01, T = 100000

(d) c = 0.1, T = 1000 (e) c = 0.1, T = 10000 (f) c = 0.1, T = 100000

(g) c = 1, T = 1000 (h) c = 1, T = 10000 (i) c = 1, T = 100000

(j) c = 10, T = 1000. Note that Baseline’
tracks performance of Baseline (rather than
WiW) for ∆ ≤ 0.3.

(k) c = 10, T = 10000. Note that Baseline’
tracks performance of Baseline (rather than
WiW) for ∆ ≤ 0.1.

(l) c = 10, T = 100000

(m) c = 100, T = 1000 (n) c = 100, T = 10000 (o) c = 100, T = 100000

Figure 9: Simpler baseline comparisons. Final average per step regret for varying values of gaps ∆, across many different
horizons T and costs c. Standard error from 20 trials. Dashed red line is at the predicted worst-case ∆ = 3

√
c/T . Note

the similar performance of the Baseline algorithm to Worth-it-Width for c < 10, and worse performance in the small arm
difference ∆ regime whenever c ≥ 10.

Proof. First, define p and q to be the probability distributions over n independent (ϵ/2)-biased and fai coin flips respectively,
and let pi be the ith flip from the biased coin and qi be the ith flip from the fair coin. The KL divergence between a coin flip
pi with bias ϵ/2 and a fair coin flip qi is as follows:

KL(pi; qi) =
1 + ϵ

2
log (1 + ϵ) +

1− ϵ

2
log (1− ϵ)

=
1

2
log
(
1− ϵ2

)
+

ϵ

2
log

(
1 + ϵ

1− ϵ

)
±1

2
log (1 + ϵ)

≤ ϵ

2
log

(
1 + ϵ

1− ϵ

)
since

1

2
log
(
1− ϵ2

)
< 0

=
ϵ

2
log

(
1 +

2ϵ

1− ϵ

)
≤ ϵ

2

2ϵ

1− ϵ
since log(1 + x) ≤ x for x > 0

≤ 2ϵ2 since 0 ≤ ϵ ≤ 1/2

|Pr
0
(A)− Pr

j
(A)| ≤

√
1

2
KL(p; q) by Pinsker’s inequality

≤
√

1

2

∑
i=1

KL(pi; qi) by KL divergence chain rule for independent draws

≤
√

1

2
(2nϵ2) since KL(pi; qi) ≤ 2ϵ2

≤ ϵ
√
n

Theorem 3 The Bandits with Costly Observations setting has a regret lower bound of Ω(c1/3T 2/3).

Proof. The basic idea of the proof is that for every instance j∗ ̸= 0, we can upper bound how many times we play the
optimal arm j∗ by looking at how many times we play j∗ in instance 0, then using a KL divergence lemma to upper bound
the probability of playing coin j∗ in instance j∗ in terms of the number of observations n. This will establish that we cannot
frequently play the coin j∗ in the appropriate instance j∗ without also playing it in the incorrect instances j′ ̸= j∗, leading
to regret.

How many times do we play j∗ in instance 0? Let Q(t)
j be the number of times that the algorithm flips coin j by time t.

Note that by linearity of expectation

k∑
j=1

E0

[
Q

(t)
j

]
= E0

 k∑
j=1

Q
(t)
j

 = E0 [t] = t.

Let Jt = {j : E0[Q
(j)
t] ≤ 3t/k} be the set of coins that the algorithm has not played more than 3/k of the time over the

first t timesteps in instance 0. As previously shown
∑k

j=1 E0

[
Q

(j)
t

]
= t, so Jt must have at least 2k/3 elements since

t =

k∑
j=1

E0

[
Q

(j)
t

]
≥
∑
j /∈Jt

E0

[
Q

(j)
t

]
≥
∑
j /∈Jt

3t

k
≥ | {j : j /∈ Jt} |

3t

k
implies | {j : j /∈ Jt} | ≤ k/3.

By the Markov Inequality E0[Q
(j)]
t ≤ 3t/k implies that for any coin j ∈ Jt and any a

Pr
0

(
Q

(t)
j ≥ a

)
≤ E0[Q

(j)
t]

a
≤ 3t/k

a
, and therefore Pr

0

(
Q

(j)
t < a

)
> 1− 3t

ka
.

Now, we compute the probability that j∗ is played less than a times in instance 0. Let Ej∗ be the event that a given j∗ ∈ JT

and that Q(j∗)
t < a.

Pr
0
(E∗

j) = Pr
inst

(j∗ ∈ JT) Pr
0

(
Q

(j∗)
t < a|j ∈ JT

)
(Randomness in Pr

inst
is over instances)

=
2

3
Pr
0

(
Q

(j∗)
t < a|j ∈ JT

)
since |JT | > 2k/3

>
2

3

(
1− 3T

ka

)
Markov inequality with E0

[
Q

(j∗)
T

]
≤ 3T

k

=
2

3
− 2T

ka

As a sanity check, note that increasing the number of arms raises the lower bound and makes Ej more likely, as does
increasing the threshold a. Increasing T on the other hand makes it less likely.

Expected regret in instance j∗? Assume that the algorithm observed n rewards for arm j∗ over the entire history. We
know from Lemma 1 that for any event A based on n labels |Pr0(A)−Prj(A)| ≤ ϵ

√
n, which lower bounds the probability

Prj∗(Ej∗) of playing j∗ less than a times as

Pr
j∗
(Ej∗) >

2

3
− 2T

ka
− ϵ

√
n.

If j∗ is the best arm with bias (1 + ϵ)/2 and all other coins are fair, then the regret in instance j∗ if event Ej∗ holds is simply
the difference of the two rewards, plus the cost of acquiring n labels.

Ej∗ [RegretT] = Pr
j∗
(Ej∗)Ej∗

[
RegretT |Ej∗

]
+ Pr

j∗
(Ej∗)Ej∗ [RegretT |Ej∗] + cn (1)

≥ Pr
j∗
(Ej∗)Ej∗ [RegretT |Ej∗] + cn (2)

= Pr
j∗
(Ej∗)

(
T
1 + ϵ

2
− T

1 +Q
(T)
j∗ ϵ

2

)
+ cn (3)

≥ Pr
j∗
(Ej∗)

(
T
1 + ϵ

2
− T

1 + aϵ

2

)
+ cn (4)

= Pr
j∗
(Ej∗)

(T − a)ϵ

2
+ cn (5)

>

(
2

3
− 2T

ka
− ϵ

√
n

)
(T − a)ϵ

2
+ cn (6)

Line 2 holds because Prj∗(Ej∗)Ej∗
[
RegretT |Ej∗

]
is positive, line 3 holds by the definition of regret, line 4 holds since Ej∗

is true and so Q
(T)
j∗ < a and −a < −Q

(T)
j∗ , and line 6 holds from the KL divergence lemmas.

Conclusion. Now we can conclude the proof. Recall that a is from the Markov inequality, and so we are free to choose
a = 6T/k, yielding the bound

Ej∗ [RegretT] ≥
(
2

3
− 2Tk

k6T
− ϵ

√
n

)
(T − 6T/k)ϵ

2
+ cn

=

(
1

3
− ϵ

√
n

)
(k − 6)Tϵ

2k
+ cn

=
(k − 6)Tϵ

6k
− (k − 6)Tϵ2

2k

√
n+ cn.

Now, choose ϵ = 3
√
c/T for the coin expected rewards, for a regret bound of

Ej∗ [RegretT] ≥
(k − 6)

6k

3
√
cT 2 − (k − 6)

2k

3
√
c2T

√
n+ cn.

Now, imagine that the algorithm did as well as possible, and minimized this value with respect to n. This yields
√
n =

(k−6)
4k

3
√
T/c, and a regret of

Ej∗ [RegretT] ≥
(k − 6)

6k

3
√
cT 2 − (k − 6)2

16k2
3
√
cT 2,

for an Ω(c1/3T 2/3) regret lower bound, as desired.

A.3 PROOF OF THEOREM 2

With the uniform regret assumption, the O(c1/3T 2/3) regret rate for the Fixed N algorithm is the result of fairly straightfor-
ward algebraic manipulations.

Assumption 3.1 (Uniform Regret Rate). An algorithm A meets the uniform regret assumption if, for all n ≤ T and with
randomness taken over the algorithm’s choices and environment, a) playing according to A while observing labels for
the first n timesteps results in E [Regret◦1:n] ∈ O(n1/2) and b) with randomness taken over the algorithm’s choices and
environment, and if requesting no further labels after the first n timesteps results in

1

T − n
E
[
Regret◦n+1:T

]
≤ 1

n
E [Regret◦1:n] .

Proof. Assume that A meets the uniform regret assumption, so that

1

T − n
E
[
Regretn+1:T

]
≤ 1

n
E [Regret1:n] .

Then, by the definition of O(n1/2) regret there is a constant K and n0 such that for all n > n0

E [Regret1:n] ≤ K
√
n and therefore

1

T − n
E
[
Regretn+1:T

]
≤ 1

n
E [Regret1:n] ≤

K√
n
.

In the BwCO setting, receiving n labels necessarily incurs a regret of cn, so the total regret of using A while labeling the
first n observations is simply

Regret1:T = cn+ E [Regret1:n] + (T − n)
1

T − n
E
[
Regretn+1:T

]
≤ cn+ E [Regret1:n] + (T − n)

1

n
E [Regret1:n]

≤ cn+K
√
n+ (T − n)

K√
n

= cn+ n
K√
n
+ (T − n)

K√
n

= cn+ TKn−1/2

We can now simply minimize this expression with respect to the number of labels n...

d

dn

(
cn+ TKn−1/2

)
= c− TK

2
n−3/2

Solving for c− TKn−3/2/2 = 0, we have

n =

(
TK

2c

)2/3

Since the second derivative 3TKn−5/2/4 is always positive, this is a global minima.

Since the regret Regret1:T is bounded by cn+ TKn−1/2, and since cn+ TKn−1/2 is minimized by setting n =
(
TK
2c

)2/3
,

we can minimize the upper bound on regret by requesting n =
(
TK
2c

)2/3
labels.

Plugging it back into the original expression, we have the desired regret rate

Regret1:T ≤ cn+ TKn−1/2

= c

(
TK

2c

)2/3

+ TK

((
TK

2c

)2/3
)−1/2

= c

(
TK

2c

)2/3

+ TK

(
TK

2c

)−1/3

= c1/3
(
TK

2

)2/3

+ (TK)
2/3

(2c)
1/3

∈ O
(
c1/3K2/3T 2/3

)
.

Note that as c → 0, n → ∞ which makes sense since if the labels are free and always improve performance then the
algorithm should always get the label. In this case, note that n must be less than or equal to T , and therefore we recover the
original regret expression.

Regret1:T ≤ cn+ TKn−1/2 = 0n+ TKn−1/2 = TKT−1/2 = K
√
T

A.4 PROOF OF THEOREM 1

Theorem 1 (Regret Rate for WiW Algorithm). Algorithm 1 has a regret rate of Õ(kc1/3T 2/3) with high probability.

Proof. The proof has two main claims – that we will hit a termination condition within Õ(k(T/c)2/3) labels, and that upon
doing so the regret will be bounded by Õ(kT 2/3).

Termination. We show that the algorithm terminates after Õ(T 2/3) labels by showing that the number of labels necessary
for the algorithm to terminate can be bounded by the number of labels necessary for u(a)

t − ℓ
(a)
t < w to hold for all arms.

First, note that since g
(a)
t = u

(a)
t − νt and νt = max ℓ

(a)
t , an arm’s gap g

(a)
t is bounded above by u

(a)
t − ℓ

(a)
t .

g
(a)
t = u

(a)
t − νt = u

(a)
t −max

a∈A
ℓ
(a)
t ≤ u

(a)
t − ℓ

(a)
t

Therefore, u(a)
t − ℓ

(a)
t ≤ w implies that g(a)t ≤ w. Similarly, if u(a)

t − ℓ
(a)
t ≤ w for all arms a ∈ A then g

(a)
t ≤ w for all

arms a ∈ A and the first termination condition holds.

Now, we solve for how many reward observations for an arm a are necessary for g(a)t ≤ u
(a)
t − ℓ

(a)
t ≤ w.

u
(a)
t − ℓ

(a)
t = µ

(a)
t +

√
log(kT/δ)

n
(a)
t

−

(
µ
(a)
t −

√
log(kT/δ)

n
(a)
t

)
= 2

√
log(kT/δ)

n
(a)
t

=

√
4 log(kT/δ)

n
(a)
t

u
(a)
t − ℓ

(a)
t =

√
4 log(kT/δ)

n
(a)
t

≤ 3

√
4c log(kT/δ)

T
= w

3
√
4 log(kT/δ)(T/c)2/3 ≤ n

(a)
t

Therefore, an arm a needs to be played at most 3
√
4 log(kT/δ)(T/c)2/3 times in order for g(a)t ≤ w to hold.

Second, note that since the arm always plays the least played arm associated with the maximum gap, it takes at most
2 3
√

4 log(kT/δ)(T/c)2/3 labels for a gap for both of the associated arms to have u
(a)
t − ℓ

(a)
t ≤ w hold, and therefore

for g(a)t ≤ w to hold. Further, since the algorithm always plays an arm associated with the maximum gap, it will be
decreasing all of the k gaps until it terminates. Therefore, the algorithm will reach the first termination condition after at
most 2k 3

√
4 log(kT/δ)(T/c)2/3 labels. Note that the second termination condition may be reached sooner than this if all

but the holdout arm have g
(a)
t ≤ w.

Therefore in conclusion, the algorithm will commit to an arm after at most 2k 3
√

4 log(kT/δ)(T/c)2/3 labels. We can upper
bound the regret incurred during this phase by (1 + c) times the length of the labeling phase to represent paying regret for
the largest possible reward difference between the arms as well as the labeling cost c, totaling in a regret of at most

2(1 + c)k 3
√
4 log(kT/δ)(T/c)2/3.

Regret. There are two regret cases to cover, one for if the first termination is reached, and another for if the second
termination condition is reached.

In the first case, we commit to playing the arm aνt associated with νt after g(a)t ≤ w for all arms. Since g
(a)
t = u

(a)
t − νt =

u
(a)
t − νt = u

(a)
t − νt and since with high probability for all arms a ∈ A, ℓ(a)t ≤ µ∗(a) ≤ u

(a)
t , it follows that g(a)t is an

upper bound on the per-turn regret of choosing aνt instead of a.

g
(a)
t ≥ µa − νt Hoeffding bound

= µa − ℓ
(aν

t)
t Definition of νt

≥ µa − µ(aν
t) Hoeffding bound.

Since g(a)t ≤ w for all arms, it then follows that the per-turn regret of committing to aν is at most w =
3

√
c log(kT/δ)

T
. The

regret after committing can be bounded by T times the maximum possible per-turn regret, yielding a regret of at most

T
3

√
c log(kT/δ)

T
= 3
√
c log(kT/δ)T 2/3.

In the second case, the arm a with the maximum gap g
(a)
t is the holdout arm, while every other a′ is such that g(a

′)
t ≤ w. In

this case, w still bounds the per-turn regret of choosing a instead of some other a′, and has the same regret bound.

Conclusion. Adding together the two regret terms, we have 2(1 + c)k 3
√
4 log(kT/δ)(T/c)2/3 + 3

√
c log(kT/δ)T 2/3, for

a total Õ(c1/3T 2/3) regret of

k 3
√
c log(kT/δ)(T/c)2/3 + (1 + 2k) 3

√
4c log(kT/δ)T 2/3 ∈ Õ(c1/3T 2/3).

References

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and algorithms. 2023.

David Krueger, Jan Leike, Owain Evans, and John Salvatier. Active reinforcement learning: Observing rewards at a cost.
NeurIPS Future of Interactive Learning Machines (FILM) workshop, 2016.

Sebastian Schulze and Owain Evans. Active reinforcement learning with monte-carlo tree search. CoRR, abs/1803.04926,
2018. URL http://arxiv.org/abs/1803.04926.

Aleksandrs Slivkins. Introduction to multi-armed bandits, 2019. URL https://arxiv.org/abs/1904.07272.

http://arxiv.org/abs/1803.04926
https://arxiv.org/abs/1904.07272

	Appendix
	Experimental Appendix
	Comparison to BAMCP++
	Impact of Dimension on Linear Contextual Bandit Results
	Hyperparameters
	Impact of Labeling Cost
	Worth-it-Width Ablations

	Proof of Theorem 3
	Proof of Theorem 2
	Proof of Theorem 1

