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Abstract

We study prior-independent dynamic auction design with production costs for a
value-maximizing buyer, a paradigm that is becoming prevalent recently following
the development of automatic bidding algorithms in advertising platforms. In
contrast to a utility-maximizing buyer, who maximizes the difference between her
total value and total payment, a value-maximizing buyer aims to maximize her
total value subject to a return on investment (ROI) constraint. Our main result is a
dynamic mechanism with regret Õ(T 2/3), where T is the time horizon, against the
first-best benchmark, i.e., the maximum amount of revenue the seller can extract
assuming all values of the buyer are publicly known.

1 Introduction

Automatic bidding has become one of the main options for advertisers to buy advertisement op-
portunities in the online advertising market [Dolan, 2020]. The prevalence of automatic bidding is
partly driven by the fact that it significantly simplifies the interaction between the advertisers and
the advertising platform. Nowadays, millions of auctions are conducted in any given day while the
competitive landscape could be evolving over time and becoming vastly different across auctions.
Therefore, it is difficult for the advertisers to reason about its dynamics, let alone optimizing their
bids for each auction separately. Instead of soliciting for fine-grained bids for different auctions
they participate in, the automatic bidding product only asks the advertisers to provide high-level
objectives and constraints. With provided high-level information, the automatic bidding product bids
on behalf of the advertisers to optimize the objectives while respecting the constraints. While there
are many different types of automatic bidding produces, a well-adopted product bids to maximize the
number of acquisitions subject to a constraint on the advertiser-specified return on investment (ROI)
constraint, i.e., a target ratio between the advertiser’s return and her advertising spend [Facebook,
2021, Google, 2021]. To bid on behalf of the advertiser to maximize the number of acquisitions, the
automatic bidding products can invoke sophisticated prediction algorithms to predict the acquisition
rate. These prediction algorithms have the benefit of being trained with long periods of data to have a
good generalization [Juan et al., 2016, McMahan et al., 2013, Zhou et al., 2018]. In this way, the
advertiser can only focus on designing their high-level objectives and specifying their constraints,
while leaving the complicated bidding part to the automatic bidding products.

The emergence of automatic bidding products opens up the opportunities for novel design of dynamic
auction mechanisms, as classic mechanisms are heavily specialized for utility-maximizing bidders,
the de facto paradigm in economic theory, which maximize the difference between their total value
and total payment [Edelman et al., 2007, Myerson, 1981]. In contrast, automated bidders behave very
differently in a way such that the payment is not directly involved in their objectives; and instead,
the payment indirectly appears in the ROI constraints while the objectives aim to maximize the total
value only. Therefore, classic auction design tailored for utility-maximizing bidders may not continue
to perform well in an automatic bidding environment. Furthermore, recent results demonstrate that
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for single-slot auctions, neither welfare nor revenue achieved by an incentive-compatible auction (for
utility-maximizing bidders, e.g., second-price auctions) at any reasonable equilibrium can be larger
than 1/2 of the optimum [Aggarwal et al., 2019, Deng et al., 2021]. Recently, Balseiro et al. [2021]
initiated the study of characterizing single-stage revenue-optimal auctions for automated bidders
under various information structures. Surprisingly, they show that in a Bayesian setting in which
the advertiser’ value is private and the target ratio in the ROI constraint is public, a payment-scaled
second-price auction can achieve first-best revenue, i.e., the revenue when all information is public.
For a comparison, recall that first-best revenue is in general not achievable against utility-maximizing
bidders as demonstrated by the Myerson’s auction [Myerson, 1981]. However, the assumption on
perfect knowledge of the prior distribution on the advertiser’s values limits the application of their
payment-scaled second-price auction, as the seller usually needs to learn the distribution via repeated
interactions with the advertiser.

1.1 Our results

In this paper, we aim to relax such an assumption by studying the problem of designing prior-
independent dynamic mechanisms against a single automated bidder. In line with the literature [Amin
et al., 2013], we consider a setting of repeated auctions with multiple stages against an impatient
automated bidder whose valuations are drawn identically and independently across stages. Moreover,
we assume the automated bidder bids in a way to satisfy her ex-ante ROI constraint per stage,
consistent with the setup in [Balseiro et al., 2021]. In practice, the auction parameters are updated
infrequently (e.g., once per day) and the automated bidders participate in multiple repeated auctions
in a stage, i.e., the period between two consecutive updates. For each stage, the ROI constraints need
to be satisfied on average over many auctions that the bidders participate in.

Our main result is a novel dynamic mechanism achieving Õ(T 2/3) regret against a strategic automated
bidder, where T is the time horizon. Our dynamic mechanism adopts the explore-and-exploit scheme
by first estimating the bidder’s value distribution. We then offer a robust version of the single-stage
revenue-optimal mechanism to extract the revenue. A cornerstone of our dynamic mechanism in the
exploration phase is a novel prior-independent single-stage mechanism that is incentive-compatible
for automated bidders. This mechanism forces the bidder to make a trade-off between her future gain
from misreporting her values and her immediate loss, leading to a Wasserstein distance bound on the
magnitude of misreporting from the automated bidder — which is precisely the form of error that our
exploitation mechanisms are robust against.

1.2 Related work

Optimal mechanism design is a central topic in economics and game theory with many successful
real-world applications, such as combinatorial auctions for FCC spectrum auctions [Cramton et al.,
2006] and generalized second-price auctions for online advertising [Edelman et al., 2007]. However,
almost all of these classic works make the assumption of utility-maximizing bidders. In contrast,
inspired by the development of automatic bidding products in online advertising industry, a growing
body of recent literature starts to focus on automated bidders. Aggarwal et al. [2019] initiate the study
of mechanism design with automated bidders and raise the question of how the mechanism designed
for utility-maximizing bidders performs against automated bidders. They show that neither welfare
nor revenue achieved by an incentive-compatible auction can be larger than 1/2 of the optimum.
Deng et al. [2021] improve the approximation ratio to (c+ 1)/(c+ 2) with boosted auctions using
side information that correlates with advertisers’ values. The closest related work to ours is [Balseiro
et al., 2021], which studies single-stage revenue-optimal auctions for automated bidders under various
information structures and bidding behavior. In particular, it examines the difference in auction
design landscapes between utility-maximizing bidders and automated bidders and shows that first-best
revenue can be achievable when either the the advertiser’ value is public or the target ratio in the ROI
constraint is public. However, their mechanisms are prior-dependent while our objective is to design
prior-independent dynamic mechanisms.

Our work is also related to the literature on robust online pricing against strategic agents. No-regret
policies have been developed for both the non-contextual environment [Amin et al., 2013, Drutsa,
2017, 2018, 2020] and the contextual environment [Amin et al., 2014, Deng et al., 2019, 2020,
Golrezaei et al., 2019]. All these results concern impatient utility-maximizing bidders and Amin
et al. [2013] show that no learning algorithm can achieve sublinear revenue loss with a patient
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utility-maximizing bidder. In contrast, our work studies robust online pricing against a strategic
automated bidder instead of a utility-maximizing bidder.

2 Preliminaries

Dynamic mechanisms. Throughout this paper, we consider dynamic mechanisms that solicit a
single bid from the buyer in each stage. Roughly speaking, in each stage t, the buyer submits their
bid bt, which is generally supposed to reflect their true value in stage t in some way.1 After receiving
the buyer’s bids, the mechanism computes the fraction xt of the item allocated to the buyer and
the payment pt, based on all bids that the buyer has submitted so far. Formally, let T be the time
horizon, i.e., the total number of stages. A dynamic mechanism M = {Mt}t∈[T ] = {(xt, pt)}t∈[T ]

is a collection of allocation-payment pairs, one for each stage t. For each t, the allocation rule
xt : Rt+ → [0, 1] maps the vector of historical bids (b1, . . . , bt) to the fraction of the item in stage t
allocated to the buyer. Similarly, the payment rule pt : Rt+ → R+ maps historical bids to the payment
from the buyer to the seller in stage t.

Buyer’s incentives and behavior. We consider the case of automatic buyers, who are ROI con-
strained value maximizers. Such buyers maximize their expected value, subject to the constraint
that the ratio between the value and the payment must be at least a fixed threshold in expectation.
Formally, we model a value-maximizing buyer in dynamic environments in the following way. There
is a value distribution D ∈ ∆([0, 1]) which is private to the buyer. In each stage t, the buyer’s value
vt is drawn fromD independently of everything else. For simplicity, throughout the paper, we assume
that D is non-atomic, meaning that for any v ∈ [0, 1], Prv′∼D[v′ = v] = 0.2

There is a publicly known threshold τt ∈ [1,∞) in each stage t, which specifies the minimum ROI
ratio that is acceptable to the buyer in stage t. Note that we require τt ≥ 1 because (1) conceptually,
the buyer would always want their value to be at least their payment, and (2) technically, allowing
τt arbitrarily close to 0 would enable the seller to extract unbounded revenue (because the buyer is
willing to pay up to vt/τt on average) in a single stage, in which case it is impossible to achieve low
regret. Moreover, in line with the literature [Amin et al., 2013, Deng et al., 2019, Drutsa, 2017]), we
assume there is a public discount factor λ ∈ (0, 1), which models how impatient the buyer is.

Recall that a dynamic mechanism solicits a single bid bt from the buyer in each stage t. Since the
mechanism decides allocation and payments based on all historical bids, the buyer may submit bids
that depend on historical values in order to best respond. Thus, in general, we assume each bid
bt : [0, 1]t → R+ is a function of all historical values v1, . . . , vt of the buyer. Fixing a dynamic
mechanism M = {(xt, pt)}t, the buyer faces the following constrained optimization problem.

max
b1,...,bT

E
(v1,...,vT )∼DT

∑
t∈[T ]

λt · xt · vt


subject to E

vt∼D
[xt · vt − τt · pt | v1, . . . , vt−1] ≥ 0, ∀t ∈ [T ], v1, . . . , vt−1 ∈ [0, 1].

Here, bt = bt(v1, . . . , vt), xt = xt(b1, . . . , bt), and pt = pt(b1, . . . , bt). We assume the buyer
is rational, and always chooses some optimal solution to the above optimization problem as their
bidding strategy. Note that here, similar to the single-stage formulation considered in previous work
[Aggarwal et al., 2019, Balseiro et al., 2021, Deng et al., 2021], we only require ROI constraints
to hold in expectation over vt (as opposed to for all vt) in each stage. Conceptually, this is because
in practice, every stage corresponds to a period of time (e.g., a day), which normally consists of a
large number of auctions happening in the same environment. Therefore, it makes more sense to set
a target ROI ratio for the entire time period, rather than individual transactions which are normally
quite small. Technically, in-expectation constraints allow the buyer to have richer bidding strategies,

1In the Bayesian setting (i.e., with a publicly known prior), it is without loss of generality to consider
incentive-compatible mechanisms where the buyer is always incentivized to submit their true value as the bid.
However, the mechanism we present, being prior-independent, is not incentive-compatible. As discussed later,
we only require a rough correspondence between the bids and the true values, which, as we prove, can in fact be
guaranteed by the mechanism.

2All our results still hold without this assumption. When there are mass points in D, the buyer’s optimal
bidding strategy may be random, which complicates the presentation.
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and therefore, they can only make the problem of designing dynamic mechanisms harder. We also
remark that one can simulate the case where the buyer submits multiple bids in each period of time,
by making multiple copies of a stage with the same target ROI ratio.

First-best revenue and seller’s goal. Our goal is to approximate the so-called first-best revenue in
the long run, which is the maximum revenue possible when the buyer’s values are public. Formally,
suppose the seller’s cost for producing a unit of the item in stage t is ct ∈ [0, 1], and the buyer’s value
distribution and target ROI ratios are D and τt. Then, in each stage t, the maximum expected revenue
OPTt(D) the seller can achieve is given by the following optimization formulation.

max
x,p

E
v∼D

[p(v)− ct · x(v)]

subject to E
v∼D

[x(v) · v − τt · p(v)] ≥ 0.

It is known that the first-best revenue is explicitly given by

OPTt(D) = E
v∼D

[max{v/τt − ct, 0}],

and that there is a single-stage incentive-compatible (meaning that it is always in the buyer’s best
interest to report their true value) prior-dependent mechanism that achieves single-stage revenue
OPTt(D) [Balseiro et al., 2021]. So overall, with access to the prior distribution D, the maximum
total first-best revenue that the seller can achieve throughout the T stages is

OPT(D) =
∑
t∈[T ]

OPTt(D).

In this paper, we assume that the seller does not have access to the prior distribution D, and the goal
is to achieve sublinear regret against the first-best revenue OPT(D) for all D with a single dynamic
mechanism. Formally, we aim to find a mechanism M = {(xt, pt)}t∈[T ], subject to the condition
that for all D, there exists a bidding strategy satisfying the buyer’s ROI constraints,3 and moreover,

sup
D∈∆(V )

OPT(D)−
∑
t∈[T ]

(
pt(b

D,M
1 , . . . , bD,Mt )− xt(bD,M1 , . . . , bD,Mt ) · ct

) = o(T ),

where bD,Mt = bD,Mt (v1, . . . , vt) is the buyer’s best response to mechanism M when the value
distribution is D, as defined above.

3 The Mechanism

In this section, we present the overall mechanism and discuss key high-level ideas therein. The full
mechanism is given in Figure 1. Similar to prior work [Amin et al., 2013], our mechanism has an
exploration phase (step 2) followed by an exploitation phase (step 4). The idea of the exploration
phase is to obtain an estimate D̂ of the buyer’s value distribution D, by offering prior-independent
auctions that are strictly4 single-stage incentive-compatible, in the sense that restricted to the current
stage, the more the buyer misreports, the worse their value will be (but misreporting may still lead to
future gain). In each of these auctions, the seller can potentially suffer significant loss. However, by
keeping the exploration phase short, the total loss from this phase can be bounded. Here, we face
several technical challenges introduced by value-maximizing buyers, including:

• Single-stage incentive-compatible mechanisms for ROI constrained buyers have substantially
different structures than those for quasilinear utility-maximizing buyers that are traditionally
considered. In fact, even the existence of a strictly single-stage incentive-compatible prior-
independent mechanism for ROI constrained buyers is nontrivial, let alone finding one
explicitly that specifically suits our purposes.

3For example, a mechanism where pt(0) = 0 for all t would satisfy this condition. In particular, bt = 0 for
all t is always a feasible bidding strategy under such mechanisms.

4Note that weak incentive-compatibility, which guarantees that the buyer is indifferent between truth-telling
and lying, does not suffice for our purposes. In particular, the buyer may still have strict incentive to misreport in
arbitrary ways in response to such mechanisms, as long as misreporting leads to any positive future gain (no
matter how small it is or how much it is discounted).
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1. Let ε = T−1/3, T1 = Θ(log T/ε2), and T2 = Θ
(

log((1−λ)·ε2)
log λ

)
, where T is the time

horizon and λ is the buyer’s discount factor.
2. For each t = 1, . . . , T1 + T2, solicit a bid bt ∈ R+ from the buyer, allocate xt =

min{bt, 1} of the item to the buyer and charge payment pt = xt · min{bt,1}
τt

.

3. Let D̂ be the distribution induced by {min{bt, 1}}t∈[T1], i.e., for each v ∈ [0, 1],

D̂(v) = Pr
v′∼D̂

[v′ = v] =

∑
t∈[T1] I[min{bt, 1} = v]

T1
.

4. For each t = T1 + T2 + 1, . . . , T , let

qt = E
v∼D̂

[v/τt | v/τt ≥ ct]−
ε

Prv∼D̂[v/τt ≥ ct]
.

Solicit a bid bt ∈ R+. If bt
τt
≥ ct, then allocate xt = 1 of the item and charge

pt = max{qt, ct}. Otherwise, allocate xt = 0 and charge pt = 0.

Figure 1: A prior-indepentent no-regret mechanism for a value-maximizing buyer.

• In conjunction with the strictly single-stage incentive-compatible mechanism, we need to
find the right way of measuring the magnitude of misreport, which must be manageable given
the mechanism we choose, and at the same time ensure that our estimate D̂ is sufficiently
close to D in a way that can be exploited in the later phase.

To tackle the above challenges, we use an exploration mechanism that is single-stage incentive-
compatible in a very specific way. Intuitively, single-stage incentive-compatibility for ROI constrained
buyers roughly means the buyer cannot gain by “arbitraging” between value and ROI slackness. Our
exploration mechanism is designed such that whenever the buyer tries to arbitrage by misreporting,
they suffer an immediate loss in the sum of value and ROI slackness that is precisely equal to the
squared magnitude of deviation from their true value. Dynamic incentive-compatibility then allows
us to bound the expected squared deviation in any single stage in the exploration phase.

When computing our estimate D̂, we only use the first T1 bids collected in the exploration phase.
This is because the last T2 bids are chronologically too close to the exploitation phase. As a result, the
buyer’s interest in future gain is not sufficiently discounted when making these bids so that they are
potentially more misleading than the first T1 bids in the exploration phase. For this reason, we simply
ignore the last T2 bids to avoid introducing error in our estimate that cannot be effectively controlled.

Finally, in the exploitation phase, we switch to running nearly revenue-optimal auctions based on our
estimate D̂ of the value distribution D obtained from the exploration phase. Incentive-compatible
revenue-optimal mechanisms for ROI constrained buyers have been characterized by Balseiro et al.
[2021]. However, such optimal mechanisms require knowing the exact value distribution D, and it is
not immediately clear whether an estimate suffices for approximate optimality. So here, the main
challenge is to adapt previously known optimal mechanisms into a robust form that tolerates the
specific form of error introduced in the exploration phase.

We remark that the mechanism does not need to know the time horizon T beforehand: applying the
standard doubling trick allows the mechanism to achieve the same regret bound for any unknown
T [Deng et al., 2019, 2020, Golrezaei et al., 2019]. Also, the mechanism does not need to know τt
and ct before each stage t.

4 Analysis of the Mechanism

In this section, we present an analysis of our mechanism and establish the regret bound. We first
consider the exploration phase in Section 4.1, aiming to bound the difference between the true value
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distribution D and our estimate D̂. Then in Section 4.2, we turn to the exploitation phase, and show
that the mechanisms used there are robust against the specific form of estimation error introduced in
the exploration phase. Finally, we combine everything into a regret bound for our mechanism.

4.1 The Exploration Phase

In this section, we show that the exploration phase yields an accurate estimate of the buyer’s value
distribution with high probability, whenever the buyer adopts an optimal bidding strategy. The first
key step is to prove the strict single-stage incentive-compatibility of the mechanism used in each stage
t in the exploration phase (henceforth the exploration mechanism in stage t). In fact, each exploration
mechanism belongs to a larger class of nontrivial prior-independent mechanisms that are single-stage
incentive-compatible for ROI constrained buyers. Before zooming into exploration mechanisms, we
first prove the single-stage incentive-compatibility of this larger class of mechanisms, which may be
of independent interest.
Proposition 1. Fix a target ROI ratio τ . For any α ∈ R+, let (xα, pα) be such that for any b ∈ R+,

xα(b) = (min{b, 1})α and pα(b) = xα(b) · min{b, 1}
τ

.

Then fixing any α ∈ R+, for all value distribution D, (xα, pα) is single-stage incentive-compatible,
i.e., for any bidding strategy b : [0, 1]→ R+ satisfying

E
v∼D

[xα(b(v)) · v − τ · pα(b(v))] ≥ 0,

we have
E
v∼D

[xα(b(v)) · v] ≤ E
v∼D

[xα(v) · v].

We defer the proof of the proposition, as well as all other missing proofs, to the appendix. In principle,
for any α > 0, (xα, pα) is strictly single-stage incentive-compatible. Out of all these mechanisms, we
choose the one corresponding to α = 1 as our exploration mechanisms (instantiated with different τt
in different stages), because it enables a way of bounding the magnitude of misreporting that couples
nicely with other components of our overall mechanism. Formally, the exploration mechanism in
each stage t has the following key property.
Lemma 1. Let (xt, pt) be the exploration mechanism in stage t. For any value distribution D and
bidding strategy b : [0, 1]→ [0, 1], let

Val(D, b) := E
v∼D

[x(b(v)) · v] and ROI(D, b) := E
v∼D

[x(b(v)) · v − τt · p(b(v))].

Moreover, let id : [0, 1]→ [0, 1] be the truthful bidding strategy, where id(v) = v for all v ∈ [0, 1].
Then for any bidding strategy b : [0, 1]→ [0, 1],

Val(D, b) + ROI(D, b) = Val(D, id)− E
v∼D

[(v − b(v))2].

Proof. First fix any v ∈ [0, 1] and v′ = b(v). We have x(v′) · v − x(v) · v = v · (v′ − v), and
moreover,

(
x(v′) · v − τt · p(v′)

)
−
(
x(v) · v − τt · p(v)

)
= v′(v − v′). As a result, for any D and b,(

Val(D, b) + ROI(D, b)
)
−
(
Val(D, id) + ROI(D, id)

)
= E

v∼D

[(
x(b(v)) · v − x(v) · v

)
+
((
x(b(v)) · v − τt · p(b(v))

)
−
(
x(v) · v − τt · p(v)

))]
= E

v∼D

[
v · (b(v)− v) + b(v) · (v − b(v))

]
= E
v∼D

[
−(v − b(v))2

]
.

Rearranging terms and plugging in ROI(D, id) = 0, we obtain precisely the claim to be proved.

The above lemma states that under the exploration mechanism in each stage t, any bidding strategy
that deviates from truthful reporting suffers a loss in the sum of expected value (from the fraction
of the item received) and ROI slackness. And moreover, this loss is equal to the expected squared
magnitude of deviation. This provides a way of bounding the magnitude of deviation in each stage in
the exploration phase because of the following reasons. First, since the buyer is ROI constrained,
in each stage they must have nonnegative ROI slackness, and as a result, their immediate value loss
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is at least as large as the squared magnitude of deviation in the current stage. Moreover, note that
the exploration phase has completely no dependence on historical bids, so the only motivation for
misreporting in the exploration phase comes from the exploitation phase, which is far away in the
future as we only use the first T1 bids in the estimation. Since the buyer is less patient than the seller
(i.e., they have a discount factor λ < 1), any potential future gain is substantially discounted. As a
result, the motivation for deviation becomes sufficiently small, such that the buyer is only willing to
sacrifice a small amount of immediate value in exchange for that. Thus, by Lemma 1, we know that
the expected squared magnitude of deviation in each exploration phase auction is sufficiently small.
This is captured by the following lemma.

Lemma 2. For any value distribution D, optimal bidding strategy {bt}, t ∈ [T1], and historical
values v1, . . . , vt−1 before stage t,

E
vt∼D

[(vt − bt)2 | v1, . . . , vt−1] ≤ ε2

16
,

and as a corollary,
E

vt∼D
[|vt − bt| | v1, . . . , vt−1] ≤ ε

4
,

where ε is the error parameter defined in Figure 1.

The above lemma controls one source (i.e., misreporting) of error incurred in the exploration phase.
In particular, the form of error that we care about is in the second part of the lemma, which provides
an upper bound on the expected absolute value of deviation in any exploration mechanism. This
measure of error is closely related to the notion of the `1 Wasserstein distance W1 (also known as the
earth mover’s distance) in R, defined as follows.

Definition 1. For two probability distributions D1 and D2 over R,

W1(D1,D2) := inf
Dj∈Γ(D1,D2)

(
E

(x,y)∼Dj

[|x− y|]
)
,

where Γ(D1,D2) is the family of distributions over R2 with marginals D1 and D2 in the two
dimensions respectively.

Intuitively, each Dj ∈ Γ(D1,D2) corresponds to a matching between D1 and D2, and W1(D1,D2)
is the minimum total cost of matching D1 to D2. In fact, it is easy to show that Lemma 2 implies the
following bound.

Corollary 1. Let bt(D) be the distribution of bt(vt) (given v1, . . . , vt−1) where vt ∼ D. Then

W1(D, bt(D)) ≤ E
vt∼D

[|vt − bt(vt)|] ≤
ε

4
.

This is simply because bt explicitly specifies a matching between D and bt(D), whose cost is upper
bounded by ε/4. In light of this, our goal in the rest of Section 4.1 is to upper bound W1(D, D̂).
We will later see in Section 4.2 that this is precisely the kind of guarantee that our exploitation
mechanisms need to achieve approximate optimality.

Below we handle the other source of error, i.e., the discrepency between the buyer’s value distribution
D and the empirical value distribution (henceforth D̄) without misreporting, induced by {vt}t∈[T1].
Since {vt}t∈[T1] are i.i.d. samples from D, we can apply standard results for the convergence of
empirical processes in the W1 distance to obtain the following bound.

Lemma 3. Let D̄ be the empirical distribution induced by v1, . . . , vT1
. With probability at least

1− 1/(2T ) over v1, . . . , vT1
, W1(D, D̄) ≤ ε

2 .

With Lemma 3 proved, we can now proceed to the final step of bounding W1(D, D̂), i.e., combining
the error from misreporting and that from W1(D, D̄). This may appear straightforward: the error
from misreporting is on top of W1(D, D̄), so we only need to add the bounds from Corollary 1
and Lemma 3 together. However, to achieve low regret, we need W1(D, D̂) to be small with high
probability, but Corollary 1 only provides an in-expectation bound. Moreover, since the buyer may
use an adaptive bidding strategy (i.e., bt may depend on b1, . . . , bt−1), we cannot apply standard
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concentration bounds for independent variables to obtain high-probability bounds. Therefore, instead
of applying Corollary 1, we observe that the sequence

Xt =
1

T1

∑
t′≤t

(
|bt′ − vt′ | −

ε

4

)
form a submartingale. As a result, we can apply one-sided concentration inequalities for submartin-
gales to obtain a high-probability upper bound on

XT1
=

1

T1

∑
t∈[T1]

(
|bt − vt| −

ε

4

)
.

The above observation gives us the following lemma.
Lemma 4. With probability at least 1− 1/(2T ) over v1, . . . , vT1

,

W1(D̄, D̂) ≤ 1

T1

∑
t∈[T1]

|bt − vt| ≤
ε

2
.

Combining Lemmas 3 and 4 , we immediately obtain the following high-probability bound on
W1(D, D̂), which is essentially the only property of the exploration phase that we need to establish
the overall regret bound.

Lemma 5. With probability at least 1− 1/T , W1(D, D̂) ≤ ε.

4.2 The Exploitation Phase

In this section, we show that when the exploration phase succeeds, i.e., when W1(D, D̂) ≤ ε,
the expected revenue by the mechanism in each stage t in the exploitation phase (henceforth the
explotation mechanism in stage t) is at least OPTt(D)− ε. Since the bid submitted in any of these
stages cannot affect the exploitation mechanism in any other stage, we can decouple the exploitation
stages and look at each of them individually.

We first characterize the buyer’s optimal bidding strategy in response to the exploitation mechanism in
each stage t. First observe that these exploitation mechanisms have a simple structure: the exploitation
mechanism in stage t is essentially a take-it-or-leave-it offer, where the buyer can either take the item
and pay qt, or leave and pay nothing. In particular, the specific value of the bid bt does not affect how
much the buyer pays when they get the item.

Under the traditional assumption that the buyer maximizes their utility, the best response to such
mechanisms is extremely simple: take the item if and only if the buyer’s value vt at time t is at
least the posted price qt. The optimal bidding strategy is less straightforward with value-maximizing
buyers who maximize value subject to ROI constraints. However, they still have the intuitve structure
that the buyer should take the item whenever their value is higher than a certain threshold. This is
captured by the following claim.
Lemma 6. Suppose a value-maximizing buyer with target ROI ratio τ has value distributionD. Then
the optimal bidding strategy b : [0, 1]→ [0, 1] against a take-it-or-leave-it offer at price q ∈ (0, 1) is
given by

b(v) =

{
1, if v ≥ θ
0, otherwise,

where
θ = inf{θ′ | E

v∼D
[v | v ≥ θ′] ≥ τ · q}.

We remark that the above optimal bidding strategy is essentially unique, in the sense that the mappings
from the value v to the allocation x induced by any two optimal bidding strategies can differ only on
a zero-measure set with respect to D, which makes no difference for our purposes. Henceforth, in the
rest of the paper, without loss of generality we assume that the bidding strategy given in Lemma 6 is
the unique optimal bidding strategy.

With the optimal bidding strategy characterized, we can now bound the revenue collected in the
exploitation mechanism in each stage t and compare that to OPTt(D). We first prove that when the
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exploration phase succeeds, in each exploitation stage, the optimal revenue that can be extracted from
the buyer when the value distribution isD cannot be much larger than that when the value distribution
is D̂. Formally, we have the following lemma.

Lemma 7. When W1(D, D̂) ≤ ε, for all t ∈ {T1 + T2 + 1, . . . , T},

OPTt(D) ≤ OPTt(D̂) + ε.

The next step, which captures the essence of our exploitation mechanisms, is to show that, conditioning
on the success of the exploration phase, when the buyer (with actual value distribution D) uses the
optimal bidding strategy in the exploitation mechanism in stage t, the revenue collected is not
much smaller than OPTt(D̂). In other words, the exploitation mechanism in stage t can tolerate
an estimation error of up to ε in the W1 distance, sacrificing only ε in the revenue. Intuitively, this
is because by the definition of the W1 distance, we can find a matching Dj ∈ Γ(D, D̂) between D
and D̂, such that the following is a feasible bidding strategy for a buyer with distribution D: for
(v, v̂) ∼ Dj , where v is the realized value of the buyer and v̂ is the value that v matches to under Dj ,
buy the item if and only if a buyer with distribution D̂ would buy the item when their value is v̂ in
response to a slightly higher price. This means the probability that a buyer with distribution D buys
the item is at least the probability that a buyer with distribution D̂ does when the price is slightly
higher. Then, one can show that under the optimal bidding strategy, a buyer with distribution D buys
the item with at least the same probability, so the revenue loss is solely from the difference between
the two prices, which is by construction small. This intuition is captured by the following lemma.

Lemma 8. When W1(D, D̂) ≤ ε, for all t ∈ {T1 + T2 + 1, . . . , T}, the expected revenue of the
exploitation mechanism in stage t satisfies

Revt(D, D̂) := max{(qt − ct), 0} · Pr
v∼D

[v ≥ θt] ≥ OPTt(D̂)− ε,

where θt is the threshold of the optimal bidding strategy as given in Lemma 6, i.e.,

θt = inf{θ ∈ [0, 1] | E
v∼D

[v | v ≥ θ] ≥ τt · qt}.

Finally we combine Lemmas 7 and 8 to obtain the following conditional revenue bound, which is
essentially the only property of exploitation mechanisms that we need.

Lemma 9. When W1(D, D̂) ≤ ε, for all t ∈ {T1 + T2 + 1, . . . , T}, the expected revenue of the
exploitation mechanism in stage t satisfies

Revt(D, D̂) ≥ OPTt(D)− 2ε.

4.3 Putting Everything Together

Finally, we are ready to put everything together and prove the regret bound of our mechanism. The
following theorem states that our mechanism not only guarantees low regret in expectation, but also
in fact collects total revenue close to the first-best benchmark with high probability, over the the
randomness in the buyer’s values.
Theorem 1. With probability at least 1−O(1/T ), our mechanism achieves total revenue at least

OPT(D)−O(T 2/3 log T ).

5 Conclusion

In this paper, we develop a prior-independent dynamic mechanism achieving low regret against
a value-maximizing buyer. Along the way, we propose a novel prior-independent single-stage
mechanism that is incentive-compatible for value-maximizing buyers. An intriguing question to
consider in the future is to extend the results to an environment with multiple value-maximizing
buyers; however, tackling the interactions between multiple buyers seems to be a non-trivial and
challenging task. Another open question is whether the Õ(T 2/3) bound is (nearly) optimal — we
suspect the bound cannot be significantly improved restricted to exploration-exploitation mechanisms,
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given that similar lower bounds have been established in related problems in prior work [Babaioff
et al., 2014, Devanur and Kakade, 2009]. In principle, one could also consider the case where the
target ROI ratio τt is also private and needs to be reported. However, people do not currently have a
good understanding of this case even in static environments, and as a result, it is not even clear what
the benchmark should be for this case in dynamic environments. Other variants of the problem, e.g.,
where there is a “cumulative” ROI constraint over all stages (as opposed to one target ROI ratio for
each stage), may also be of potential interest. To zoom out, it is very interesting to establish a better
understanding about the power and the limitations of dynamic mechanisms against value-maximizing
buyers.
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A Omitted Proofs

Proof of Proposition 1. The case of α = 0 is trivial. For α > 0, we use the following characterization
(rephrased for our purposes) of single-stage incentive-compatible mechanisms for ROI constrained
buyers given in [Balseiro et al., 2021]: under mild assumptions (Assumption 3.1 in [Balseiro et al.,
2021]) that are satisfied by (xα, pα) for any α ∈ (0,∞), a mechanism (x, p) is incentive-compatible
iff there exists γ ≥ 0 such that

1. For all v, v′ ∈ [0, 1],

(1 + γ) · v · x(v)− γ · τ · p(v) ≥ (1 + γ) · v · x(v′)− γ · τ · p(v′).

2. Both of the following hold, and at least one of them achieves equality:

E
v∼D

[v · x(v)− τ · p(v)] ≥ 0 and γ ≥ 0.

For the class of mechanisms we consider, we always have

pα(v) = xα(v) · v
τ
,

so condition 2 always holds, and condition 1 simplifies to: for all v, v′,

v · xα(v) ≥ (1 + γ) · v · xα(v′)− γ · v′ · xα(v′) ⇐⇒ v · (xα(v)− xα(v′)) ≥ γ · xα(v′) · (v− v′).

Below we show that the above is satisfied by xα for any α ∈ (0, 1]. We choose

γ = α =
v · ẋα(v)

xα(v)
,

for all v ∈ (0, 1]. First suppose v > v′. In such cases, the above condition is equivalent to

v · (xα(v)− xα(v′))

xα(v′) · (v − v′)
≥ γ.

By the mean value theorem, for some v′′ ∈ (v′, v),

v · (xα(v)− xα(v′))

xα(v′) · (v − v′)
=
v · ẋα(v′′)

xα(v′)
.

Since xα is non-decreasing, we have

v · ẋα(v′′)

xα(v′)
≥ v′′ · ẋα(v′′)

xα(v′′)
= α = γ.
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Now suppose v < v′. In such cases, the condition is equivalent to

v · (xα(v)− xα(v′))

xα(v′) · (v − v′)
≤ γ.

Again, by the mean value theorem and the fact that xα is non-decreasing, for some v′′ ∈ (v, v′),

v · (xα(v)− xα(v′))

xα(v′) · (v − v′)
=
v · ẋα(v′′)

xα(v′)
≤ v′′ · ẋα(v′′)

xα(v′′)
= α = γ.

This concludes the proof.

Proof of Lemma 2. Fix some t, and consider the incentives of the buyer in stage t. Note that an
optimal bidding strategy must be conditionally optimal given any historical values v1, . . . , vt−1 before
stage t. Since the exploration phase of our mechanism are both history-independent, all potential
gain of misreporting in stage t comes from the exploitation phase. In each stage t′ in the exploitation
phase, the immediate gain of the buyer from misreporting in stage t is at most 1, and the contribution
to the value in stage t is at most λt

′−t due to discounting. So, overall, the maximum possible future
gain from misreporting in stage t is at most∑

t+T2≤t′≤T

λt
′−t ≤ λT2 ·

∑
i∈[T ]

λi ≤ λT2

1− λ
.

Now in order for bt to be conditionally optimal, the future gain must outweigh the immediate loss, so
by Lemma 1,

E
vt∼D

[(vt − bt)2 | v1, . . . , vt−1] = Val(D, id)−Val(D, bt)− ROI(D, bt)

≤ Val(D, id)−Val(D, bt) (ROI(D, bt) ≥ 0)

≤ λT2

1− λ
(optimality of bt)

≤ ε2

16
. (choice of T2)

This concludes the proof of the first part. For the corollary, by Jensen’s inequality,

E
vt∼D

[|vt − bt| | v1, . . . , vt−1] ≤
√

E
vt∼D

[(vt − bt)2 | v1, . . . , vt−1] ≤ ε

4
.

Proof of Lemma 3. We use the result in [Boissard and Le Gouic, 2014] to upper bound E[W1(D, D̄)],
and then apply McDiarmid’s inequality to translate that into a high-probability bound. First, by
Theorem 1.1 of [Boissard and Le Gouic, 2014], setting p = 1, n = T1, µ = D, and t = n−1/2, we
have

E[W1(D, D̂)] ≤ 64T
−1/2
1 ≤ ε

4
.

Now observe that by the definition of W1(D, D̄), the dependence of W1(D, D̂) = W1(v1, . . . , vT1
)

on each vt is

max
v1,...,vT1

,v′t

|W1(v1, . . . , vt, . . . , vT1
)−W1(v1, . . . , v

′
t, . . . , vT1

)| ≤ 1

T1
.

Moreover, {vt}t∈[T1] are independent. So, by McDiarmid’s inequality, we have

Pr[W1(D, D̄) ≤ E[W1(D, D̄)] + ε/4] ≤ exp

(
−ε

2 · T1

8

)
≤ 1

2T
.

The claim follows.

Proof of Lemma 4. For each 0 ≤ t ≤ T1, let

Xt =
1

T1

∑
t′<t

(
|bt′ − vt′ | −

ε

4

)
.
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Observe that {Xt} form a supermartingale. In particular, for any 0 ≤ t < T1, by Lemma 2,

E[Xt+1 | X0, . . . , Xt] = Xt +
1

T1
· E
[
|bt − vt| −

ε

4
| X0, . . . , Xt

]
≤ Xt.

And moreover, since 0 ≤ |bt − vt| ≤ 1,

Var[Xt+1 | X0, . . . , Xt] ≤
1

4T 2
1

and Xt+1 − E[Xt+1 | X0, . . . Xt] ≤
1

T1
.

So applying Theorem 27 of [Chung and Lu, 2006] (withM = 1/T1, ai = φi = 0 and σ2
i = 1/(4T 2

1 )),
we have

Pr[XT1 ≥ ε/4] ≤ exp

(
− ε2/16

1/(2T1) + ε/(12T1)

)
≤ exp

(
−ε

2T1

33

)
≤ 1

2T
.

Note that
1

T1

∑
t∈[T1]

|bt − vt| = XT1
+
ε

4
.

So

Pr

 1

T1

∑
t∈[T1]

|bt − vt| ≥
ε

2

 = Pr[XT1
≥ ε/4] ≤ 1

2T
.

Finally, by the definition of the W1 distance, with probability at least 1− 1/(2T ),

W1(D̄, D̂) ≤ 1

T1

∑
t∈[T1]

|bt − vt| ≤
ε

2
.

This is because W1(D̄, D̂) is no larger than the cost of matching each bt to vt.

Proof of Lemma 5. By Lemmas 4 and 3, and taking a union bound, with probability at least 1− 1/T ,

W1(D, D̄) ≤ ε

2
and W1(D̄, D̂) ≤ ε

2
.

Since W1 is a metric, whenever the above is true

W1(D, D̂) ≤W1(D, D̄) +W1(D̄, D̂) ≤ ε

2
+
ε

2
= ε.

Proof of Lemma 6. First observe that when the buyer uses the above bidding strategy, their expected
value from the item received is

E[v · I[v ≥ θ]] = E[v | v ≥ θ] · Pr[v ≥ θ].
Moreover, by the choice of θ, they have ROI slackness

E[(v − τ · q) · I[v ≥ θ]] = E[(v − τ · q) | v ≥ θ] · Pr[v ≥ θ] = 0.

So the above bidding strategy is feasible.

Now consider any feasible bidding strategy b′ : [0, 1]→ [0, 1]. Moreover, without loss of generality
assume b′(v) ∈ {0, 1} for any v ∈ [0, 1], i.e., the buyer buys the item if b′(v) = 1, and leaves
otherwise. If Pr[b′(v) = 1] = 0, then clearly the expected value from the item received under b′ is
0, which does not exceed that under b. Now suppose Pr[b′(v) = 1] > 0. Because the buyer is ROI
constrained,

E[v | b′(v) = 1] ≥ τ · q.
But then by the choice of θ, it must be the case that

Pr[b′(v) = 1] ≤ Pr[v ≥ θ].
Again by the choice of θ, for any S ⊆ [0, 1] where Pr[v ∈ S] ≤ Pr[v ≥ θ],

E[v · I[v ∈ S]] ≤ sup
T⊆[0,1]:Pr[v∈T ]≤Pr[v≥θ]

E[v · E[v ∈ T ]] = E[v · I[v ≥ θ]].

This applies to S = {v | b′(v) ≥ θ} too, so the expected value from the item received under b′
satisfies

E[v · I[b′(v) ≥ θ]] ≤ E[v · I[v ≥ θ]].
In other words, b is at least as good as b’.
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Proof of Lemma 7. Recall that

OPTt(D) = E
v∼D

[max{v/τt − ct, 0}] = E
v∼D

[(v/τt − ct) · I[v/τt ≥ ct]].

And similarly,

OPTt(D̂) = E
v∼D̂

[max{v/τt − ct, 0}] = E
v∼D̂

[(v/τt − ct) · I[v/τt ≥ ct]].

So we only need to show that

E
v∼D

[(v/τt − ct) · I[v/τt ≥ ct]]− E
v∼D̂

[(v/τt − ct) · I[v/τt ≥ ct]] ≤ ε.

Suppose otherwise, i.e., there is some ε′ > ε such that

E
v∼D

[(v/τt − ct) · I[v/τt ≥ ct]]− E
v∼D̂

[(v/τt − ct) · I[v/τt ≥ ct]] = ε′.

Let D|≥ct be such that for each v ∈ [0, 1],

Pr
v′∼D|≥ct

[v ≥ v′] =

{
Prv′∼D[v ≥ v′], if v/τt ≥ ct
0, otherwise.

And construct D̂|≥ct from D̂ similarly. By construction we have

E
v∼D|≥ct

[v/τt − ct]− E
v∼D̂|≥ct

[v/τt − ct] = E
v∼D|≥ct

[v/τt]− E
v∼D̂|≥ct

[v/τt] = ε′.

Let Dj ∈ Γ(D|≥ct , D̂|≥ct) be such that

E
(v,v̂)∼Dj

[|v − v̂|] < ε′.

Note that Dj exists because by the definition of the W1 distance,

W1(D|≥ct , D̂|≥ct) ≤W1(D, D̂) < ε′.

But then we have

ε′ > E
(v,v̂)∼Dj

[|v − v̂|] ≥
∣∣∣∣ E
(v,v̂)∼Dj

[v − v̂]

∣∣∣∣ = τt ·

∣∣∣∣∣ E
v∼D|≥ct

[v/τt]− E
v∼D̂|≥ct

[v/τt]

∣∣∣∣∣ = τt · ε′ ≥ ε′,

a contradiction. This concludes the proof.

Proof of Lemma 8. Let

q̂t = qt +
ε

Prv∼D̂[v/τt ≥ ct]
= E
v∼D̂

[v/τt | v/τt ≥ ct].

Observe that
τt · ct = inf{θ ∈ [0, 1] | E

v∼D̂
[v | v ≥ θ] ≥ τ · q̂t},

So by Lemma 6, the revenue from posting q̂t is

(q̂t − ct) · Pr
v∼D̂

[v ≥ τt · ct] = E
v∼D̂

[v/τt − ct | v ≥ τt · ct] · Pr
v∼D̂

[v ≥ τt · ct] (choice of q̂)

= E
v∼D̂

[max{v/τt − ct, 0}]

= OPTt(D̂). (definition of OPTt(D̂))

In other words, OPTt(D̂) is achieved by posting price q̂t to the item when the value distribution is D̂.

Observe that Revt(D, D̂) ≥ 0. So when OPTt(D̂) < ε, the lemma is trivial. Below we assume
OPTt(D̂) ≥ ε, which is equivalent to

(q̂t − ct) · Pr
v∼D̂

[v ≥ τt · ct] ≥ ε ⇐⇒ qt − ct ≥ 0.
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For any ε′ > ε, there exists Dj ∈ Γ(D, D̂) such that

E
(v,v̂)∼Dj

[|v − v̂|] = ε′.

Dj exists because W1(D, D̂) ≤ ε < ε′. Then we have

E
(v,v̂)∼Dj

[(v/τt − qt) · I[v̂ ≥ τt · ct]] ≥ E
(v,v̂)∼Dj

[(v̂/τt − |v − v̂|/τt − qt) · I[v̂ ≥ τt · ct]]

= OPTt(D̂)− E
(v,v̂)∼Dj

[|v − v̂| · I[v̂ ≥ τt · ct]]/τt

(optimality of q̂t for D̂)

≥ OPTt(D̂)− ε′/τt (definition of W1(D, D̂))

≥ OPTt(D̂)− ε′. (τt ≥ 1)

Letting ε′ → ε, we have

E
(v,v̂)∼Dj

[(v/τt − qt) · I[v̂ ≥ τt · ct]] ≥ OPTt(D̂)− ε.

This means there exists S ⊆ [0, 1] satisfying

Pr
v∼D

[v ∈ S] = Pr
v∼D̂

[v ≥ τt · ct],

such that

E
v∼D

[v/τt − qt | v ∈ S] · Pr
v∼D̂

[v ≥ τt · ct] ≥ OPTt(D̂)− ε = (q̂t − ct) · Pr
v∼D̂

[v ≥ τt · ct]− ε.

Since Prv∼D̂[v ≥ τt · ct] > 0, the above is equivalent to

E
v∼D

[v/τt − qt | v ∈ S] ≥ q̂t −
ε

Prv∼D̂[v ≥ τt · ct]
− ct = qt − ct ≥ 0.

In other words, S satisfies

E
v∼D

[v | v ∈ S] ≥ τt · qt and Pr
v∼D

[v ∈ S] = Pr
v∼D̂

[v ≥ τt · ct].

Now by the choice of θt, we must have

Pr
v∼D

[v ≥ θt] ≥ Pr
v∼D

[v ∈ S] = Pr
v∼D̂

[v ≥ τt · ct].

So the revenue of the exploitation mechanism can be bounded in the following way:

Revt(D, D̂) ≥ (qt − ct) · Pr
v∼D̂

[v ≥ τt · ct] = (q̂t − ct) · Pr
v∼D̂

[v ≥ τt · ct]− ε = OPTt(D̂)− ε.

This concludes the proof.

Proof of Lemma 9. By Lemma 8,

Revt(D, D̂) ≥ OPTt(D̂)− ε.

And by Lemma 7,
OPTt(D̂) ≥ OPTt(D)− ε.

Putting the above inequalities together, the lemma follows immediately.

Proof of Theorem 1. By Lemma 5, with probability 1 − 1/T , we have W1(D, D̂) ≤ ε. Below we
condition on this happening. For each t ∈ [T ], let

Rt :=


(bt/τt − ct) · xt, if t ∈ [T1]

0, if t ∈ {T1 + 1, . . . , T1 + T2}
max{(qt − ct), 0} · I[vt ≥ θt], otherwise.
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be the realized revenue in stage t, where Evt [Rt] = Revt(D, D̂) for each t ∈ {T1 + T2 + 1, . . . , T}.
By Lemma 9, for each t ∈ {T1 + T2 + 1, . . . , T}, Revt(D, D̂) ≥ OPTt(D)− 2ε, so

E
{vt}t

∑
t∈[T ]

Rt

 ≥ E
{vt}t

 ∑
T1+T2+1≤t≤T

Rt

− (T1 + T2) (ct ≤ 1 for all t)

≥
∑

T1+T2+1≤t≤T

OPTt(D)− (T1 + T2)− T · 2ε (Lemma 9)

≥
∑
t∈[T ]

OPTt(D)− 2(T1 + T2)− T · 2ε (OPTt(D) ≤ 1 for all t ∈ [T ])

= OPT(D)− 219T 2/3 log T.

Observe that {Rt}t are independent conditioning on all randomness from the exploration stage
(because Rt depends only on vt), and that 0 ≤ Rt ≤ 1 for each t ∈ {T1 + T2 + 1, . . . , T}. So by
Hoeffding’s inequality,

Pr
{vt}t

 ∑
T1+T2+1≤t≤T

Rt ≤ (OPT(D)− 219T 2/3 log T )− T 1/2 log T


≤ Pr
{vt}t

 ∑
T1+T2+1≤t≤T

Rt ≤
∑

T1+T2+1≤t≤T

Revt(D, D̂)− T 1/2 log T


≤ exp (−2 log T ) =

1

T 2
.

Finally, taking a union bound, the probability that the exploration stage succeeds and that the realized
revenue

∑
tRt concentrates around the mean

∑
t Revt is at least 1−2/T , and whenever this happens,

the revenue collected by our mechanism is at least OPT(D) − O(T 2/3 log T ). This finishes the
proof.

17


	Introduction
	Our results
	Related work

	Preliminaries
	The Mechanism
	Analysis of the Mechanism
	The Exploration Phase
	The Exploitation Phase
	Putting Everything Together

	Conclusion
	Omitted Proofs

