Under review as a conference paper at ICLR 2024

A DATASETS

Generators. To generate high-quality SAT datasets that do not contain trivial instances, we
have employed a rigorous process of selecting appropriate parameters for each CNF generator in
G4SATBench. Table 7] provides detailed information about the generators we have used.

Table 7: Details of the synthetic generators employed in G4SATBench.

Dataset Description Parameters Notes

The SR dataset is composed of pairs of satisfiable and unsatisfiable for-

mulas, with the only difference between each pair being the polarity of a

single literal. Given the number of variables n, the synthetic generator iter- ~ General: b= 0.3,g = 0.4,

atively samples k = 1+ Bernoulli(b) + Geometric(g) variables uniformly at ~ Easy dataset: n ~ Uniform(10, 40),
random without replacement and negates each one with independent prob- Medium dataset: n. ~ Uniform(40, 200),
ability 50% to build a clause. This procedure continues until the gener- Hard dataset: n ~ Uniform(200,400)
ated formula is unsatisfiable. The satisfiable instance is then constructed by

negating the first literal in the last clause of the unsatisfiable one.

The sampling parameters are
the same as the original pa-
per (Selsam et al.[[2019).

SR

The 3-SAT dataset comprises CNF formulas at the phase transition, where
the proportion of generated satisfiable and unsatisfiable formulas is roughly

3-SAT equal. Given the number of variables n and clauses m, the synthetic gen-
erator iteratively samples three variables (and their polarities) uniformly at
random until m clauses are obtained.

General: m = 4.258n + 58.26n2/3,
Easy dataset: n ~ Uniform(10, 40),
Medium dataset: n ~ Uniform(40, 200),
Hard dataset: n ~ Uniform(200, 300)

The parameter mn is the same
as the paper (Crawford &
Auton||1996)

The CA dataset contains SAT instances that are designed to mimic the com-
munity structures and modularity features found in real-world industrial in-
stances. Given variable number 7, clause number m, clause size k, com-
munity number ¢, and modularity @, the synthetic generator iteratively se-

The parameters are selected
based on the experiments in
the original paper (Giraldez-
Cru & Levyl|2015) and our

General: m ~ Uniform(13n, 15n),
k ~ Uniform(4, 5),
¢ ~ Uniform(3, 10),

~ i C
CA lects k literals in the same community uniformly at random with probability Q UﬂlfOl'[:n(O.'?. 0)) own study to ensure that
- o ? P X . Easy dataset: n ~ Uniform(10, 40), .
P = @ + 1/c and selects k literals in the distinct community uniformly at . . . the generated SAT instances
. - . . Medium dataset: n ~ Uniform(40, 200), AP
random with probability 1 - P to build a clause and repeat for m times to . . - have a balance of satisfiabil-
. Hard dataset: n ~ Uniform(200, 400) . : o
construct a CNF formula. ity and unsatisfiability.
PS dataset encompasses SAT instances with a power-law distribution in
the number of variable occurrences (popularity), and good clustering be- . . y
tween them (similarity). Given variable number n, clause number m, and Sene&al: fm ~4Utg11’orm(6m 8n), The parameters are selected
average clause size k, the synthetic generator first assigns random angles 8 ~ Um_form(o. l), based on the experiments in
0;,0; € [0, 2] to each variable 7 and each clause j, and then randomly sam- ﬁ/w— 1“' orm(0, 1), the original paper (Giraldez-
PS ples variable i in clause j with the probability P = 1/(1+ (i?%'0;;/R)T). s ~7Ur;iform(3 10) Cru & Levy]|2017} and our
Here, 0;; = m — |m — |0; — 0;]| is the angle between variable i and clause - Uniform(d 7515 own study to ensure that
. | ph P ~ .75,1.5) 5 A
j. The exponent parameters 3 and 8’ control the power-law distribution . -) the generated SAT instances
N ! . Easy dataset: n ~ Uniform(10,40), o T T
of variable occurrences and clause size respectively. The temperature pa- . . : 40 5 have a balance of satisfiabil-
g T s the sh s of th bability distributi hile 7 i Medium dataset: n ~ Uniform(40, 200), ity and unsatisfiabilit
rameter _contro s e_s a{pnesa of the probability distribution, while R 1s Hard dataset: 1 ~ Uniform(200, 300) y y.
an approximate normalization constant that ensures the average number of
selected edges is km.
i i i i General: p = (”)71/(;) ;
The k-Clique dataset includes SAT instances that encode the k-Clique prob- P k o The parameter p is selected
lem, which involves determining whether there exists a clique (i.e., a subset Easy da} et: v ~ Uniform(5, 15), based on the paper (Bol-
-Clique of vertices that are all adjacent to each other) with v vertices in a given k ~ Un1form(3.4). . lobas & Erdos![1976], mak-
4 graph. Given the number of cliques k, the synthetic generator produces an Medl”"} datan:t: v ~ Uniform(15, 20), ing the expected number of
Erd6s-Rényi graph with v vertices and a given edge probability p and then ¥ ~ Uniform(3, 5), . o oe k-Cliques in the generated
transforms the corresponding k-Clique problem into a SAT instance. Hard da‘lasel: v ~ Uniform(20, 25), graph equals 1.
k ~ Uniform(4, 6)
The k-Domset dataset contains SAT instances that encode the k- L oy —1/(v—k)\ /K
Dominating Set problem. This problem is to determine whether there exists General: p =1~ (1 - (k)) > The parameter p is selected
a dominating set (i.e., a subset of vertices such that every vertex in the Easy dataset: v ~ Uniform(5, 15), based on the paper (Wieland;
J-Domset graph is either in the subset or adjacent to a vertex in the subset) with at & ~ Uniform(2, 3), & Godbole| 2001}, mak-
i most k vertices in a given graph. Given the domination number k, the syn- Medium dataset: v ~ Uniform(15, 20), ing the expected number of
thetic generator produces an Erd6s-Rényi graph with v vertices and a given &k ~ Uniform(3, 5), domination set with size k in
edge probability p and then transforms the corresponding k-Dominating Set Hard dataset: v ~ Uniform(20, 25), the generated graph equals 1.
problem into a SAT instance. k ~ Uniform(4, 6)
n=1/(2) The generation process and
The k-Vercov dataset consists of SAT instances that encode the k-Vertex ~General: p = (k o the parameter are selected
Cover problem, i.e., check whether there exists a set of k vertices in a graph ~ Easy da}aset: v Uniform(5, 15), based on the relationship be-
such that every edge has at least one endpoint in this set. Given the vertex % ~ Uniform(3,5), tween k-Vertex Cover and k-
k-Vercov Y ecs P i i P
cover number k, the synthetic generator produces a complement graph of an Medlum dataset: v ~ Uniform(10, 20), Clique problems, making the
Erd6s-Rényi graph with v vertices and a given edge probability p and then ¥ ~ Uniform(6, 8), . size of the minimum vertex
converts the corresponding k-Vertex Cover problem into a SAT instance. Hard da.taset: v ~ Uniform(15, 25), cover in the generated graph
k ~ Uniform(9, 10) around k.

Statistics. To provide a comprehensive understanding of our generated datasets, we compute sev-
eral characteristics across three difficulty levels. These statistics include the average number of
variables and clauses, as well as graph measures such as average clustering coefficient (in VIG) and
modularity (in VIG, VCG, and LCG). The dataset statistics are summarized in Table@

Table 8: Dataset statistics across difficulty levels in G4SATBench.

Dataset Easy Difficulty Medium Difficulty Hard Difficulty
#Variables #Clauses C.C.VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG) #Varigbles #Clauses C.C(VIG) Mod(VIG) Mod(VCG) Mod(LCG) #Variables #Clauses C.C.VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG)
SR 25.00 14835 098 0.00 025 033 11836 64654 062 0.06 031 037 29964 1613.86 032 009 032 037
3-SAT 2505 113.69 072 006 036 046 12000 51314 027 0.16 043 051 25044 1067.34 0.14 017 045 052
CA 3166 30348 065 019 073 073 12027 1661.07 054 038 0.80 080 20968 4195.50 059 057 080 030
s 2541 17668 098 0.00 027 032 11875 82278 086 0.05 035 037 24961 172834 077 008 038 028
k-Clique 3485 592.80 090 003 045 049 6956 222005 091 003 048 049 11287 5543.26 0388 004 049 0.50
k-Domset 41.90 369.40 0.70 026 047 053 9064 173622 070 021 049 051 13731 403248 070 020 049 051
k-Vercov 4541 484.28 0.66 0.16 048 053 10740 263414 069 0.16 049 051 19024 8190.94 0.69 0.16 050 051

13

Under review as a conference paper at ICLR 2024

B GNN MODELS

Message-passing schemes on VCG*. Recall that VCG* incorporates two distinct edge types,
G4SATBench employs different functions to execute heterogeneous message-passing in each direc-
tion of each edge type. Formally, we define a d-dimensional embedding for each variable and clause
node, denoted by h; and h., respectively. These embeddings are initialized to two learnable vec-
tors Y and h?, depending on the node type. At the k-th iteration of message passing, these hidden

representations are updated as follows:
(o (1-0)}) 15-2).

(e (1))
(e (12-0)}).a0).

AGG

vee™

h{F) = UPD (AGG

vEct

AGG

cev—

({pez (n=2)).
where ¢ and ¢~ denote the sets of variable nodes that occur in the clause ¢ with positive and
negative polarity, respectively. Similarly, v™ and v~ denote the sets of clause nodes where variable

v occurs in positive and negative form. MLP,", MLP, , MLP,, and MLP,, are four MLPs. UPD(")
is the update function, and AGG(-) is the aggregation function.

h{®) = UPD (AGG

cevt

GNN baselines. Table] summarizes the message-passing algorithms of the GNN models used
in G4SATBench. We adopt heterogeneous versions of GCN (Kipf & Welling, |2017), GGNN (L1
et al., 2016), and GIN (Xu et al., 2019) on both LCG* and VCG*, while maintaining the original
NeuroSAT (Selsam et al.,|2019) only on LCG*.

Table 9: Supported GNN models in G4SATBench.

Graph Method Message-passing Algorithm Notes
hw. sw = LayerNormLSTM, Z MLP; (h (k=])) (l 5‘"7”.35FU) s
NeuroSAT 1eN Sc, 51 are the hidden states which are initialized to
X X - - - Zero vectors.
B, = LayerNormLSTM, | 5 MLP. (h*7V) 0G0 | (FD,s(70)
ceN (1)
5 MLp; (h{F1
hﬁf‘) = Linear; t}%) h(k b
GCN 1eN(c) id d., d; are the degrees of clause node ¢ and literal
) MLP, (h(E=D) “ k1) node [in LCG respectively.
h} = Linear —vIa hy Iy
cEN(l) g
LCG*
a5 (o ()}).
GGNN [EN)
B =GRUz (| 3> MLP, (b)) R4 |)
ceN (1)
¥ =wmLp, (| 2 ({MLP, (h}""”)}) .,hﬁk’”} .
GIN leN(c)
A" =MLP, [| 3 MLP, (hf.k’l)) R p (k=D
ceN (1)
. Pt (D WD) (e
2% = Linear, MLP} (l; g) MLP, (il 1 >,h§k 1)
GCN veet Goce vee- Ve d.., d,, are the degrees of clause node c and variable
) . MLPF (R MLP; (RD)) (i1 node v in VCG respectively.
hy”’ = Lineary P T 7«51'7 Ta h
»® = GRU, MLP; (/,,f,."”*”) .Y MLP; (hff“’”) D
VCG* GGNN _u(i’ vEeT
» = GRU, MLP; (hp‘"”) .S MLP; (h&"’”) et
»CEL’ ceEvT
»® =mLp, (| T MLPF (hE,k’”) .Y MLP; (hJ*”) (D
GIN veet vEe
A% =MLP, [| S MLP? (}LEH’)‘ MLP; (hfﬁ"”) D
cevt cEvT

C BENCHMARKING EVALUATION

C.1 IMPLEMENTATION DETAILS

In G4SATBench, we provide the ground truth of satisfiability and satisfying assignments by calling
the state-of-the-art modern SAT solver CaDiCaL (Fleury & Heisinger, |2020) and generate the truth

14

Under review as a conference paper at ICLR 2024

labels for unsat-core variables by invoking the proof checker DRAT-trim (Wetzler et al 2014). All
neural networks in our study are implemented using PyTorch (Paszke et al.,[2019) and PyTorch Ge-
ometric (Fey & Lenssen| [2019). For all GNN models, we set the feature dimension d to 128 and
the number of message passing iterations 7' to 32. The MLPs in the models consist of two hidden
layers with the ReLU (Nair & Hinton| [2010) activation function. To select the optimal hyperpa-
rameters for each GNN baseline, we conduct a grid search over several settings. Specifically, we
explore different learning rates from {1073,5 x 107%,107%,5 x 10=°,1075}, training epochs from
{50,100, 200}, weight decay values from {1075,10~7,107%,107%,1071°}, and gradient clipping
norms from {0.1,0.5, 1}. We employ Adam (Kingma & Bal 2015) as the optimizer and set the batch
size to 128, 64, or 32 to fit within the maximum GPU memory (48G). For the parameters 7 and «
of the unsupervised loss in EquationEl and Equation [5| we try the default settings (1 = ¢t~%% and
k = 10, where ¢ is the global step during training) as the original paper (Amizadeh et all 2019a)) as
well as other values (7 € {0.05,0.1,0.2,0.5}, k € {1,2,5}) and empirically find 7 = 0.1,k = 1
yield the best results. Furthermore, it is important to note that we use three different random seeds
to benchmark the performance of different GNN models and assess the generalization ability of
NeuroSAT and GGNN using one seed for simplicity.

C.2 SATIAFIABILITY PREDICTION

Evaluation across different difficulty levels. The complete results of NeuroSAT and GGNN
across different difficulty levels are presented in Figure[6] Consistent with the findings on the SR and
3-SAT datasets, both GNN models exhibit limited generalization ability to larger instances beyond
their training data, while displaying relatively better performance on smaller instances. This obser-
vation suggests that training these models on more challenging instances could potentially enhance
their generalization ability and improve their performance on larger instances.

easy] 6556 5482 | ooq JELREN 7498 66.08 | oo, JECENNCCXTARRUIN)

medium| [FRERINEN o327 8467 8330 MW oc17 9950 100.00 527 9689 98.00 WIS RN 0067 8540 MWW 8957 9001 96.99

easy medum hard easy medium hard easy medium hard easy medium hard easy medum hard casy medum hard easy medium hard

NeuroSAT on the SR dataset NeuroSAT on the 3-SAT dataset NeuroSAT on the CA dataset NeuroSAT on the PS dataset NeuroSAT on the k-Clique dataset NeuroSAT on the k-Domset dataset NeuroSAT on the k-Vercov dataset

(Tl 5285 50.00
99. 92

6523 53.90 | eayf

61.69 | medium| 53 9653 CEM | cium| 6038 | 7363 62.14 |eqiumiid

easy medium _hard
GGNN on the SR dataset GGNN on the 3-SAT dataset GGNN on the CA dataset GGNN on the PS dataset GGNN on the k-Clique dataset GGNN on the k-Domset dataset GGNN on the k-Vercov dataset

easy medium hard easy medium hard easy medium hard easy medum hard easy medium hard easy medium hard

Figure 6: Results across different difficulty levels. The x-axis denotes testing datasets and the y-axis
denotes training datasets.

Evaluation with different message passing iterations. To investigate the impact of message-
passing iterations on the performance of GNN models during training and testing, we conducted
experiments with varying iteration values. Figure [7] presents the results of NeuroSAT and GGNN
trained and evaluated with different message passing iterations. Remarkably, using a training itera-
tion value of 32 consistently yielded the best performance for both models. Conversely, employing
too small or too large iteration values during training resulted in decreased performance. Further-
more, the models trained with 32 iterations also demonstrated good generalization ability to testing
iterations 16 and 64. These findings emphasize the critical importance of selecting an appropriate
message-passing iteration to ensure optimal learning and reasoning within GNN models.

o 6725 7084 7188 6053 o sees 5173 sie s 5375 5017 so0a | o 7188 5332 s036 5039 o 5730 so01 s000 s0.0 5000 5000

16| 6266 1 5064 6368 7016 14 7043 16| 6879 1 5052 6433 5893 s1se 5000 5000

52| s 3| 505 s9s 3| 7227 3 6216 3| 5040 sase

oo 1008 5252 |3 o 5000 5000 4090 5720 | g 5130 632 o4 5000 o 5000 5237 s21s saz2

o4 s000 s02e

LI U A LI L U T % L LI U

NeuroSAT on the easy SR dataset NeuroSAT on the easy 3-sat dataset NeuroSAT on the medium SR dataset NeuroSAT on the medium 3-SAT dataset GGNN on the easy SR dataset ‘GGNN on the easy 3-sat datase! ‘GGNN on the medium SR dataset GGNN on the medium 3-SAT dataset

Figure 7: Results across different message passing iterations 7'. The x-axis denotes testing iterations
and the y-axis denotes training iterations.

C.3 SATISFYING ASSIGNMENT PREDICTION

15

Under review as a conference paper at ICLR 2024

Evaluation with different datasets. Figure [g|
illustrates the performance of NeuroSAT across
different datasets. For easy datasets, we observe
that NeuroSAT demonstrates a strong generaliza-
tion ability to other datasets when trained on the
SR, 3-SAT, CA, and PS datasets. However, when
trained on the k-Clique, k-Domset, and k-Vercov
datasets, which involve specific graph structures ;
inherent to their Combinatorial problems’ Neu_ NeuroSAT on easy datasets NeuroSAT on medium datasets
roSAT struggles to generalize effectively. This)
observation indicates that the GNN model may Figure 8: Results of NeuroSAT across different
overfit to leverage specific graph features asso- datasets (with UNS; as the training loss). The
ciated with these combinatorial datasets, without X-axis denotes testing datasets and the y-axis de-
developing a generalized solving strategy that can NOtes training datasets.

be applied to other problem domains for satisfy-

ing assignment prediction. For medium datasets, NeuroSAT also faces challenges in generalization,
as its performance is relatively limited. This can be attributed to the difficulty of these datasets,
where finding satisfying assignments is much harder than easy datasets.

Evaluation across different difficulty levels. The performance of NeuroSAT across different dif-
ficulty levels is shown in Figure 0] Notably, training on medium datasets yields superior gener-
alization performance compared to training on easy datasets. This suggests that training on more
challenging SAT instances with larger size can enhance the model’s ability to generalize to a wider
range of problem complexities.

casyIERH 2950 225 CLEC 3572 725

easy|

1905 176 | ops NCCKCMMCCREN 1943 | o)
9 618 o
ium R

mediumBEELN 3725 519 |medium[RGN 4161 1134 |meqium IRERERMRIEIKTN . i BECRCI AN] 3248 1468 [P o915 9503 8121

easy medum hard easy medum hard easy medum hard = easy medum hard casy medum Fan

easy medium har

NeuroSAT on the SR dataset NeuroSAT on the 3-SAT dataset NeuroSAT on the CA dataset NeuroSAT on the PS dataset NeuroSAT on the k-Clique dataset NeuroSAT on the k-Domset dataset NeuroSAT on the k-Vercov dataset

Figure 9: Results of NeuroSAT across different difficulty levels (with UNSy as the training loss).
The x-axis denotes testing datasets and the y-axis denotes training datasets.

Evaluation with different inference algo-
rithms. Figure[I0|illustrates the results of Neu-
roSAT using various decoding algorithms (with
UNS, as the training loss). Surprisingly, all
three decoding algorithms demonstrate remark-
ably similar performances across all datasets.
This observation indicates that utilizing the stan- ™= % & = wdiomamior 0w 5a @ o
dard readout after message passing is sufficient

for predicting a satisfying assignment, Also, the Figure 10: Results of NeuroSAT with different
GNN model has successfully learned to identify inference algorithms.

potential satisfying assignments within the latent

space, which can be extracted by clustering the literal embeddings.

Evaluation with unsatisfiable training instances. Following previous works
[2019a3b; [Ozolins et al.l[2022), our evaluation of GNN models focuses solely on satisfiable instances.
However, in practical scenarios, the satisfiability of instances may not be known before training. To
address this gap, we explore the effectiveness of training NeuroSAT using the unsupervised loss
UNS, on noisy datasets that contain unsatisfiable instances. Table [I0] presents the results of Neu-
roSAT when trained on such datasets, where 50% of the instances are unsatisfiable. Interestingly,
incorporating unsatisfiable instances for training does not significantly affect the performance of the
GNN model. This finding highlights the potential utility of training GNN models using UNS;, loss
on new datasets, irrespective of any prior knowledge regarding their satisfiability.

16

Under review as a conference paper at ICLR 2024

Table 10: Results of NeuroSAT when trained on noisy datasets. Values in parentheses indicate the
performance difference compared to the model trained without unsatisfiable instances. The k-Clique
dataset is excluded as NeuroSAT fails during training.

Easy Datasets Medium Datasets
SR 3-SAT CA PS k-Domset k-Vercov SR 3-SAT CA PS k-Domset k-Vercov

0.7884 0.8048 0.8701 0.8866 0.9800 09524 03721 04175 0.7649 0.7252 09493 0.9618
(-0.95) (-0.11) (-233) (-0.13) (-0.85) (-449) (-0.04) (+0.14) (+5.64) (+1.46) (-125) (+0.19)

C.4 UNSAT-CORE VARIABLE PREDICTION

Evaluation across different datasets. Figure[TT]shows the generalization results across different
datasets. Both NeuroSAT and GGNN demonstrate good generalization performance to datasets that
are different from their training data, except for the CA dataset. This discrepancy can be attributed
to the specific characteristics of the CA dataset, where the number of unsat-core variables is signifi-
cantly smaller compared to the number of variables not in the unsat core. In contrast, other datasets
have a different distribution, where the number of unsat-core variables is much larger. This variation
in distribution presents a challenge for the models’ generalization ability on the CA dataset.

[T ..so BEN o s a0

1430

NeuroSAT on easy datasets NeuroSAT on medium datasets GGNN on easy datasets GGNN on medium datasets

Figure 11: Results across different datasets. The x-axis denotes testing datasets and the y-axis
denotes training datasets.

Evaluation across different difficulty levels. The results across different difficulty levels are pre-
sented in Figure[I2] Remarkably, both NeuroSAT and GGNN exhibit a strong generalization ability
when trained on easy or medium datasets. This suggests that GNN models can effectively learn and
generalize from the characteristics and patterns present in these datasets, enabling them to perform
well on a wide range of problem complexities.

easy| 87.58 88.06 COSRRETETRNETRT .. 6351 8155 8315 | cogyf 8618 8637 8573 | oo NCCRERNEECCNNERXH 95.82 94.63 9447 99.10 99.85

89.51 90.05 | LA 94.20 99.65 100.00 8105 8570 86.01 8593 88.54

99.93 99.96 9564 97.90 99.04 9378 99.09 99.85

medium| medium| medium|

casy medium d easy medium hard
NeuroSAT on the SR dataset NeuroSAT on the 3-SAT dataset NeuroSAT on the CA dataset NeuroSAT on the PS dataset NeuroSAT on the k-Clique dataset NeuroSAT on the k-Domset dataset NeuroSAT on the k-Vercov dataset

a5y medium hard Gasy medium har €asy medium hard easy medium hard easy medium hard

casy| 8954 87.49 8850 N .| 8363 8555 8504 | oo 8585 8637 8595 9 99.96 99 [P o552 9726 9893 [NWWM 9448 99.02

medium| 8657 88.84 CISUREECCCRE N i 81.05 8570 86.01 |pegiym| 84.89 88.04 90.34 99.93 9996 99.99 MMM o568 97.80 99.02 9380 99.09 99.85

casy medum hard easy medium hard Gasy _medum _hard casy medum hard easy medium hard easy medum hard easy medum hard
GGNN on the SR dataset GGNN on the 3-SAT dataset GGNN on the CA dataset GGNN on the PS dataset GGNN on the k-Clique dataset GGNN on the k-Domset dataset GGNN on the k-Vercov dataset

Figure 12: Results across different difficulty levels. The x-axis denotes testing datasets and the y-
axis denotes training datasets.

D ADVANCING EVALUATION

Implementation details. To create the augmented datasets, we leverage CaDiCal (Fleury &
2020) to generate a DART proof (Wetzler et all, 2014) for each SAT instance, which

tracks the clause learning procedure and records all the learned clauses during the solving process.
These learned clauses are then added to each instance, with a maximum limit of 1,000 clauses.

17

Under review as a conference paper at ICLR 2024

For experiments on augmented datasets, we keep all training settings identical to those used for the
original datasets.

For contrastive pretraining experiments, we treat each original formula and its augmented counter-
part as a positive pair and all other instances in a mini-batch as negative pairs. We use an MLP
projection to map the graph embedding z; of each formula to m; and employ the SimCLR’s con-
trastive loss (Chen et al., 2020), where the loss function for a positive pair of examples (i, j) in a
mini-batch of size 2N is defined as:

exp(sim(m;, m;)/7)

. (8)
S L4 exp(sim(mg, my) /7)

ﬁ@j = — IOg

Here, 1, is an indicator function that evaluates to 1 if k& # 4, 7 is a temperature parameter, and
sim(-, -) is the similarity function defined as sim(m;,m;) = m, m;/|/m;||||m;||. The final loss is
the average over all positive pairs. In our experiments, we set the temperature parameter to 0.5 and
utilize a learning rate of 10~* with a weight decay of 10~8. The pretraining process is performed for
a total of 100 epochs. Once the pretraining is completed, we only keep the GNN model and remove
the projection head for downstream tasks.

For experiments involving random initialization, we utilize Kaiming Initialization (He et al., [2015))
to initialize all literal/variable and clause embeddings during both training and testing. For the
predicted assignments, we utilize 2-clustering decoding to construct two possible assignment pre-
dictions for NeuroSAT* at each iteration. When calculating the number of flipped variables and the
number of unsatisfiable clauses for NeuroSAT*, we only consider the better assignment prediction
of the two at each iteration, which is the one that satisfies more clauses. All other experimental
settings remain the same as in the benchmarking evaluation.

E LIMITATIONS AND FUTURE WORK

While G4SATBench represents a significant step in evaluating GNNs for SAT solving, there are
still some limitations and potential future directions to consider. Firstly, G4SATBench primarily fo-
cuses on evaluating standalone neural SAT solvers, excluding the exploration of neural-guided SAT
solvers that integrate GNNs with search-based SAT solvers. It also should be emphasized that the
instances included in G4SATBench are considerably smaller compared to most practical instances
found in real-world applications, where GNN models alone are not sufficient for solving such large-
scale instances. The efficacy of GNN models in unsat-core prediction shows a promising avenue for
combining GNNs with modern SAT solvers, and future research could explore more techniques to
effectively leverage these neural-guided SAT solvers to scale up to real-world instances. Secondly,
G4SATBench benchmarks general GNN models on the LCG* and VCG* graph representations for
SAT solving, but does not consider sophisticated GNN models designed for specific graph construc-
tions in certain domains, such as Circuit SAT problems. Investigating domain-specific GNN models
tailored to the characteristics of specific problems could lead to improved performance in special-
ized instances. Lastly, all existing GNN-based SAT solvers in the literature are static GNNs, which
have limited learning ability to capture the CDCL heuristic. Exploring dynamic GNN models that
can effectively learn the CDCL heuristic is also a potential direction for future research.

18

	Datasets
	GNN Models
	Benchmarking Evaluation
	Implementation Details
	Satiafiability Prediction
	Satisfying Assignment Prediction
	Unsat-core Variable Prediction

	Advancing Evaluation
	Limitations and Future Work

