
Under review as a conference paper at ICLR 2024

A DATASETS

Generators. To generate high-quality SAT datasets that do not contain trivial instances, we
have employed a rigorous process of selecting appropriate parameters for each CNF generator in
G4SATBench. Table 7 provides detailed information about the generators we have used.

Table 7: Details of the synthetic generators employed in G4SATBench.

Dataset Description Parameters Notes

SR

The SR dataset is composed of pairs of satisfiable and unsatisfiable for-
mulas, with the only difference between each pair being the polarity of a
single literal. Given the number of variables n, the synthetic generator iter-
atively samples k = 1+Bernoulli(b)+Geometric(g) variables uniformly at
random without replacement and negates each one with independent prob-
ability 50% to build a clause. This procedure continues until the gener-
ated formula is unsatisfiable. The satisfiable instance is then constructed by
negating the first literal in the last clause of the unsatisfiable one.

General: b = 0.3, g = 0.4,
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 400)

The sampling parameters are
the same as the original pa-
per (Selsam et al., 2019).

3-SAT

The 3-SAT dataset comprises CNF formulas at the phase transition, where
the proportion of generated satisfiable and unsatisfiable formulas is roughly
equal. Given the number of variables n and clauses m, the synthetic gen-
erator iteratively samples three variables (and their polarities) uniformly at
random until m clauses are obtained.

General: m = 4.258n+ 58.26n−2/3,
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 300)

The parameter m is the same
as the paper (Crawford &
Auton, 1996)

CA

The CA dataset contains SAT instances that are designed to mimic the com-
munity structures and modularity features found in real-world industrial in-
stances. Given variable number n, clause number m, clause size k, com-
munity number c, and modularity Q, the synthetic generator iteratively se-
lects k literals in the same community uniformly at random with probability
P = Q + 1/c and selects k literals in the distinct community uniformly at
random with probability 1 - P to build a clause and repeat for m times to
construct a CNF formula.

General: m ∼ Uniform(13n, 15n),
k ∼ Uniform(4, 5),
c ∼ Uniform(3, 10),
Q ∼ Uniform(0.7, 0.9)
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 400)

The parameters are selected
based on the experiments in
the original paper (Giráldez-
Cru & Levy, 2015) and our
own study to ensure that
the generated SAT instances
have a balance of satisfiabil-
ity and unsatisfiability.

PS

PS dataset encompasses SAT instances with a power-law distribution in
the number of variable occurrences (popularity), and good clustering be-
tween them (similarity). Given variable number n, clause number m, and
average clause size k, the synthetic generator first assigns random angles
θi, θj ∈ [0, 2π] to each variable i and each clause j, and then randomly sam-
ples variable i in clause j with the probability P = 1/(1+(iβjβ

′
θij/R)T).

Here, θij = π − |π − |θi − θj || is the angle between variable i and clause
j. The exponent parameters β and β′ control the power-law distribution
of variable occurrences and clause size respectively. The temperature pa-
rameter T controls the sharpness of the probability distribution, while R is
an approximate normalization constant that ensures the average number of
selected edges is km.

General: m ∼ Uniform(6n, 8n),
k ∼ Uniform(4, 5),
β ∼ Uniform(0, 1),
β′ = 1,
c ∼ Uniform(3, 10),
T ∼ Uniform(0.75, 1.5)
Easy dataset: n ∼ Uniform(10, 40),
Medium dataset: n ∼ Uniform(40, 200),
Hard dataset: n ∼ Uniform(200, 300)

The parameters are selected
based on the experiments in
the original paper (Giráldez-
Cru & Levy, 2017) and our
own study to ensure that
the generated SAT instances
have a balance of satisfiabil-
ity and unsatisfiability.

k-Clique

The k-Clique dataset includes SAT instances that encode the k-Clique prob-
lem, which involves determining whether there exists a clique (i.e., a subset
of vertices that are all adjacent to each other) with v vertices in a given
graph. Given the number of cliques k, the synthetic generator produces an
Erdős-Rényi graph with v vertices and a given edge probability p and then
transforms the corresponding k-Clique problem into a SAT instance.

General: p =
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15),
k ∼ Uniform(3, 4),
Medium dataset: v ∼ Uniform(15, 20),
k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25),
k ∼ Uniform(4, 6)

The parameter p is selected
based on the paper (Bol-
lobás & Erdös, 1976), mak-
ing the expected number of
k-Cliques in the generated
graph equals 1.

k-Domset

The k-Domset dataset contains SAT instances that encode the k-
Dominating Set problem. This problem is to determine whether there exists
a dominating set (i.e., a subset of vertices such that every vertex in the
graph is either in the subset or adjacent to a vertex in the subset) with at
most k vertices in a given graph. Given the domination number k, the syn-
thetic generator produces an Erdős-Rényi graph with v vertices and a given
edge probability p and then transforms the corresponding k-Dominating Set
problem into a SAT instance.

General: p = 1−
(
1−

(
v
k

)−1/(v−k)
)1/k

,
Easy dataset: v ∼ Uniform(5, 15),
k ∼ Uniform(2, 3),
Medium dataset: v ∼ Uniform(15, 20),
k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25),
k ∼ Uniform(4, 6)

The parameter p is selected
based on the paper (Wieland
& Godbole, 2001), mak-
ing the expected number of
domination set with size k in
the generated graph equals 1.

k-Vercov

The k-Vercov dataset consists of SAT instances that encode the k-Vertex
Cover problem, i.e., check whether there exists a set of k vertices in a graph
such that every edge has at least one endpoint in this set. Given the vertex
cover number k, the synthetic generator produces a complement graph of an
Erdős-Rényi graph with v vertices and a given edge probability p and then
converts the corresponding k-Vertex Cover problem into a SAT instance.

General: p =
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15),
k ∼ Uniform(3, 5),
Medium dataset: v ∼ Uniform(10, 20),
k ∼ Uniform(6, 8),
Hard dataset: v ∼ Uniform(15, 25),
k ∼ Uniform(9, 10)

The generation process and
the parameter are selected
based on the relationship be-
tween k-Vertex Cover and k-
Clique problems, making the
size of the minimum vertex
cover in the generated graph
around k.

Statistics. To provide a comprehensive understanding of our generated datasets, we compute sev-
eral characteristics across three difficulty levels. These statistics include the average number of
variables and clauses, as well as graph measures such as average clustering coefficient (in VIG) and
modularity (in VIG, VCG, and LCG). The dataset statistics are summarized in Table 8.

Table 8: Dataset statistics across difficulty levels in G4SATBench.

Dataset Easy Difficulty Medium Difficulty Hard Difficulty

#Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG) #Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG) #Variables #Clauses C.C.(VIG) Mod.(VIG) Mod.(VCG) Mod.(LCG)

SR 25.00 148.35 0.98 0.00 0.25 0.33 118.36 646.54 0.62 0.06 0.31 0.37 299.64 1613.86 0.32 0.09 0.32 0.37

3-SAT 25.05 113.69 0.72 0.06 0.36 0.46 120.00 513.14 0.27 0.16 0.43 0.51 250.44 1067.34 0.14 0.17 0.45 0.52

CA 31.66 303.48 0.65 0.19 0.73 0.73 120.27 1661.07 0.54 0.38 0.80 0.80 299.68 4195.50 0.59 0.57 0.80 0.80

PS 25.41 176.68 0.98 0.00 0.27 0.32 118.75 822.78 0.86 0.05 0.35 0.37 249.61 1728.34 0.77 0.08 0.38 0.28

k-Clique 34.85 592.89 0.90 0.03 0.45 0.49 69.56 2220.05 0.91 0.03 0.48 0.49 112.87 5543.26 0.88 0.04 0.49 0.50

k-Domset 41.90 369.40 0.70 0.26 0.47 0.53 90.64 1736.22 0.70 0.21 0.49 0.51 137.31 4032.48 0.70 0.20 0.49 0.51

k-Vercov 45.41 484.28 0.66 0.16 0.48 0.53 107.40 2634.14 0.69 0.16 0.49 0.51 190.24 8190.94 0.69 0.16 0.50 0.51

13

Under review as a conference paper at ICLR 2024

B GNN MODELS

Message-passing schemes on VCG*. Recall that VCG* incorporates two distinct edge types,
G4SATBench employs different functions to execute heterogeneous message-passing in each direc-
tion of each edge type. Formally, we define a d-dimensional embedding for each variable and clause
node, denoted by hl and hc, respectively. These embeddings are initialized to two learnable vec-
tors h0

v and h0
c , depending on the node type. At the k-th iteration of message passing, these hidden

representations are updated as follows:

h(k)
c = UPD

(
AGG
v∈c+

({
MLP+

v

(
h(k−1)
v

)})
,AGG
v∈c−

({
MLP−

v

(
h(k−1)
v

)})
, h(k−1)

c

)
,

h(k)
v = UPD

(
AGG
c∈v+

({
MLP+

c

(
h(k−1)
c

)})
,AGG
c∈v−

({
MLP−

c

(
h(k−1)
c

)})
, h(k−1)

v

)
,

(7)

where c+ and c− denote the sets of variable nodes that occur in the clause c with positive and
negative polarity, respectively. Similarly, v+ and v− denote the sets of clause nodes where variable
v occurs in positive and negative form. MLP+

v , MLP−
v , MLP+

c , and MLP−
c are four MLPs. UPD(·)

is the update function, and AGG(·) is the aggregation function.

GNN baselines. Table 9 summarizes the message-passing algorithms of the GNN models used
in G4SATBench. We adopt heterogeneous versions of GCN (Kipf & Welling, 2017), GGNN (Li
et al., 2016), and GIN (Xu et al., 2019) on both LCG* and VCG*, while maintaining the original
NeuroSAT (Selsam et al., 2019) only on LCG*.

Table 9: Supported GNN models in G4SATBench.

Graph Method Message-passing Algorithm Notes

LCG*

NeuroSAT
h
(k)
c , s

(k)
c = LayerNormLSTM1

(∑
l∈N (c)

MLPl

(
h
(k−1)
l

)
,
(
h
(k−1)
c , s

(k−1)
c

))
,

h
(k)
l , s

(k)
l = LayerNormLSTM2

([∑
c∈N (l)

MLPc

(
h
(k−1)
c

)
, h

(k−1)
¬l

]
,
(
h
(k−1)
l , s

(k−1)
l

)) sc, sl are the hidden states which are initialized to
zero vectors.

GCN
h
(k)
c = Linear1

([∑
l∈N (c)

MLPl

(
h
(k−1)
l

)
√
dldc

, h
(k−1)
c

])
,

h
(k)
l = Linear2

([∑
c∈N (l)

MLPc(h(k−1)
c)√

dcdl
, h

(k−1)
¬l , h

(k−1)
l

]) dc, dl are the degrees of clause node c and literal
node l in LCG respectively.

GGNN
h
(k)
c = GRU1

(∑
l∈N (c)

({
MLPl

(
h
(k−1)
l

)})
, h

(k−1)
c

)
,

h
(k)
l = GRU2

([∑
c∈N (l)

MLPc

(
h
(k−1)
c

)
, h

(k−1)
¬l

]
, h

(k−1)
l

)

GIN
h
(k)
c = MLP1

([∑
l∈N (c)

({
MLPl

(
h
(k−1)
l

)})
, h

(k−1)
c

])
,

h
(k)
l = MLP2

([∑
c∈N (l)

MLPc

(
h
(k−1)
c

)
, h

(k−1)
¬l , h

(k−1)
l

])

VCG*

GCN
h
(k)
c = Linear1

([∑
v∈c+

MLP+
v (h

(k−1)
v)√

dvdc
,
∑

v∈c−

MLP−
v (h

(k−1)
v)√

dvdc
, h

(k−1)
c

])
,

h
(k)
v = Linear2

([∑
c∈v+

MLP+
c (h

(k−1)
c)√

dcdv
,
∑

c∈v−

MLP−
c (h

(k−1)
c)√

dcdv
, h

(k−1)
v

]) dc, dv are the degrees of clause node c and variable
node v in VCG respectively.

GGNN
h
(k)
c = GRU1

([∑
v∈c+

MLP+
v

(
h
(k−1)
v

)
,
∑

v∈c−
MLP−

v

(
h
(k−1)
v

)]
, h

(k−1)
c

)
,

h
(k)
v = GRU2

([∑
c∈v+

MLP+
c

(
h
(k−1)
c

)
,
∑

c∈v−
MLP−

c

(
h
(k−1)
c

)]
, h

(k−1)
v

)

GIN
h
(k)
c = MLP1

([∑
v∈c+

MLP+
v

(
h
(k−1)
v

)
,
∑

v∈c−
MLP−

v

(
h
(k−1)
v

)
, h

(k−1)
c

])
,

h
(k)
v = MLP2

([∑
c∈v+

MLP+
c

(
h
(k−1)
c

)
,
∑

c∈v−
MLP−

c

(
h
(k−1)
c

)
, h

(k−1)
v

])

C BENCHMARKING EVALUATION

C.1 IMPLEMENTATION DETAILS

In G4SATBench, we provide the ground truth of satisfiability and satisfying assignments by calling
the state-of-the-art modern SAT solver CaDiCaL (Fleury & Heisinger, 2020) and generate the truth

14

Under review as a conference paper at ICLR 2024

labels for unsat-core variables by invoking the proof checker DRAT-trim (Wetzler et al., 2014). All
neural networks in our study are implemented using PyTorch (Paszke et al., 2019) and PyTorch Ge-
ometric (Fey & Lenssen, 2019). For all GNN models, we set the feature dimension d to 128 and
the number of message passing iterations T to 32. The MLPs in the models consist of two hidden
layers with the ReLU (Nair & Hinton, 2010) activation function. To select the optimal hyperpa-
rameters for each GNN baseline, we conduct a grid search over several settings. Specifically, we
explore different learning rates from {10−3, 5× 10−4, 10−4, 5× 10−5, 10−5}, training epochs from
{50, 100, 200}, weight decay values from {10−6, 10−7, 10−8, 10−9, 10−10}, and gradient clipping
norms from {0.1, 0.5, 1}. We employ Adam (Kingma & Ba, 2015) as the optimizer and set the batch
size to 128, 64, or 32 to fit within the maximum GPU memory (48G). For the parameters τ and κ
of the unsupervised loss in Equation 4 and Equation 5, we try the default settings (τ = t−0.4 and
κ = 10, where t is the global step during training) as the original paper (Amizadeh et al., 2019a) as
well as other values (τ ∈ {0.05, 0.1, 0.2, 0.5}, κ ∈ {1, 2, 5}) and empirically find τ = 0.1, κ = 1
yield the best results. Furthermore, it is important to note that we use three different random seeds
to benchmark the performance of different GNN models and assess the generalization ability of
NeuroSAT and GGNN using one seed for simplicity.

C.2 SATIAFIABILITY PREDICTION

Evaluation across different difficulty levels. The complete results of NeuroSAT and GGNN
across different difficulty levels are presented in Figure 6. Consistent with the findings on the SR and
3-SAT datasets, both GNN models exhibit limited generalization ability to larger instances beyond
their training data, while displaying relatively better performance on smaller instances. This obser-
vation suggests that training these models on more challenging instances could potentially enhance
their generalization ability and improve their performance on larger instances.

easy medium hard

easy

medium

94.19 65.56 54.82

95.39 78.40 62.11

NeuroSAT on the SR dataset
easy medium hard

easy

medium

96.16 74.98 66.08

93.27 84.67 83.30

NeuroSAT on the 3-SAT dataset
easy medium hard

easy

medium

98.80 99.67 100.00

96.17 99.50 100.00

NeuroSAT on the CA dataset
easy medium hard

easy

medium

96.33 95.94 96.67

95.27 96.89 98.00

NeuroSAT on the PS dataset
easy medium hard

easy

medium

98.66 93.50 82.94

77.64 89.39 77.98

NeuroSAT on the k-Clique dataset
easy medium hard

easy

medium

99.74 66.78 50.20

72.36 99.67 85.40

NeuroSAT on the k-Domset dataset
easy medium hard

easy

medium

99.99 50.95 50.00

89.87 99.91 96.99

NeuroSAT on the k-Vercov dataset

easy medium hard

easy

medium

96.62 65.23 53.90

95.48 77.70 61.69

GGNN on the SR dataset
easy medium hard

easy

medium

96.38 80.20 76.76

94.99 85.78 83.60

GGNN on the 3-SAT dataset
easy medium hard

easy

medium

98.69 99.63 100.00

96.17 99.50 100.00

GGNN on the CA dataset
easy medium hard

easy

medium

96.80 96.06 97.25

94.53 96.53 97.83

GGNN on the PS dataset
easy medium hard

easy

medium

98.88 91.64 58.82

60.38 73.63 62.14

GGNN on the k-Clique dataset
easy medium hard

easy

medium

99.72 84.08 68.31

94.70 99.52 99.01

GGNN on the k-Domset dataset
easy medium hard

easy

medium

99.98 52.85 50.00

80.33 99.61 88.92

GGNN on the k-Vercov dataset

Figure 6: Results across different difficulty levels. The x-axis denotes testing datasets and the y-axis
denotes training datasets.

Evaluation with different message passing iterations. To investigate the impact of message-
passing iterations on the performance of GNN models during training and testing, we conducted
experiments with varying iteration values. Figure 7 presents the results of NeuroSAT and GGNN
trained and evaluated with different message passing iterations. Remarkably, using a training itera-
tion value of 32 consistently yielded the best performance for both models. Conversely, employing
too small or too large iteration values during training resulted in decreased performance. Further-
more, the models trained with 32 iterations also demonstrated good generalization ability to testing
iterations 16 and 64. These findings emphasize the critical importance of selecting an appropriate
message-passing iteration to ensure optimal learning and reasoning within GNN models.

8 16 32 64

8

16

32

64

67.25 70.84 71.54 60.53

62.66 88.36 95.06 95.45

59.85 76.81 96.62 98.87

49.98 52.52 73.41 87.76

NeuroSAT on the easy SR dataset

8 16 32 64

8

16

32

64

77.68 68.18 64.07 63.94

76.55 90.06 94.17 95.03

62.91 82.88 96.38 98.86

56.95 60.47 81.03 91.14

NeuroSAT on the easy 3-sat dataset

8 16 32 64

8

16

32

64

56.66 51.73 51.62 52.11

50.64 63.68 70.16 77.90

50.55 58.94 77.70 85.19

50.00 50.00 49.99 57.20

NeuroSAT on the medium SR dataset

8 16 32 64

8

16

32

64

77.50 53.75 50.17 50.04

70.43 80.09 77.98 74.48

72.27 79.85 85.78 88.70

51.30 66.32 77.85 83.25

NeuroSAT on the medium 3-SAT dataset

8 16 32 64

8

16

32

64

71.95 53.52 50.36 50.39

68.79 86.59 90.73 93.21

62.16 82.80 94.19 98.08

50.00 51.20 71.59 85.41

GGNN on the easy SR dataset

8 16 32 64

8

16

32

64

79.16 77.52 51.21 49.23

53.61 91.39 86.48 76.33

68.49 82.80 96.16 98.41

50.00 50.00 77.34 90.44

GGNN on the easy 3-sat dataset

8 16 32 64

8

16

32

64

57.30 50.01 50.00 50.00

50.52 64.33 58.93 51.58

50.40 58.58 78.40 82.27

50.00 52.37 52.15 54.22

GGNN on the medium SR dataset

8 16 32 64

8

16

32

64

77.94 50.00 50.00 50.00

72.27 80.51 50.00 50.00

54.21 78.52 84.67 81.42

50.00 50.28 69.25 80.00

GGNN on the medium 3-SAT dataset

Figure 7: Results across different message passing iterations T . The x-axis denotes testing iterations
and the y-axis denotes training iterations.

C.3 SATISFYING ASSIGNMENT PREDICTION

15

Under review as a conference paper at ICLR 2024

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

79.05 79.68 71.68 86.63 0.89 77.53 78.73

25.79 80.98 34.92 51.15 24.89 35.95 82.07

38.58 66.03 89.33 69.89 17.96 39.51 62.15

76.74 76.50 68.48 88.67 2.52 74.65 62.77

0.44 20.92 0.00 0.41 63.43 9.50 41.87

28.68 25.38 0.55 42.69 1.36 98.96 63.50

9.10 14.95 13.28 16.28 55.15 12.95 99.81

NeuroSAT on easy datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

37.25 37.13 3.10 57.26 0.00 20.68 4.08

1.19 41.61 0.09 9.83 0.00 10.75 13.65

2.05 19.42 70.84 26.01 1.21 34.32 29.28

35.27 36.26 62.26 71.03 0.00 28.91 0.02

0.00 0.00 0.00 0.02 32.48 11.62 20.18

1.66 0.00 2.89 9.69 7.42 96.18 66.44

0.00 0.00 0.00 0.00 22.49 0.70 95.03

NeuroSAT on medium datasets

Figure 8: Results of NeuroSAT across different
datasets (with UNS2 as the training loss). The
x-axis denotes testing datasets and the y-axis de-
notes training datasets.

Evaluation with different datasets. Figure 8
illustrates the performance of NeuroSAT across
different datasets. For easy datasets, we observe
that NeuroSAT demonstrates a strong generaliza-
tion ability to other datasets when trained on the
SR, 3-SAT, CA, and PS datasets. However, when
trained on the k-Clique, k-Domset, and k-Vercov
datasets, which involve specific graph structures
inherent to their combinatorial problems, Neu-
roSAT struggles to generalize effectively. This
observation indicates that the GNN model may
overfit to leverage specific graph features asso-
ciated with these combinatorial datasets, without
developing a generalized solving strategy that can
be applied to other problem domains for satisfy-
ing assignment prediction. For medium datasets, NeuroSAT also faces challenges in generalization,
as its performance is relatively limited. This can be attributed to the difficulty of these datasets,
where finding satisfying assignments is much harder than easy datasets.

Evaluation across different difficulty levels. The performance of NeuroSAT across different dif-
ficulty levels is shown in Figure 9. Notably, training on medium datasets yields superior gener-
alization performance compared to training on easy datasets. This suggests that training on more
challenging SAT instances with larger size can enhance the model’s ability to generalize to a wider
range of problem complexities.

easy medium hard

easy

medium

79.05 29.50 2.25

81.80 37.25 5.19

NeuroSAT on the SR dataset
easy medium hard

easy

medium

80.98 35.72 7.25

82.63 41.61 11.34

NeuroSAT on the 3-SAT dataset
easy medium hard

easy

medium

89.35 68.25 59.91

85.13 70.85 68.96

NeuroSAT on the CA dataset
easy medium hard

easy

medium

88.67 64.04 43.63

89.88 71.03 55.47

NeuroSAT on the PS dataset
easy medium hard

easy

medium

63.43 19.05 1.76

64.85 32.48 14.68

NeuroSAT on the k-Clique dataset
easy medium hard

easy

medium

98.96 69.72 19.43

96.65 96.18 91.77

NeuroSAT on the k-Domset dataset
easy medium hard

easy

medium

99.81 75.11 0.00

99.15 95.03 81.21

NeuroSAT on the k-Vercov dataset

Figure 9: Results of NeuroSAT across different difficulty levels (with UNS2 as the training loss).
The x-axis denotes testing datasets and the y-axis denotes training datasets.

SR 3-SAT CA PS k-Clique k-Domset k-Vercov
NeuroSAT on easy datasets

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 (%
)

0.
79 0.
81

0.
89

0.
89

0.
63

0.
99 1.
00

0.
79 0.
81

0.
89

0.
89

0.
63

0.
98 0.
99

0.
79 0.
81

0.
90

0.
89

0.
63

0.
99 1.
00

Standard readout
Clustering decoding
Multiple predictions

SR 3-SAT CA PS k-Clique k-Domset k-Vercov
NeuroSAT on medium datasets

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

sif
ica

tio
n

ac
cu

ra
cy

 (%
)

0.
37 0.

42

0.
71

0.
71

0.
32

0.
96

0.
95

0.
37 0.

42

0.
70

0.
71

0.
32

0.
96

0.
97

0.
37 0.

42

0.
72

0.
71

0.
32

0.
96

0.
95

Standard readout
Clustering decoding
Multiple predictions

Figure 10: Results of NeuroSAT with different
inference algorithms.

Evaluation with different inference algo-
rithms. Figure 10 illustrates the results of Neu-
roSAT using various decoding algorithms (with
UNS2 as the training loss). Surprisingly, all
three decoding algorithms demonstrate remark-
ably similar performances across all datasets.
This observation indicates that utilizing the stan-
dard readout after message passing is sufficient
for predicting a satisfying assignment. Also, the
GNN model has successfully learned to identify
potential satisfying assignments within the latent
space, which can be extracted by clustering the literal embeddings.

Evaluation with unsatisfiable training instances. Following previous works (Amizadeh et al.,
2019a;b; Ozolins et al., 2022), our evaluation of GNN models focuses solely on satisfiable instances.
However, in practical scenarios, the satisfiability of instances may not be known before training. To
address this gap, we explore the effectiveness of training NeuroSAT using the unsupervised loss
UNS2 on noisy datasets that contain unsatisfiable instances. Table 10 presents the results of Neu-
roSAT when trained on such datasets, where 50% of the instances are unsatisfiable. Interestingly,
incorporating unsatisfiable instances for training does not significantly affect the performance of the
GNN model. This finding highlights the potential utility of training GNN models using UNS2 loss
on new datasets, irrespective of any prior knowledge regarding their satisfiability.

16

Under review as a conference paper at ICLR 2024

Table 10: Results of NeuroSAT when trained on noisy datasets. Values in parentheses indicate the
performance difference compared to the model trained without unsatisfiable instances. The k-Clique
dataset is excluded as NeuroSAT fails during training.

Easy Datasets Medium Datasets

SR 3-SAT CA PS k-Domset k-Vercov SR 3-SAT CA PS k-Domset k-Vercov

0.7884 0.8048 0.8701 0.8866 0.9800 0.9524 0.3721 0.4175 0.7649 0.7252 0.9493 0.9618
(-0.95) (-0.11) (-2.33) (-0.13) (-0.85) (-4.49) (-0.04) (+0.14) (+5.64) (+1.46) (-1.25) (+0.19)

C.4 UNSAT-CORE VARIABLE PREDICTION

Evaluation across different datasets. Figure 11 shows the generalization results across different
datasets. Both NeuroSAT and GGNN demonstrate good generalization performance to datasets that
are different from their training data, except for the CA dataset. This discrepancy can be attributed
to the specific characteristics of the CA dataset, where the number of unsat-core variables is signifi-
cantly smaller compared to the number of variables not in the unsat core. In contrast, other datasets
have a different distribution, where the number of unsat-core variables is much larger. This variation
in distribution presents a challenge for the models’ generalization ability on the CA dataset.

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

90.85 93.94 18.96 85.20 99.92 91.71 91.94

78.94 94.41 18.95 71.10 99.93 77.09 81.52

21.11 6.15 83.51 31.46 0.07 4.59 6.22

79.54 13.93 19.27 86.18 0.07 4.59 6.22

78.88 93.85 21.29 68.54 99.93 81.57 93.78

78.91 92.54 18.95 68.71 99.93 95.82 90.50

78.89 93.86 18.95 68.55 99.93 85.61 94.47

NeuroSAT on easy datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

90.05 99.08 14.30 76.80 99.96 97.81 96.45

82.79 99.65 14.30 54.98 99.96 97.81 99.09

17.21 0.65 85.70 46.07 0.04 2.19 0.91

81.82 0.66 14.39 88.54 46.08 2.19 0.92

82.79 99.35 14.30 53.93 99.96 97.81 99.09

82.79 97.92 14.30 54.22 99.96 97.90 99.09

82.79 99.34 14.30 54.45 99.96 97.58 99.09

NeuroSAT on medium datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

89.54 94.10 19.02 85.25 99.86 94.06 35.80

78.92 94.37 18.95 70.50 99.93 82.55 99.09

21.11 6.15 83.63 31.55 0.07 4.59 0.91

83.70 93.33 19.56 85.85 21.31 74.31 98.95

78.89 93.85 18.95 68.54 99.93 95.41 99.09

78.83 91.77 18.97 69.41 99.93 95.82 99.09

78.89 93.86 18.95 68.55 99.93 85.26 99.09

GGNN on easy datasets

SR
3-S

AT CA PS

k-C
liqu

e

k-D
om

set

k-V
erc

ov

SR

3-SAT

CA

PS

k-Clique

k-Domset

k-Vercov

88.84 99.14 14.59 81.32 33.91 38.76 35.80

82.79 99.65 14.30 54.04 99.96 97.81 99.09

17.21 0.65 85.70 46.07 0.04 2.19 0.91

83.15 0.65 14.47 88.04 99.96 97.78 98.95

82.79 99.35 14.30 53.93 99.96 97.81 99.09

82.23 90.80 14.30 54.68 99.96 97.89 99.09

82.14 96.68 14.31 55.33 99.96 97.81 99.09

GGNN on medium datasets

Figure 11: Results across different datasets. The x-axis denotes testing datasets and the y-axis
denotes training datasets.

Evaluation across different difficulty levels. The results across different difficulty levels are pre-
sented in Figure 12. Remarkably, both NeuroSAT and GGNN exhibit a strong generalization ability
when trained on easy or medium datasets. This suggests that GNN models can effectively learn and
generalize from the characteristics and patterns present in these datasets, enabling them to perform
well on a wide range of problem complexities.

easy medium hard

easy

medium

90.85 87.58 88.06

89.51 90.05 94.04

NeuroSAT on the SR dataset
easy medium hard

easy

medium

94.41 98.82 98.92

94.20 99.65 100.00

NeuroSAT on the 3-SAT dataset
easy medium hard

easy

medium

83.51 81.55 83.15

81.05 85.70 86.01

NeuroSAT on the CA dataset
easy medium hard

easy

medium

86.18 86.37 85.73

85.93 88.54 90.85

NeuroSAT on the PS dataset
easy medium hard

easy

medium

99.93 99.96 99.99

99.93 99.96 99.99

NeuroSAT on the k-Clique dataset
easy medium hard

easy

medium

95.82 92.79 94.63

95.64 97.90 99.04

NeuroSAT on the k-Domset dataset
easy medium hard

easy

medium

94.47 99.10 99.85

93.78 99.09 99.85

NeuroSAT on the k-Vercov dataset

easy medium hard

easy

medium

89.54 87.49 88.50

86.57 88.84 92.90

GGNN on the SR dataset
easy medium hard

easy

medium

94.37 98.96 99.09

94.19 99.65 100.00

GGNN on the 3-SAT dataset
easy medium hard

easy

medium

83.63 85.55 85.94

81.05 85.70 86.01

GGNN on the CA dataset
easy medium hard

easy

medium

85.85 86.37 85.95

84.89 88.04 90.34

GGNN on the PS dataset
easy medium hard

easy

medium

99.93 99.96 99.99

99.93 99.96 99.99

GGNN on the k-Clique dataset
easy medium hard

easy

medium

95.82 97.26 98.98

95.68 97.89 99.02

GGNN on the k-Domset dataset
easy medium hard

easy

medium

94.48 99.02 99.78

93.80 99.09 99.85

GGNN on the k-Vercov dataset

Figure 12: Results across different difficulty levels. The x-axis denotes testing datasets and the y-
axis denotes training datasets.

D ADVANCING EVALUATION

Implementation details. To create the augmented datasets, we leverage CaDiCaL (Fleury &
Heisinger, 2020) to generate a DART proof (Wetzler et al., 2014) for each SAT instance, which
tracks the clause learning procedure and records all the learned clauses during the solving process.
These learned clauses are then added to each instance, with a maximum limit of 1,000 clauses.

17

Under review as a conference paper at ICLR 2024

For experiments on augmented datasets, we keep all training settings identical to those used for the
original datasets.

For contrastive pretraining experiments, we treat each original formula and its augmented counter-
part as a positive pair and all other instances in a mini-batch as negative pairs. We use an MLP
projection to map the graph embedding zi of each formula to mi and employ the SimCLR’s con-
trastive loss (Chen et al., 2020), where the loss function for a positive pair of examples (i, j) in a
mini-batch of size 2N is defined as:

Li,j = − log
exp(sim(mi,mj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(mi,mk)/τ)
. (8)

Here, 1[k ̸=i] is an indicator function that evaluates to 1 if k ̸= i, τ is a temperature parameter, and
sim(·, ·) is the similarity function defined as sim(mi,mj) = m⊤

i mj/∥mi∥∥mj∥. The final loss is
the average over all positive pairs. In our experiments, we set the temperature parameter to 0.5 and
utilize a learning rate of 10−4 with a weight decay of 10−8. The pretraining process is performed for
a total of 100 epochs. Once the pretraining is completed, we only keep the GNN model and remove
the projection head for downstream tasks.

For experiments involving random initialization, we utilize Kaiming Initialization (He et al., 2015)
to initialize all literal/variable and clause embeddings during both training and testing. For the
predicted assignments, we utilize 2-clustering decoding to construct two possible assignment pre-
dictions for NeuroSAT* at each iteration. When calculating the number of flipped variables and the
number of unsatisfiable clauses for NeuroSAT*, we only consider the better assignment prediction
of the two at each iteration, which is the one that satisfies more clauses. All other experimental
settings remain the same as in the benchmarking evaluation.

E LIMITATIONS AND FUTURE WORK

While G4SATBench represents a significant step in evaluating GNNs for SAT solving, there are
still some limitations and potential future directions to consider. Firstly, G4SATBench primarily fo-
cuses on evaluating standalone neural SAT solvers, excluding the exploration of neural-guided SAT
solvers that integrate GNNs with search-based SAT solvers. It also should be emphasized that the
instances included in G4SATBench are considerably smaller compared to most practical instances
found in real-world applications, where GNN models alone are not sufficient for solving such large-
scale instances. The efficacy of GNN models in unsat-core prediction shows a promising avenue for
combining GNNs with modern SAT solvers, and future research could explore more techniques to
effectively leverage these neural-guided SAT solvers to scale up to real-world instances. Secondly,
G4SATBench benchmarks general GNN models on the LCG* and VCG* graph representations for
SAT solving, but does not consider sophisticated GNN models designed for specific graph construc-
tions in certain domains, such as Circuit SAT problems. Investigating domain-specific GNN models
tailored to the characteristics of specific problems could lead to improved performance in special-
ized instances. Lastly, all existing GNN-based SAT solvers in the literature are static GNNs, which
have limited learning ability to capture the CDCL heuristic. Exploring dynamic GNN models that
can effectively learn the CDCL heuristic is also a potential direction for future research.

18

	Datasets
	GNN Models
	Benchmarking Evaluation
	Implementation Details
	Satiafiability Prediction
	Satisfying Assignment Prediction
	Unsat-core Variable Prediction

	Advancing Evaluation
	Limitations and Future Work

