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Introduction

Deep learning (DL) image reconstruction techniques have remarkable results

but lack estimates of uncertainty

This is critical in sensitive domains such as medical imaging

There are many types of uncertainty, though the most common in DL are

Epistemic - uncertainty in the parameters

Aleatoric - stochastic variability in the data generation

Our goal: a DL reconstruction method that allows to account for both

epistemic and aleatoric uncertainty in medical images

Deep Unrolled Optimisation

Unrolled optimisation mimics iterative methods but

1. Executes only a finite number of iterations

2. Computes the updates using DNNs

We use iterates computed as residual updates with a feasibility projection

xk = ReLu(xk−1 + δxk−1)

The increments δxk−1 are computed as

δxk−1 = fϕk (∇D (y,Axk−1) , xk−1) =: fϕk(∇D, xk−1)

ϕk = (φk, θk) are (deterministic & probabilistic) parameters of the neural net
(block) fϕk
The entire iteration (cascade) consists of K sequential blocks

xK = (fϕK ◦ fϕK−1 ◦ · · · ◦ fϕ1) (∇D, x0) := fΦK
(∇D, x0), with Φk := (ϕ1, . . . , ϕk)

Bayesian Deep Gradient Descent

Each block (network) of the cascade consists of two parts

Deterministic layers with weights φk
A final Bayesian layer with (random) weights θk

For θk we need to compute the parameters defining their distribution

To estimate the posterior p(θ|X,Y ) we use variational inference: use an
approximate, simple to compute, distribution q∗ψ
Moreover, we train the network greedily: provided previous k − 1 blocks
have been trained, in block k we use the family Qk

qΨk
(Θk) = q∗Ψk−1

(Θk−1)qψk(θk; Θk−1), with qψk(θk; Θk−1) =
D∏
d=1
N (µk,d, σ2

k,d),

where ψk = {(µk,`, σ2
k,d)}Dd=1, and q

∗
Ψk−1

is the distribution learnt for the

previous k − 1 blocks
The optimal distribution is computed by minimising the negative ELBO

q∗Ψk
∈argmin

qΨk∈Qk
Lk(qΨk

;X,Y ) :=−
∫
qΨk

(Θk) log p(X|Y,Θk)dΘk + KL(qΨk
(Θk)‖p(Θk))

The prior is set recursively as

p(Θk) = qΨk−1(Θk−1)p(θk; Θk−1),where p(θk; Θk−1) = N (0, I).

Choosing the likelihood allows to capture the uncertainty

Disentangling Uncertainty

Choosing the likelihood adequately allows the capture of either aleatoric or

epistemic uncertainty, or both

BDGD [2] takes the likelihood as:

p(x|y,Θk) = N (fΘk
(∇D, x0), σ2

kI).

Following [4], BDGD+ captures aleatoric uncertainty using:

p(x|y,Θk) = N
(
fΘk

(∇D, x0), diag(σ2
Θk

(∇D, x0))
)
.

We decouple aleatoric and epistemic uncertainties by decomposing the

(entry-wise) predictive variance Var[x] at the Kth step and use T ≥ 1
Monte Carlo samples,

Var[x] = VarqΨK(ΘK)[E(x|y,ΘK)] + EqΨK(ΘK)[Var(x|y,ΘK)]

≈ 1
T

T∑
t=1

σ2
Θt
K
(∇D, x0)︸ ︷︷ ︸

aleatoric

+ 1
T

T∑
t=1

fΘt
K
(∇D, x0)2 −

 1
T

T∑
t=1

fΘt
K
(∇D, x0)

2

︸ ︷︷ ︸
epistemic

.

BDGD/BDGD+ Framework Diagram

Practicalities in Training

Algorithm 1: Training
Input: number of reconstruction steps K , dataset X,Y , initial guesses xi,0, batch-size |B|
Compute FBPs xi,0 of all data samples xi

1 for k← 1 to K do

2 Construct the block's input: Dk−1 = {xi,k−1,∇D(yi,Axi,k−1)}Ni=1
3 Train the kth block fφk,θk(∇D(yi,Axi,k−1), xi,k−1):
4 // stochastic mini-batch optimisation

5 ψ∗k, φ
∗
k ← argminqΨk,Φk∈Qk,φk

{
L̂(φk, qΨk,Φk;Dk−1) :=

−N
|B|

∑
i∈B

∫
qΨk,Φk(Θk) log pΦk(xi|yi,Θk)dΘk + KL(qΨk,Φk(Θk)||pΦk(Θk))

}
6 // update with θ̂k ∼ q∗ψk,Φk

(θk; Θk−1)

7 xi,k ← f
φk,θ̂k

(∇D(yi,Axi,k−1), xi,k−1)

Output: approximate posterior at each reconstruction step

Results & Discussion

Table 1:Sparse view, with respect to the number of directions (dirs), and limited angle, with respect to the available

range of angles. The first reported number is the mean PSNR over the ellipses, and the second number is the PSNR

for the Shepp-Logan.

Sparse View Limited Angle

Methods 8 dirs (95% red.) 16 dirs (91% red.) 32 dirs (82% red.) 64 dirs (64% red.) 128 dirs (29% red.) [0◦, 90◦) [0◦, 120◦) [0◦, 150◦)
FBP 16.08/10.09 20.30/14.08 24.86/18.96 29.11/23.75 31.85/25.82 13.75/14.23 17.28/17.11 22.87/20.19

TV 28.33/17.90 32.11/35.51 34.93/35.63 35.80/36.19 36.54/36.47 28.00/26.87 31.15/29.31 34.21/33.59

FBP + U-Net 28.22/19.20 33.44/25.37 39.10/31.57 44.47/ 41.87 48.18/46.47 13.73/14.22 37.78/28.21 42.80/35.47

LPD [1] 30.71/23.21 38.97/37.90 44.73/43.09 47.94/48.37 49.42/47.15 35.96/30.57 39.75/30.94 45.37/41.26

DGD [3] 31.64/24.17 38.40/39.97 43.40/45.63 47.27/49.03 50.45/51.35 35.56/35.83 39.88/42.12 45.25/47.52

BDGD 30.04/21.35 37.08/37.32 42.30/41.88 48.06/50.64 51.85/54.39 32.18/29.67 37.49/36.81 45.91/49.55

BDGD+ 31.33/23.82 38.92/37.39 45.01/45.08 48.86/51.65 53.00/56.89 33.73/32.81 40.60/44.45 48.78/52.23

Fig. 1:The reconstructions for sparse view CT with 32 directions (top) and limited angle with [0, 90◦) (bottom).

Fig. 2:Sparse view CT with 32 directions and an out of distribution object "uncertain".

Fig. 3:Deep learning approaches for sparse view CT.

Fig. 4:Deep learning approaches for limited angle CT.
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