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Supplemental Material

A Modeling the Population Distribution

Let X,A, and Y represent the random feature vector and sensitive attribute
and class label random variables respectively associated with the sample spaces
X ,A, and Y. For simplicity, we assume that X = Rk,A = {a, b}, and Y = {0, 1}. Let
Dtr = {x(tr)

i , g
(tr)
i , y

(tr)
i |x(tr)

i ∈ X , g
(tr)
i ∈ A, y

(tr)
i ∈ Y}Ntr

i=1 represent a dataset, containing
Ntr samples from the joint distribution (X,A, Y ). A generator, G : L → X × Y ×A,
learns the latent representation of (X,A, Y ) from Dtr and can be used to sample the
distribution (X,A, Y ). Let D = {xi, gi, yi|xi ∈ X , gi ∈ A, yi ∈ Y}Ni=1 be a dataset produced
by generating N samples using G.

Definition 3. (Cell decomposition) A cell decomposition of size Nc over X is given by
a disjoint set of Nc cells, C1, ..., CNc ⊆ X , that cover X . These cells are defined by their
centroids, xc

1, ...,x
c
Nc

∈ X , where for each i ∈ N+
≤Nc

and for some distance metric, dX :

Ci = {x|x ∈ X , dX (xc
i ,x) ≤ dX (xc

j ,x),∀j ∈ N+
≤Nc

\ i}.

We construct a discrete approximation of (X,A, Y ), represented by (X̃, Ã, Ỹ ), by inducing a
cell decomposition over X , and using D to quantify the statistical properties of (X̃, Ã, Ỹ )

over each cell. Specifically, let C = {xc
i |xc

i ∈ X}Nc
i=1 be the set containing the Nc centroids

produced by a cell decomposition. We construct the probability mass function (pmf) of X̃
as follows:

pX̃(x) =

{
Ni

N , if ∃i ∈ N+
≤Nc

s.t. x = xc
i

0 , otherwise
, (12)

where Ni represents the number of feature vectors from the dataset D in cell Ci. The
conditional joint distribution, Ỹ , Ã|X̃ = xc

i , is given by:

pÃ,Ỹ |X̃=xc
i
(g, y) =

∑N
j=1 I[xj ∈ Ci, gj = g, yj = y]

Ni
, (13)

i.e. the portion of samples from D with feature vectors in cell Ci for which g and y are their
sensitive attribute and class label. Thus, equations (12) and (13) provide us with the joint
distribution (X̃, Ã, Ỹ ).

Since all of our analyses are performed on the approximated distribution, we must sample
G densely enough to guarantee that the statistical information inside of each cell of this
distribution accurately characterizes the information in each cell of the true population
distribution. The following observation provides us with a guide for sampling G.

Observation 1. (PAC Bound for sampling generator) Suppose we induce a cell decomposition
of size Nc over X using Lloyd’s algorithm for vector quantization (Lloyd (1982); Linde et al.
(1980)). Let j refer to an arbitrary cell index. Define νyj,g = P (A = g, Y = y|X ∈ Cj) and
µy
j,g = P (Ã = g, Ỹ = y|X̃ = xc

j). Then, for some ∆ and δ, using a total of N = −Nc

2∆2 ln(
1−δ
8 )

samples from G will guarentee that P (∪g∈A,y∈Y |νyj,g − µy
j,g| ≥ ∆) ≤ 1− δ on average for all

cells.

Proof. Consider a series of 4-dimensional random vectors, B1, ..., Bn, where each random
variable in a vector has a Bernoulli distribution characterized by the probability of selecting
a feature vector that has class label Y = y and group label A = g or not from cell Cj ,
where g ∈ A, y ∈ Y. The sample mean and population means of these vectors are given by
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µ = [µ0
j,a, µ

1
j,a, µ

0
j,b, µ

1
j,b]

T and ν = [ν0j,a, ν
1
j,a, ν

0
j,b, ν

1
j,b]

T , respectively. Thus, we have that:

P (∪g,y(|µy
j,g − νyj,g| ≥ ∆)) (14)

≤
∑
g,y

P (|µy
j,g − νyj,g| ≥ ∆) ( Union Bound)

≤ 8e−2∆2nj (Hoeffding Inequality) , (15)

where nj refers to the number of samples inside cell Cj . Lloyd’s algorithm asymptotically
induces a cell decomposition in which the density in each cell is equal (Lloyd (1982)). Thus,
we assume nj = N/Nc. Now, we can average over (14) and (15) to get:

1

Nc

∑
j

P (∪g,y(|µy
j,g − νyj,g| ≥ ∆)) ≤ ��Nc

��Nc
8e−

2∆2N
Nc (16)

Setting 8e−
2∆2N
Nc = 1− δ, and solving for N completes this proof.

Thus, Observation 1 provides us with a guide for how densely we should sample G to
guarantee the fidelity of the joint distribution of the class label and sensitive attribute over
each cell.

B Fairness Definitions
Definition 4. Demographic Parity (Kamiran & Calders (2012)) An estimator, Ŷ , satisfies
demographic parity for a binary feature, A ∈ {a, b}, if P (Ŷ (X) = 1|A = a) = P (Ŷ (X) =
1|A = b).

Definition 5. Equal Accuracy (Zafar et al. (2017)) An estimator, Ŷ , satisfies equal accuracy
for a binary feature, A ∈ {a, b}, if P (Ŷ (X) = Y |A = a) = P (Ŷ (X) = Y |A = b)

Definition 6. Equal Opportunity (Hardt et al. (2016)) An estimator, Ŷ , satisfies equal
opportunity for a binary feature, A ∈ {a, b}, if P (Ŷ (X) = 1|A = a, Y = 1) = P (Ŷ (X) =
1|A = b, Y = 1).

Definition 7. Predictive Equality (Chouldechova (2017)) An estimator, Ŷ , satisfies predictive
equality for a binary feature, A ∈ {a, b}, if P (Ŷ (X) = 1|A = a, Y = 0) = P (Ŷ (X) = 1|A =
b, Y = 0).

Definition 8. Equalized Odds (Hardt et al. (2016)) An estimator, Ŷ , satisfies equalized
odds if both equal opportunity and predictive equality are satisfied.

Definition 9. Local Individual Fairness (Petersen et al. (2021)) A scoring function, S, is
locally individually fair if for L ≥ 0,

Exi∼PX

[
lim sup

xi:dX (xi,xj)↓0

dY(S(xi), S(xj))

dX (xi,xj)

]
≤ L ≤ ∞. (17)

Note that we use the local definition of individual fairness provided by Petersen et al.
(2021) as opposed to the original definition given by Dwork et al. (2012) since that latter
contains O(N2

c ) constraints. The local definition allows us to directly construct a system
of constraints, which in practice, is much smaller than the number provided in the original
definition by Dwork et al. (2012). Namely, the following constraints are imposed:

e−θd2
X (xi,xj)|sF [i]− sF [j]| ≤ ϵIF , ∀i, j s.t. dX (xi,xj) ≤ η, (18)

where we only require feature vectors falling within an η-neighborhood of each to receive
similar scores.

14



Under review as a conference paper at ICLR 2024

C Derivation of Minimization Problem (5)

Let SB : X → [0, 1] and SF : X → [0, 1] respectively represent the optimal unconstrained
and fair randomized scoring functions whose outputs represent the probability of producing
a 1 label for a given feature vector. Furthermore, let

Ŷ B(x) =

{
1 , w.p. SB(x)

0 , w.p. 1− SB(x)
and Ŷ F (x) =

{
1 , w.p. SF (x)

0 , w.p. 1− SF (x)

With this information, we derive the objective function in minimization problem (5), which
represents the reduction in accuracy between the unconstrained and fair Bayesian oracles,
by showing that it is equivalent to:

P (Ŷ B(X) = Y )− P (Ŷ F (X) = Y )

We further derive the group fairness linear constraints provided in equation (5), by showing
that they are equivalent the the following list of constraints:

|P (Ŷ F (X) = 1|A = a)− P (Ŷ F (X) = 1|A = b)| ≤ ϵDP

|P (Ŷ F (X) = 1|A = a, Y = 1)− P (Ŷ F (X) = 1|A = b, Y = 1)| ≤ ϵEOp

|P (Ŷ F (X) = 1|A = a, Y = 0)− P (Ŷ F (X) = 1|A = b, Y = 0)| ≤ ϵPE

|P (Ŷ F (X) = Y |A = a)− P (Ŷ F (X) = Y |A = b)| ≤ ϵEA,

Note that equalized odds is omitted since it is simply a combination of predictive equality
and equal opportunity. We also omit the derivation of the individual fairness constraints
since they are constructed in a straightforward manner in the body of the paper.

C.1 Objective Function:

Observe that:

P (Ŷ B(X) = Y )− P (Ŷ F (X) = Y ) =

Nc∑
i=1

[
P (Ŷ B(X) = Y,X = xc

i )− P (Ŷ F (X) = Y,X = xc
i )
]

=

Nc∑
i=1

[
P (Ŷ B(X) = 1, Y = 1, X = xc

i ) + P (Ŷ B(X) = 0, Y = 0, X = xc
i )

− P (Ŷ F (X) = 1, Y = 1, X = xc
i )− P (Ŷ F (X) = 0, Y = 0, X = xc

i )
]

=

Nc∑
i=1

[
{P (Ŷ B(X) = 1|���Y = 1︸ ︷︷ ︸

Conditional independence given X.
Similar for other cancellations.

, X = xc
i )− P (Ŷ F (X) = 1|���Y = 1, X = xc

i )}P (Y = 1, X = xc
i )︸ ︷︷ ︸

= p1[i] by definition.
Similar for other substitutions.

+ {P (Ŷ B(X) = 0|���Y = 0, X = xc
i )− P (Ŷ F (X) = 0|���Y = 0, X = xc

i )}P (Y = 0, X = xc
i )
]

=

Nc∑
i=1

[
{P (Ŷ B(X) = 1|X = xc

i )︸ ︷︷ ︸
= sB [i] by definition.

Similar for other substitutions.

−P (Ŷ F (X) = 1|X = xc
i )}p1[i]

+ {P (Ŷ B(X) = 0|X = xc
i )− P (Ŷ F (X) = 0|X = xc

i )}p0[i]
]

=

Nc∑
i=1

[
{sB [i]− sF [i]}p1[i] + {1− sB [i]− 1 + sF [i]}p0[i]

]
=

Nc∑
i=1

[
(sB [i]− sF [i])(p1[i]− p0[i])

]
=︸︷︷︸
(A)

Nc∑
i=1

m[i](p1[i]− p0[i]) = mT (p1 − p0)
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where (A) holds since

=

Nc∑
i=1

[
(sB [i]− sF [i])(p1[i]− p0[i])

]
=

N1∑
i=1

[
(sB [i]− sF [i]︸ ︷︷ ︸

≥ 0 since sB [i] = 1 for i ≤ N1

)(p1[i]− p0[i])
]
+

Nc∑
i=N1+1

[
(sB [i]− sF [i]︸ ︷︷ ︸

≤ 0 since sB [i] = 0 for i > N1

)(p1[i]− p0[i])
]

=

N1∑
i=1

[
|sB [i]− sF [i]|︸ ︷︷ ︸

m[i] by definition for i ≤ N1.

(p1[i]− p0[i])
]
+

Nc∑
i=N1+1

[
−|sB [i]− sF [i]|︸ ︷︷ ︸

m[i] by definition for i > N1

(p1[i]− p0[i])
]

=

N1∑
i=1

m[i](p1[i]− p0[i]) +

Nc∑
i=N1+1

m[i](p1[i]− p0[i]) =

Nc∑
i=1

m[i](p1[i]− p0[i]).

C.2 Demographic Parity:

Observe that:

P (Ŷ F (X) = 1|A = a) =

Nc∑
i=1

P (Ŷ F (X) = 1, X = xc
i |A = a)

=

N1∑
i=1

P (Ŷ F (X) = 1, X = xc
i |A = a) +

Nc∑
i=N1+1

P (Ŷ F (X) = 1, X = xc
i |A = a)

=

N1∑
i=1

sF [i]=sB [i]−(sB [i]−sF [i]) by definition.︷ ︸︸ ︷
P (Ŷ F (X) = 1|X = xc

i ,���A = a︸ ︷︷ ︸
Conditional independence given X.

Similar for other cancellations.

) P (X = xc
i |A = a)

+

Nc∑
i=N1+1

P (Ŷ F (X) = 1|X = xc
i ,���A = a)︸ ︷︷ ︸

sF [i]=sB [i]−(sB [i]−sF [i]) by definition

P (X = xc
i |A = a)

=

N1∑
i=1

[
sB [i]− (sB [i]− sF [i])

]
P (X = xc

i |A = a)︸ ︷︷ ︸
= pa[i] by definition.

Similar for other substitutions.

+

Nc∑
i=N1+1

[
sB [i]− (sB [i]− sF [i])

]
P (X = xc

i |A = a)

=
( [

sB [1], . . . , sB [N1], sB [N1 + 1], . . . , sB [Nc]
]︸ ︷︷ ︸

sBT

−

[
sB [1]− sF [1], . . . , sB [N1]− sF [N1]︸ ︷︷ ︸

≥0 since sB [i] = 1 for i ≤ N1

, sB [N1 + 1]− sF [N1 + 1], . . . , sB [Nc]− sF [Nc]︸ ︷︷ ︸
≤0 since sB [i] = 0 for i > N1

]
︸ ︷︷ ︸[∣∣sB [1]− sF [1]

∣∣ , ..., ∣∣sB [N1]− sF [N1]
∣∣ ,− ∣∣sB [N1 + 1]− sF [N1 + 1]

∣∣ , ...,− ∣∣sB [Nc]− sF [Nc]
∣∣]︸ ︷︷ ︸

mT

)
pa

= (sB −m)Tpa

A similar derivation of P (Ŷ F (X) = 1|A = b) yields: P (Ŷ F (X) = 1|A = b) = (sB −m)Tpb.
Thus,

|P (Ŷ F (X) = 1|A = a)− P (Ŷ F (X) = 1|A = b)| ≤ ϵDP

is equivalent to

|(sB −m)T (pa − pb)| ≤ ϵDP or |(pa − pb)
T (sB −m)| ≤ ϵDP .

16



Under review as a conference paper at ICLR 2024

C.3 Equal Opportunity:

Observe that:

P (Ŷ F (X) = 1|A = a, Y = 1) =

Nc∑
i=1

P (Ŷ F (X) = 1, X = xc
i |A = a, Y = 1)

=

N1∑
i=1

P (Ŷ F (X) = 1, X = xc
i |A = a, Y = 1) +

Nc∑
i=N1+1

P (Ŷ F (X) = 1, X = xc
i |A = a, Y = 1)

=

N1∑
i=1

sF [i]=sB [i]−(sB [i]−sF [i]) by definition.︷ ︸︸ ︷
P (Ŷ F (X) = 1|X = xc

i ,((((((
A = a, Y = 1︸ ︷︷ ︸

Conditional independence given X.
Similar for other cancellations.

)P (X = xc
i |A = a, Y = 1)

+

Nc∑
i=N1+1

P (Ŷ F (X) = 1|X = xc
i ,((((((
A = a, Y = 1)︸ ︷︷ ︸

sF [i]=sB [i]−(sB [i]−sF [i]) by definition.

P (X = xc
i |A = a, Y = 1)

=

N1∑
i=1

[
sB [i]− (sB [i]− sF [i])

]
P (X = xc

i |A = a, Y = 1)︸ ︷︷ ︸
= pa,1[i] by definition.

Similar for other substitutions.

+

Nc∑
i=N1+1

[
sB [i]− (sB [i]− sF [i])

]
P (X = xc

i |A = a, Y = 1)

=︸︷︷︸
Similar to the demographic parity derivation.

(sB −m)Tpa,1

A similar derivation of P (Ŷ F (X) = 1|A = b, Y = 1) yields: P (Ŷ F (X) = 1|A = b, Y = 1) =
(sB −m)Tpb,1. Thus,

|P (Ŷ F (X) = 1|A = a, Y = 1)− P (Ŷ F (X) = 1|A = b, Y = 1)| ≤ ϵEOp

is equivalent to

|(sB −m)T (pa,1 − pb,1)| ≤ ϵEOp or |(pa,1 − pb,1)
T (sB −m)| ≤ ϵEOp.

C.4 Predictive Equality

This derivation is closely related to the Equal Opportunity derivation. Hence we omit it,
directly claiming that

|P (Ŷ F (X) = 1|A = a, Y = 0)− P (Ŷ F (X) = 1|A = b, Y = 0)| ≤ ϵPE

is equivalent to

|(pa,0 − pb,0)
T (sB −m)| ≤ ϵPE .
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C.5 Equal Accuracy:

Observe that:

P (Ŷ F (X) = Y |A = a) = P (Ŷ F (X) = 1, Y = 1|A = a) + P (Ŷ F (X) = 0, Y = 0|A = a)

=

Nc∑
i=1

P (Ŷ F (X) = 1, Y = 1, X = xc
i |A = a) + P (Ŷ F (X) = 0, Y = 0, X = xc

i |A = a)

=

Nc∑
i=1

P (Ŷ F (X) = 1|X = xc
i ,((((((
A = a, Y = 1︸ ︷︷ ︸

Conditional independence given X.
Similar for other cancellations.

)P (Y = 1, X = xc
i |A = a)

+

Nc∑
i=1

P (Ŷ F (X) = 0|X = xc
i ,((((((
A = a, Y = 0)P (Y = 0, X = xc

i |A = a)

=

N1∑
i=1

sF [i] = sB [i] − (sB [i] − sF [i]) by definition.︷ ︸︸ ︷
P (Ŷ F (X) = 1|X = xc

i )P (Y = 1, X = xc
i |A = a)︸ ︷︷ ︸

= p1
a[i] by definition.

Similar for other substitutions.

+

N1∑
i=1

1 − sF [i] = 1 − sB [i] + (sB [i] − sF [i]) by definition.︷ ︸︸ ︷
P (Ŷ F (X) = 0|X = xc

i )P (Y = 0, X = xc
i |A = a)

+

Nc∑
i=N1+1

sF [i] = sB [i] − (sB [i] − sF [i]) by definition.︷ ︸︸ ︷
P (Ŷ F (X) = 1|X = xc

i )P (Y = 1, X = xc
i |A = a)

+

Nc∑
i=N1+1

1 − sF [i] = 1 − sB [i] + (sB [i] − sF [i]) by definition.︷ ︸︸ ︷
P (Ŷ F (X) = 0|X = xc

i )P (Y = 0, X = xc
i |A = a)

=
( [

sB [1], . . . , sB [N1], sB [N1 + 1], . . . , sB [Nc]
]︸ ︷︷ ︸

sBT

−

[
sB [1]− sF [1], . . . , sB [N1]− sF [N1]︸ ︷︷ ︸

≥0 since sB [i] = 1 for i ≤ N1

, sB [N1 + 1]− sF [N1 + 1], . . . , sB [Nc]− sF [Nc]︸ ︷︷ ︸
≤0 since sB [i] = 0 for i > N1

]
︸ ︷︷ ︸

mT

)
p1
a

+
(
[1 1 . . . 1]︸ ︷︷ ︸

1T
Nc

−
[
sB [1], . . . , sB [Nc]

]︸ ︷︷ ︸
sBT

+

[
sB [1]− sF [1], . . . , sB [N1]− sF [N1]︸ ︷︷ ︸

≥0 since sB [i] = 1 for i ≤ N1

, sB [N1 + 1]− sF [N1 + 1], . . . , sB [Nc]− sF [Nc]︸ ︷︷ ︸
≤0 since sB [i] = 0 for i > N1

]
︸ ︷︷ ︸

mT

)
p0
a

= (sB −m)Tp1
a + (1Nc − sB +m)Tp0

a.

Through similar derivation, we obtain P (Ŷ F (X) = Y |A = b) = (sB −m)Tp1
b + (1Nc

− sB +
m)Tp0

b . Hence,

|P (Ŷ F (X) = Y |A = a)− P (Ŷ F (X) = Y |A = b)| ≤ ϵEA

reduces to

|(sB −m)T (p1
a − p1

b) + (1Nc
− sB +m)T (p0

a − p0
b)| ≤ ϵEA

or

|(p1
a − p1

b)
T (sB −m) + (p0

a − p0
b)

T (1Nc − sB +m)| ≤ ϵEA.
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D Derivation of Minimization Problem (6)

Let SF : X → [0, 1] be the optimal fair randomized scoring function whose output represents
the probability of producing a 1 label for a given feature vector, and let:

Ŷ F (x) =

{
1 , w.p. SF (x)

0 , w.p. 1− SF (x)

be the optimal fair classifier for the original non-transformed space of feature vectors. In this
section, we derive the objective function and fairness constraints used in minimization problem
(6). We will first show that Accd = P (Ŷ F (T (X)) = Y ), which means that minimizing −Accd
is equivalent to maximizing the fair Bayesian oracle’s accuracy on the space of transformed
feature vectors. Ld is self-explanatory, and thus no derivation is required. We will derive
each of the fairness constraints separately by showing that they are equivalent to the the
following list of constraints (again, equalized odds is omitted since it is simply a combination
or predictive equality and equal opportunity):

|P (Ŷ F (T (X)) = 1|A = a)− P (Ŷ F (T (X)) = 1|A = b)| ≤ ϵDP

|P (Ŷ F (T (X)) = 1|A = a, Y = 1)− P (Ŷ F (T (X)) = 1|A = b, Y = 1)| ≤ ϵEOp

|P (Ŷ F (T (X)) = 1|A = a, Y = 0)− P (Ŷ F (T (X)) = 1|A = b, Y = 0)| ≤ ϵPE

|P (Ŷ F (T (X)) = Y |A = a)− P (Ŷ F (T (X)) = Y |A = b)| ≤ ϵEA

e−θd2
X (xi,xj)|tF [i]− tF [j]| ≤ ϵIF , ∀i, j s.t. dX (xi,xj) ≤ η,

where for the individual fairness constraint, t[i] represents the score associated with feature
vectors from the original ith VQ cell after the decorrelation transformation has been applied.
The (Fairness) constraint in minimization problem (6) simply structures all of these
constraints in one block matrix form.

D.1 Derivation of Accd

Observe that:

P (Ŷ F (T (X)) = Y ) = P (Ŷ F (T (X)) = 1, Y = 1) + P (Ŷ F (T (X)) = 0, Y = 0)

=

Nc∑
i=1

{P (Ŷ F (T (X)) = 1, Y = 1, T (X) = xc
i )︸ ︷︷ ︸

(A)

+P (Ŷ F (T (X)) = 0, Y = 0, T (X) = xc
i )︸ ︷︷ ︸

(B)

}

(19)

The derivations to show that terms (A) and (B) are respectively equal sFTTp1 and (1Nc −
sF )TTp0 are similar. Thus, for brevity, we only provide the former derivation.

P (Ŷ F (T (X)) = 1, Y = 1, T (X) = xc
i )

=

sF [i] by definition.︷ ︸︸ ︷
P (Ŷ F (T (X)) = 1|T (X) = xc

i ,���Y = 1︸ ︷︷ ︸
Conditional independence given T (X).

)P (T (X) = xc
i , Y = 1)

(20)

Next, note that

P (T (X) = xc
i , Y = 1) =

Nc∑
k=1

P (T (X) = xc
i , Y = 1, X = xc

k)

=

Nc∑
k=1

P (T (X) = xc
i |X = xc

k,���Y = 1︸ ︷︷ ︸
Conditional independence given X.︸ ︷︷ ︸
T[i,k]

)P (Y = 1, X = xc
k)︸ ︷︷ ︸

p1[k]

=

Nc∑
k=1

T[i, k]p1[k]. (21)
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Plugging (21) into (20), we have that (A) is given by:

P (Ŷ F (T (X)) = 1, Y = 1, T (X) = xc
i ) = sF [i]

Nc∑
k=1

T[i, k]p1[k]. (22)

Through a similar derivation, coupled with the fact that P (Ŷ F (T (X)) = 0|T (X) = xc
i , Y =

0) = 1− sF [i], we can find that (B) is given by:

P (Ŷ F (T (X)) = 0, Y = 0, T (X) = xc
i ) = (1− sF [i])

Nc∑
k=1

T[i, k]p0[k]. (23)

Finally, substituting (22) and (23) into (19), we obtain that

P (Ŷ F (T (X)) = Y ) =

Nc∑
i=1

{sF [i]
Nc∑
k=1

T[i, k]p1[k] + (1− sF [i])

Nc∑
k=1

T[i, k]p0[k]}

=

Nc∑
i=1

Nc∑
k=1

T[i, k]sF [i]p1[k] +

Nc∑
i=1

Nc∑
k=1

T[i, k](1− sF [i])p0[k]

= sFTTp1 + (1Nc
− sF )TTp0 = Accd.

D.2 Demographic Parity:

Observe that:

P (Ŷ F (T (X)) = 1|A = a) =

Nc∑
i=1

P (Ŷ F (T (X)) = 1, T (X) = xc
i |A = a)

=

Nc∑
i=1

sF [i] by definition.︷ ︸︸ ︷
P (Ŷ F (T (X)) = 1|T (X) = xc

i ,���A = a︸ ︷︷ ︸
Conditional independence given T (X).

)P (T (X) = xc
i |A = a) (24)

Next, note that:

P (T (X) = xc
i |A = a) =

Nc∑
k=1

P (T (X) = xc
i , X = xc

k|A = a)

=

Nc∑
k=1

P (T (X) = xc
i |X = xc

k,���A = a︸ ︷︷ ︸
Conditional independence given X.

)P (X = xc
k|A = a) =

Nc∑
k=1

T[i, k]pa[k]. (25)

Plugging (25) into (24), we obtain:

P (Ŷ F (T (X)) = 1|A = a) =

Nc∑
k=1

sF [i]

Nc∑
k=1

T[i, k]pa[k] =

Nc∑
k=1

Nc∑
k=1

T[i, k]sF [i]pa[k] = pT
aTsF .

A similar derivation yields that P (Ŷ F (T (X)) = 1|A = b) = pT
b TsF . Thus,

|P (Ŷ F (T (X)) = 1|A = a)− P (Ŷ F (T (X)) = 1|A = b)| ≤ ϵDP

is equivalent to
|(pa − pb)

TTsF | ≤ ϵDP .

D.3 Equal Opportunity:

Observe that:

P (Ŷ F (T (X)) = 1|A = a, Y = 1) =

Nc∑
i=1

P (Ŷ F (T (X)) = 1, T (X) = xc
i |A = a, Y = 1)

=

Nc∑
i=1

sF [i] by definition.︷ ︸︸ ︷
P (Ŷ F (T (X)) = 1|T (X) = xc

i ,((((((
A = a, Y = 1︸ ︷︷ ︸

conditional independence

)P (T (X) = xc
i |A = a, Y = 1). (26)
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Next, note that:

P (T (X) = xc
i |A = a, Y = 1) =

Nc∑
k=1

P (T (X) = xc
i , X = xc

k|A = a)

=

Nc∑
k=1

P (T (X) = xc
i |X = xc

k,((((((
A = a, Y = 1︸ ︷︷ ︸

conditional independence

)P (X = xc
k|A = a, Y = 1) =

Nc∑
k=1

T[i, k]pa,1[k].

(27)

Plugging (27) into (26), we obtain:

P (Ŷ F (T (X)) = 1|A = a) =

Nc∑
k=1

sF [i]

Nc∑
k=1

T[i, k]pa,1[k] =

Nc∑
k=1

Nc∑
k=1

T[i, k]sF [i]pa,1[k] = pT
a,1TsF .

Through similar derivation, we can find that P (Ŷ F (T (X)) = 1|A = b, Y = 1) = pT
b,1TsF .

Thus,

|P (Ŷ F (T (X)) = 1|A = a, Y = 1)− P (Ŷ F (T (X)) = 1|A = b, Y = 1)| ≤ ϵEOp

is equivalent to

|(pa,1 − pb,1)
TTsF | ≤ ϵEOp.

D.4 Predictive Equality

Observing that P (Ŷ F (T (X)) = 0|T (X) = xc
i ) = 1 − sF [i], we simply replace this in the

Equal Opportunity derivation to obtain:

|(pa,0 − pb,0)
TT(1Nc

− sF )| ≤ ϵEOp.

D.5 Equal Accuracy:

Observe that:

P (Ŷ F (T (X)) = Y |A = a) = P (Ŷ F (T (X)) = 1, Y = 1|A = a) + P (Ŷ F (T (X)) = 0, Y = 0|A = a)

=

Nc∑
i=1

P (Ŷ F (T (X)) = 1, Y = 1, T (X) = xc
i |A = a)︸ ︷︷ ︸

(A)

+P (Ŷ F (T (X)) = 0, Y = 0, T (X) = xc
i |A = a)︸ ︷︷ ︸

(B)

(28)

The derivations for (A) and (B) are similar, so we focus on deriving (A) here.

P (Ŷ F (T (X)) = 1, Y = 1, T (X) = xc
i |A = a) =

=

sF [i] by definition.︷ ︸︸ ︷
P (Ŷ F (T (X)) = 1|T (X) = xc

i ,((((((
A = a, Y = 1︸ ︷︷ ︸

conditional independence

)P (T (X) = xc
i , Y = 1|A = a) (29)

Next, note that

P (T (X) = xc
i , Y = 1|A = a) =

Nc∑
k=1

P (T (X) = xc
i , Y = 1, X = xc

k|A = a)

=

Nc∑
k=1

P (T (X) = xc
i |X = xc

k,((((((
Y = 1, A = a︸ ︷︷ ︸

conditional independence︸ ︷︷ ︸
T[i,k]

)P (Y = 1, X = xc
k|A = a)︸ ︷︷ ︸

p1
a[k]

=

Nc∑
k=1

T[i, k]p1
a[k].

(30)
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Plugging (30) into (29), we have that (A) is given by:

P (Ŷ F (T (X)) = 1, Y = 1, T (X) = xc
i |A = a) = sF [i]

Nc∑
k=1

T[i, k]p1
a[k]. (31)

Through a similar derivation, coupled with the fact that P (Ŷ F (T (X)) = 0|T (X) = xc
i , A =

a, Y = 0) = 1− sF [i], we can find that (B) is given by:

P (Ŷ F (T (X)) = 0, Y = 0, T (X) = xc
i |A = a) = (1− sF [i])

Nc∑
k=1

T[i, k]p0
a[k]. (32)

Finally, substituting (31) and (32) into (28), we obtain that

P (Ŷ F (T (X)) = Y |A = a) =

Nc∑
i=1

sF [i]

Nc∑
k=1

T[i, k]p1
a[k] + (1− sF [i])

Nc∑
k=1

T[i, k]p0
a[k]

=

Nc∑
i=1

Nc∑
k=1

T[i, k]sF [i]p1
a[k] +

Nc∑
i=1

Nc∑
k=1

T[i, k](1− sF [i])p0
a[k]

= p1T
a TsF + p0T

a T(1Nc
− sF ).

Through similar derivation, we obtain P (Ŷ F (T (X)) = Y |A = b) = p1T
b TsF + p0T

b T(1Nc −
sF ). Thus,

|P (Ŷ F (T (X)) = Y |A = a)− P (Ŷ F (T (X)) = Y |A = b)| ≤ ϵEA

is equivalent to
|(p1

a − p1
b)

TTsF + (p0
a − p0

b)
TT(1Nc

− sF )| ≤ ϵEA

D.6 Local Individual Fairness:

Let i and j represent the arbitrary nth pair of cell centroids that satisfy dX (xc
i ,x

c
j) ≤ η.

Observe that the probability that a feature vector, xc
i , is classified as 1 by SF after it has

been transformed by T is given by:

t[i] = E[SF (T (X))|X = xc
i ] =

Nc∑
k=1

SF (xc
k)P (T (X) = xc

k|X = xc
i ) =

Nc∑
k=1

sF [k]T[k, i].

Similarly, t[j] =
∑Nc

k=1 s
F [k]T[k, j]. Now, let wn be a vector in which every entry is zero,

except for the ith and jth entries, which contain values of e−θd2
X (xi,xj) and −e−θd2

X (xi,xj),
respectively. Then,

e−θd2
X (xi,xj)

∣∣∣tF [i]− tF [j]
∣∣∣ = e−θd2

X (xi,xj)
∣∣∣ Nc∑
k=1

sF [k](T[k, i]−T[k, j])
∣∣∣

∣∣∣ Nc∑
k=1

(
sF [k](T[k, i]e−θd2

X (xi,xj) −T[k, j]e−θd2
X (xi,xj)

)∣∣∣ = ∣∣∣ Nc∑
l=1

Nc∑
k=1

sF [k]T[k, i]wn[l]
∣∣∣

=
∣∣∣wT

nTsF |.

Thus,

e−θdX (xi,xj)|tF [i]− tF [j]| ≤ ϵIF

is equivalent to: ∣∣∣wT
nTsF | ≤ ϵIF .

To enforce this constraint for all i and j, such that dX (xi,xj) ≤ η, simply stack all such wT
n

into a matrix W. The associated constraint is then given by:∣∣∣WTsF | ≤ 1Nc
ϵIF .
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E Proof of Claim 1

We will now show that the following minimization problem is convex:

max
ρ

min
T∈PNc×Nc

− λ(sFTTp1 + (1Nc
− sF )TTp0) + β∥T(pa − pb)∥1

+ ⟨ρ,max(f̃(T)− f̃ ,02(NNbr+4))⟩+
τ

2
∥max(f̃(T)− f̃ ,02(NNbr+4))∥22.

Proof. Observing that the sum of convex functions is convex, it suffices to prove that this
minimization problem is convex by showing that every term in the problem is convex in
T, which we will now do. −λ(sFTTp1 + (1Nc

− sF )TTp0) is linear in T, and thus convex.
β∥T(pa − pb)∥1 is convex since the composition of a convex function with an affine function
is convex.

To show that the final terms in the minimization problem are convex, we begin by showing
that g(T) = max(f̃(T)− f̃ ,02(NNbr+4)) is elementwise convex using the definition of convexity.
Specifically, for θ ∈ [0, 1] and T1,T2 ∈ PNc×Nc , observe that:

g(θT1 + (1− θ)T2) = max(f̃(θT1 + (1− θ)T2)− f̃ , 02(NNbr+4))

= max( P̃︸︷︷︸[
−P
P

]
[
M ◦

(̃
I(θT1 + (1− θ)T2)̃I

T
)]
sF − f̃ , 02(NNbr+4))

= max(θ {P̃
[
M ◦

(̃
IT1Ĩ

T
)]
sF − f̃}︸ ︷︷ ︸

f̃(T1)

+(1− θ) {P̃
[
M ◦

(̃
IT2Ĩ

T
)]
sF − f̃}︸ ︷︷ ︸

f̃(T2)

, 02(NNbr+4))

= max(θf̃(T1) + (1− θ)f̃(T2), 02(NNbr+4))

≤︸︷︷︸
Elementwise by convexity

of pointwise max.

max(θf̃(T1), 02(NNbr+4)) + max((1− θ)f̃(T2), 02(NNbr+4))

= θmax(f̃(T1), 02(NNbr+4)) + (1− θ)max(f̃(T2), 02(NNbr+4))

= θg(T1) + (1− θ)g(T2)

Thus, the inner product between ρ and g(T) is simply a linear combination of convex
functions, making the second to last term in the optimization problem convex. Finally, the
convexity of the last term in the optimization problem follows from the fact that g(T) is
a non-negative convex function and the norm is convex and non-decreasing over the set
R≥0.

F Fairness-Accuracy Tradeoff (Sensitive Aware)

In Section 3.1, the minimization problem for analyzing the tradeoff between accuracy and
fairness was formulated under the assumption that the sensitive attribute is unavailable. In
this section, we adapt this formulation for the situation in which the sensitive attribute is
allowed to be used by the unconstrained and fair Bayesian classifiers to make its decisions.
With this information, the solution of the Bayesian classifier is given by sB =

[
sBT
a , sBT

b

]T ,
where

sBa [i] = argmax
y

py
a[i] and sBb [i] = argmax

y
py
b [i],∀i,

which again produces binary decisions. The accuracy of this classifier is given by Accb =∑
g∈A

∑Nc

i=1 p
sBg [i][i]. Constructing the minimization problem for finding the optimal fair

Bayesian oracles’s decisions is extended from the minimization problem presented in Section
3.1 by separating its decisions by group. Towards this end, we let mg = sBg − sFg , g ∈ A,

and I+
g and I−

g , be the set of indices associated with the positive and negative elements of
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p1,g − p0,g, respectively. Then, the minimization problem is given by:

min
{mg}

∑
g∈A

(p1,g − p0,g)Tmg,

|pT
a (s

B
a −ma)− pT

b (s
B
b −mb)| ≤ ϵDP (DP )

|pT
a,0(s

B
a −ma)− pT

b,0(s
B
b −mb)| ≤ ϵPE (PE)

|pT
a,1(s

B
a −ma)− pT

b,1(s
B
b −mb)| ≤ ϵEOp (EOp)

ϵEOp = ϵPE (EOd)

|p1T
a (sBa −ma)− p1T

b (sBb −mb)+

p0T
a (1Nc − sBa +ma)− p0T

b (1Nc − sBb +mb)| ≤ ϵEA (EA)

|W
∑
g∈A

diag(pg)(s
B
g −mg)| ≤ ϵIF1Nc

, (Ind)

0 ≤ mg[i] ≤ 1, i ∈ I+
g , g ∈ A

−1 ≤ mg[i] ≤ 0, i ∈ I−
g , g ∈ A, (33)

where W is defined as in equation (4). The derivation of each of these terms is similar to
the derivation provided in Appendix C, with the added step of expanding each term using
group affiliation information.

G Transfer Fairness to Decorrelated Domain (Sensitive Aware)

In Section 3.2 the minimization problem for transferring fairness to a decorrelated domain
was formulated under the assumption of unawareness of the sensitive attribute. Availability
of the sensitive attribute provides more flexibility in construction of the mapping, allowing us
to transform the feature vectors belonging to each group using group-specific transformations.
Specifically, given a fixed fair Bayesian Classifier’s decision map, sF =

[
sFT
a , sFT

b

]T
,

where the first Nc entries represent the scores associated with Group a and the remaining
Nc entries represent the scores for Group b, we aim to optimize for two mixing matrices,
Ta,Tb ∈ P2Nc×Nc , using the following optimization problem:

min
Ta,Tb∈P2Nc×Nc

− λ
∑
g∈A

(sFTTgp
1,g + (1Nc

− sF )TTgp
0,g)

+ β∥Tapa −Tbpb∥1
s.t. |f(Ta,Tb)| ≤ F (Fairness condition). (34)

The derivation of each of these terms is similar to the derivation provided in Appendix D,
with the added step of expanding each term using group affiliation information. The terms in
the objective function and the (Fairness) constraint for this optimization problem still have
the same interpretation as in the situation of unawareness of the sensitive attribute. Note
that in this case, the row dimension of the mixing matrices, Ta and Tb, are twice that of the
mixing matrix, T, from minimization problem (6). This is because, each VQ cell effectively
has two bins of information associated with it (one for each group in the original space of
feature vectors). Nevertheless, optimization over these mixing matrices ensures that in the
decorrelated domain, all bins of all VQ cells are conditionally independent of the sensitive
attribute. The function f(Ta,Tb) ∈ R1×(NNbr+4) is now given by the following equation:

f(Ta,Tb) =
[
sF (1Nc

− sF )
]︸ ︷︷ ︸

s̃FT

([
Ta O2Nc,Nc

O2Nc,Nc Ta

]
︸ ︷︷ ︸

T̃a

[
pa pa1 0Nc

p1
a WT

a

0Nc 0Nc pa0 p0
a ONNbr,Nc

]
︸ ︷︷ ︸

Pa

−
[

Tb O2Nc,Nc

O2Nc,Nc Tb

]
︸ ︷︷ ︸

T̃b

[
pb pb1 0Nc

p1
b −WT

b
0Nc 0Nc pb0 p0

b ONNbr,Nc

]
︸ ︷︷ ︸

Pb

)

= s̃FT (T̃aPa − T̃bPb)
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where, T̃g can be directly written as a function of Tg:

T̃g =

[
12Nc×Nc O2Nc×Nc

O2Nc×Nc 12Nc×Nc

]
︸ ︷︷ ︸

M̃

◦

([
I2Nc

I2Nc

]
︸ ︷︷ ︸

Ĩ2

Tg [INc
INc ]︸ ︷︷ ︸

ĨT1

)
.

Still, each of the first four elements of |f(Ta,Tb)| captures the degree to which a particular
group fairness notion is violated in the transformed space, while the remaining Nnbr terms
enforce individual fairness. Setting F = [ϵDP , ϵPE , ϵEOp, ϵEOd, 1T

Nnbr
ϵIF ], preserves the

group and individual fairness constraints.

Again, we can reformulate the (Fairness) constraint as an equality constraint of the form:
max(f̃(Ta,Tb)− F̃,O1×2(NNbr+4)) = O1×2(NNbr+4), where

f̃(Ta,Tb) = s̃FT (T̃a [Pa −Pa]︸ ︷︷ ︸
P̃a

−T̃b [Pb −Pb]︸ ︷︷ ︸
P̃b

) and F̃ = [F F]

The final Augmented Lagrangian can be formed as:

max
ρ

min
Ta,Tb∈P2Nc×Nc

− λ
∑
g∈A

(sFTTgp
1,g + (1Nc

− sF )TTgp
0,g)︸ ︷︷ ︸

Accd(Ta,Tb)

+β ∥Tapa −Tbpb∥1︸ ︷︷ ︸
Ld(Ta,Tb)

+ ⟨ρ,max(f̃(Ta,Tb)− F̃,O1×2(NNbr+4))⟩︸ ︷︷ ︸
Aug1(Ta,Tb)

+
τ

2
∥max(f̃(Ta,Tb)− F̃,O1×2(NNbr+4))∥2F︸ ︷︷ ︸

Aug2(Ta,Tb)

(35)

Minimization problem (35) is convex according to Claim 2. Solving this minimization
problem is equivalent to solving minimization problem (34) and can be done by applying
the alternating direction method of multipliers (ADMM) to optimize for Ta and Tb until
convergence using the following updates.

Tk+1
a = argmin

Ta∈PNc×Nc

L(Ta,T
k
b ,ρ

k)

Tk+1
b = argmin

Tb∈PNc×Nc

L(Tk+1
a ,Tb,ρ

k)

ρk+1 = ρk + τ max(f̃(Tk+1
a ,Tk+1

b )− F̃,O1×2(NNbr+4)).

Claim 2. Minimization problem (35) is jointly convex in Ta and Tb

Proof. Observing that the sum of jointly convex functions is jointly convex, it suffices to
prove that this minimization problem is jointly convex if every term in the problem is jointly
convex in Ta and Tb. Thus, we will show that each term in the problem is jointly convex in
Ta and Tb. Consider T1,a,T2,a,T1,b,T2,b ∈ P2Nc×Nc and θ ∈ [0, 1].

Joint convexity of Accd(Ta,Tb):

Accd(θT1,a + (1− θ)T2,a, θT1,b + (1− θ)T2,b)

=
∑
g∈A

(sFT (θT1,g + (1− θ)T2,g)p
1,g + (1Nc

− sF )T (θT1,g + (1− θ)T2,g)p
0,g)

= θ
∑
g∈A

{sFTT1,gp
1,g + (1Nc − sF )TT1,gp

0,g}

+ (1− θ)
∑
g∈A

{sFTT2,gp
2,g + (1Nc

− sF )TT2,gp
0,g}

= θAccd(T1,a,T1,b) + (1− θ)Accd(T2,a,T2,b)
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Joint convexity of Ld(Ta,Tb):

Ld(θT1,a + (1− θ)T2,a, θT1,b + (1− θ)T2,b)

= ∥(θT1,a + (1− θ)T2,a)pa − (θT1,b + (1− θ)T2,b)pb∥1
= ∥θ(T1,apa −T1,bpb) + (1− θ)(T2,apa −T2,bpb)∥1

≤︸︷︷︸
Triangle

Inequality

∥θ(T1,apa −T1,bpb)∥1 + ∥(1− θ)(T2,apa −T2,bpb)∥1

= θ∥T1,apa −T1,bpb∥1 + (1− θ)∥T2,apa −T2,bpb∥1
= θLd(T1,a,T1,b) + (1− θ)Ld(T2,a,T2,b)

Joint convexity of Aug1(Ta,Tb):

We will show that every element of g̃(Ta,Tb) = max(f̃(Ta,Tb)− F̃,O1×2(NNbr+4)) is jointly
convex in Ta and Tb. It directly follows from this that Aug1(Ta,Tb) is jointly convex in Ta

and Tb since the inner product is a linear combination of jointly convex functions.

g̃(θT1,a + (1− θ)T2,a, θT1,b + (1− θ)T2,b)

= max(f̃(θT1,a + (1− θ)T2,a, θT1,b + (1− θ)T2,b)− F̃,O1×2(NNbr+4))

= max(ŝF
[
M̃ ◦ (Ĩ2(θT1,a + (1− θ)T2,a)Ĩ

T
1 )
]
P̃a

− ŝF
[
M̃ ◦ (Ĩ2(θT1,b + (1− θ)T2,b)Ĩ

T
1 )
]
P̃b − F̃,O1×2(NNbr+4))

= max(θ{ŝF
[
M̃ ◦ (Ĩ2T1,aĨ

T
1 )P̃a − M̃ ◦ (Ĩ2θT1,bĨ

T
1 )
]
P̃b − F̃}

+ (1− θ){ŝF
[
M̃ ◦ (Ĩ2T2,aĨ

T
1 )P̃a − M̃ ◦ (Ĩ2θT2,bĨ

T
1 )
]
P̃b − F̃},O1×2(NNbr+4))

≤︸︷︷︸
Elementwise

θmax(ŝF
[
M̃ ◦ (Ĩ2T1,aĨ

T
1 )P̃a − M̃ ◦ (Ĩ2θT1,bĨ

T
1 )
]
P̃b − F̃,O1×2(NNbr+4))

+ (1− θ)max(ŝF
[
M̃ ◦ (Ĩ2T2,aĨ

T
1 )P̃a − M̃ ◦ (Ĩ2θT2,bĨ

T
1 )
]
P̃b − F̃,O1×2(NNbr+4))

= θmax(f̃(T1,a,T1,b),O1×2(NNbr+4)) + (1− θ)max(f̃(T2,a,T2,b),O1×2(NNbr+4))

= θg̃(T1,a,T1,b) + (1− θ)g̃(T2,a,T2,b)

Joint convexity of Aug2(Ta,Tb):

The convexity of this term follows from the fact that g̃(Ta,Tb) is a non-negative jointly
convex function in Ta and Tb and the norm is convex and non-decreasing over the set
R≥0.

H Experimental Details

Our experiments are conducted on three benchmark tabular datasets with known biases in
the sensitive attributes; namely, the (1) Adult (Kohavi et al. (1996)), (2) Law (Wightman
(1998)), and (3) Dutch Census (Van der Laan (2001)) datasets. We treat race as the sensitive
attribute for the Law dataset and sex as the sensitive attribute in the Adult and Dutch
Census datasets. All codes were written in Python using version 3.8. In the remainder of
this section, we provide the experimental details used in each of the three core modules of
our analysis.

H.1 Generator and Vector Quantization Implementation

To model the population distributions of each dataset, we use Conditional Tabular Generative
Adversarial Network (CT-GAN) (Xu et al. (2019)), which is the state-of-the-art for generating
mixed continuous and discrete tabular data. For each dataset we train a generator for 400
epochs using the publically available code provided by Xu et al. (2019) 1. Each generator is

1https://github.com/sdv-dev/CTGAN
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then used to produce one million samples for each dataset, on which vector quantization
is applied using the Linde, Buzo, Gray (LBG) algorithm, which is a multi-dimensional
generalization of the Lloyd-Max algorithm for vector quantization. To produce a cell
decomposition of size Nc, this iterative algorithm works by specifying an initial set of Nc

centroids. In each iteration, a centroid, xc
j , is updated by taking the average of all samples that

are closer to xc
j than any other centroid. This iterative process continues until convergence,

specified by a relative error tolerance. We use a publicly available implementation of this
algorithm 2, specifying a relative error of 0.01 as the stopping criterion for optimizing the
VQ cell partitioning. We set Nc = 256 for analyzing the population distribution of each
dataset in the body of the main paper.

H.2 Solving Minimization Problem (5) and (33)

The linear programs used to perform the fairness-accuracy tradeoff analysis in minimization
problems (5) and (33) were implemented using the linprog tool from the Scipy Optimize
library. For each of the datasets, we normalize the feature vectors for performing the distance
calculations associated with local individual fairness. Since each of the analyzed datasets are
composed of a mixture of discete and continuous features, we use the Hamming distance
to calculate the elementwise distances between discrete entries of a feature vector and the
absolute distance to measure the distances between continuous features. All continuous
features are normalized to have zero mean and 1

2 variance so that the maximum distance
of each entry is approximately 1 (Wilson & Martinez (1997)). This was done to ensure
that each element of a feature vector has approximately equal contribution to the final
distance. The average of these distances is taken as the final distance. For all experiments
involving local individual fairness constraints, the following procedure was used for choosing
η. The distances between each pair of cell centroids in our discretized population distribution
were calculated. Of this set of distances, the nth–percentile was calculated. All pairs of
distances smaller than this percentile represent local neighboring cell centroids. Empirically,
we set n = 3.5 percentiles to not include too few or too many neighbors in a cell’s local
neighborhood. Furthermore, we set the parameter θ = 1 in the exponential of the (Ind)
constraints for both minimization problems.

H.3 Solving Minimization Problem (10) and (35)

The implementation of the method of multipliers used for solving minimization problem (10)
was performed using Tensorflow, version 2.8. To perform the updates specified by equation
(11) to T in each iteration, we perform gradient descent with a momentum of 0.9 and a
decaying learning rate from 1e-2 to 1e-12. The entire minimization process is terminated
once the sum of square residuals for ρ and T falls below 1e-4.

A similar process is used to solve minimization problem (35) with the following modifications.
In each iteration we sequentially minimize Ta and Tb (using the same parameters specified
above). Furthermore, the entire minimization process is halted once the sum of square
residuals for ρ, Ta, and Tb falls below 1e-4.

I Experimental Results for Decorrelation on Law and Dutch
Datasets

In this section, we report the results from our decorrelation analysis under different combina-
tions of fairness notions for the Dutch Census and Law datasets. Again, for all combinations
involving individual fairness, we hold ϵInd = 0.05, while all group fairness constraints are
tested for relaxations of 0.0, 0.5, and 0.10. Thus, we report the average over three values
in each of the cells in Tables 2 and 3, along with the associated standard deviations in
parentheses. Similar to the Adult dataset, the accuracy of the fair Bayesian oracle on the
decorrelated feature vectors typically falls by around 2% or less, except in the case of the
EA+Ind combination under awareness of the sensitive attribute for both datasets. On

2https://github.com/internaut/py-lbg
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the other hand, prior to decorrelating the space of feature vectors, the value of Ld under
awareness of the sensitive attribute was 2 for both datasets, while under unawareness of the
sensitive attribute, the respective values of Ld for the Dutch Census and Law datasets were
0.56 and 0.98. Thus, the reported values of Ld for the different fairness combinations for
both datasets clearly show substantial improvements in decorrelating the space of feature
vectors with respect to the sensitive attribute. As with the Adult dataset, the EA+EOd
pairing is the only one that struggles to achieve an Ld value less than 0.1 for both datasets,
though even for this pairing, the transformed feature vectors are much more decorrelated
with respect to the sensitive attribute compared to the non-transformed feature vectors.

Table 2: Results for transferring fairness to decorrelated domain for for Law dataset.

Awareness Unawareness
Fairness Measure Acc. Reduction Ld Acc. Reduction Ld

DP+EA 0.021 (0.018) 0.000 (0.000) 0.026 (0.025) 0.000 (0.000)
DP+EOd 0.020 (0.018) 0.000 (0.000) 0.014 (0.013) 0.000 (0.000)
EA+EOd 0.019 (0.026) 0.120 (0.113) 0.010 (0.012) 0.070 (0.074)
DP+Ind. 0.021 (0.013) 0.000 (0.000) 0.005 (0.005) 0.000 (0.000)
EA+Ind. 0.056 (0.006) 0.000 (0.000) 0.004 (0.001) 0.000 (0.000)
EOd+Ind. 0.020 (0.006) 0.023 (0.021) 0.005 (0.004) 0.000 (0.000)

Table 3: Results for transferring fairness to decorrelated domain for Dutch dataset.

Awareness Unawareness
Fairness Measure Acc. Reduction Ld Acc. Reduction Ld

DP+EA 0.017 (0.016) 0.000 (0.000) 0.025 (0.023) 0.016 (0.19)
DP+EOd 0.009 (0.016) 0.000 (0.000) 0.015 (0.022) 0.062 (0.053)
EA+EOd 0.021 (0.019) 0.199 (0.099) 0.019 (0.017) 0.193 (0.088)
DP+Ind. 0.020 (0.008) 0.000 (0.000) 0.009 (0.007) 0.000 (0.000)
EA+Ind. 0.061 (0.011) 0.011 (0.032) 0.012 (0.002) 0.000 (0.000)
EOd+Ind. 0.022 (0.009) 0.020 (0.035) 0.011 (0.006) 0.018 (0.031)

J Verifying the Fidelity of Generator

Table 4: PCC and TV Distances between distributions constructed from real and generated data
for three datasets. All p-values are below 0.001.

PCC TV Distance
Distribution Adult Law Dutch Adult Law Dutch

pX,A=a,Y=0(x) 0.96 0.98 0.94 0.04 0.01 0.05
pX,A=a,Y=1(x) 0.98 0.88 0.88 0.00 0.02 0.03
pX,A=b,Y=0(x) 0.97 0.97 0.97 0.05 0.01 0.02
pX,A=b,Y=1(x) 0.97 0.91 0.95 0.03 0.06 0.05

The Adult, Law, and Dutch Census datasets respectively contain 48842, 20798, and 60420
samples. Using CT-GAN (Xu et al. (2019)), we train a generator to learn the underlying
distribution of each dataset and use it to produce one million samples for each. Lloyd’s
algorithm (Linde et al. (1980)) can then be applied to these samples to construct a discrete
approximation of the population distribution. To verify the fidelity of these samples, we use
the Pearson Correlation Coefficient (PCC) and Total Variation (TV) Distance to compare the
following discrete distributions constructed from the true and generated samples from each
dataset: pX,A=a,Y=0(x), pX,A=a,Y=1(x), pX,A=b,Y=0(x), pX,A=b,Y=1(x). We use the bound
derived in Appendix A to determine how densely we can quantize our original data, while
maintaining the fidelity of the distribution, (X,A, Y ), over each cell. Empirically setting the
confidence and error parameters to δ = 0.95 and ∆ = 0.05, this bounds suggests that we
may only partition the true Adult, Law, and Dutch datasets into 48, 20, and 59 VQ cells,
respectively. Thus, we use these specifications to construct discrete distributions from the
true and generated samples for each dataset. Table 4 provides the resulting PCC and TV
Distance results between the distributions created from the real and generated data. There
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Figure 5: Pareto frontiers capturing the accuracy-fairness tradeoff for three datesets under unaware-
ness of the sensitive attribute. Each plot provides curves for different pairings of fairness constraints;
namely, DP, EA, PE, EOd, and Ind.

is good correlation between each distribution constructed from real and generated data, with
all values having at least a PCC of 0.88, the majority of which are well above 0.90. Similarly,
all TV Distance values are quite low with all values falling below 0.06, though most are less
than 0.05. This suggests that generator has learned the population distribution associated
with each dataset, providing us with confidence in using it to construct a more fine-grain
cell decomposition from the large number of samples produced by the generator. We set
Nc = 256 for all experiments conducted in the body of the main paper.

K Full Set of Pareto Frontiers for Sensitive-Unaware

Since spacing limitations prevented us from including more plots in Fig. 2 of the main paper,
we provide the remaining Pareto frontiers under unawareness of the sensitive attribute that
could not be fit into that figure in Fig. 5 below. As was the case for the sensitive-attribute-
aware plots in Fig. 2, for the Adult and Law datasets, we see much smaller accuracy dropoffs
in pairings involving DP as opposed to pairings involving EA. The converse is true for the
Dutch Census dataset, further highlighting the distributional dependence of the tensions
that exist among these fairness notions.

All Pareto frontiers discussed up to this point deal with no more than two combinations
of fairness notions. In Fig. 6 we provide plots containing three or more combinations of
fairness definitions. It can clearly be seen that the accuracy droppoffs in these plots are
much more drastic than those from Fig. 2 or 5, as is to be expected. Noteably, enforcing
local individual fairness on top of any combination of three group fairness prohibits any
meaningful classification result with all accuracies dropping to around 50% with the inclusion
of the Ind constraint inside this figure.
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Figure 6: Pareto frontiers capturing the accuracy-fairness tradeoff for three datesets under awareness
(columns 1 and 2) and unawareness (columns 3 and 4) of the sensitive attribute. Plots include pairs
of three group fairness definitions with (columns 2 and 4) and without (columns 1 and 3) individual
fairness constraints.

L VQ Granularity vs Time Complexity

Given that the generator has produced a sufficient number of samples for modeling the
population distribution, fine-grain partitioning the space of feature vectors is desirable for
precise analysis since increasing the number of VQ cells reduces their size, leading the average
information associated with a cell centroid to be more representative of all the feature
vectors within a cell. However, there is a tradeoff between the number of VQ cells and
optimization time complexity. We selected 256 as the number of VQ cells for our analysis to
strike a balance between precision and time complexity. In Table 5, we report the average
accuracy and standard deviation of the Pareto frontiers for different combinations of group
fairness constraints for relaxations running from 0 to 0.2. The results show that significantly
increasing the number of VQ cells from 256 to 512 cells only leads to marginal changes in
the accuracy and standard deviation of the Pareto frontiers for each dataset, indicating that
the trends have begun to plateau. These results remain consistent across datasets. Hence,
256 cells provides a faithful representation of the fairness-accuracy tradeoff.

In Table 6, we report the time complexities associated with the different modules of our
analysis. All experiments were run on a Macbook Pro (1.7 GHz Quad-Core Intel Core i7)
with no GPU support. Training the codebook for the 256 VQ cell decomposition is the
most expensive of all the tasks that we preformed, but the time complexities are reasonable,
especially since training only needs to be performed once for each dataset. The results
for the four remaining tasks in the table consist of averages and standard deviations of
the computational complexities for solving each minimization problem in our optimization
framework for all relaxations of each group and individual fairness combination reported
in Figures 2 and 5 and Tables 2-4. The linear programming minimization problems are
able to be solved extremely efficiently with runtimes all far below one second for processing.
Optimization problems (10) and (35) are much more expensive since a large number of
gradient steps must be applied for the solution to converge. The runtimes for these problems
tend to be much smaller when only pairs of group fairness constraints are active since each
group fairness definition is associated with just one constraint (in constrast to individual
fairness). Still, the average runtimes for solving problems (10) and (35) are still typically
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around 30 minutes, with worst case runtimes typically no worse than one hour and 30
minutes. Using more adaptive learning rate schedules could further improve these runtimes.

Table 5: Average accuracy of group fairness Pareto frontiers with relaxations varied between 0 and
0.2. Standard deviations of the accuracies of each frontier are provided in parentheses.

Adult
Awareness Unawareness

# Cells DP+EA DP+EOd EA+EOd DP+EA DP+EOd EA+EOd
16 0.734 (0.039) 0.775 (0.000) 0.720 (0.059) 0.701 (0.062) 0.775 (0.000) 0.699 (0.065)
32 0.763 (0.022) 0.784 (0.004) 0.750 (0.047) 0.754 (0.029) 0.781 (0.002) 0.744 (0.047)
64 0.776 (0.019) 0.786 (0.005) 0.768 (0.028) 0.763 (0.026) 0.782 (0.002) 0.760 (0.032)
128 0.778 (0.019) 0.789 (0.005) 0.772 (0.026) 0.769 (0.025) 0.786 (0.004) 0.766 (0.030)
256 0.789 (0.017) 0.798 (0.008) 0.785 (0.023) 0.782 (0.020) 0.793 (0.007) 0.779 (0.026)
512 0.803 (0.015) 0.808 (0.012) 0.798 (0.023) 0.798 (0.018) 0.805 (0.011) 0.794 (0.026)

Dutch Census
Awareness Unawareness

# Cells DP+EA DP+EOd EA+EOd DP+EA DP+EOd EA+EOd
16 0.688 (0.008) 0.672 (0.042) 0.697 (0.007) 0.674 (0.001) 0.657 (0.035) 0.667 (0.012)
32 0.728 (0.011) 0.704 (0.057) 0.735 (0.011) 0.719 (0.007) 0.695 (0.052) 0.717 (0.010)
64 0.791 (0.014) 0.747 (0.082) 0.797 (0.012) 0.783 (0.014) 0.741 (0.078) 0.784(0.011)
128 0.796 (0.015) 0.752 (0.084) 0.801 (0.015) 0.790 (0.014) 0.746 (0.081) 0.787 (0.016)
256 0.821 (0.013) 0.766 (0.093) 0.826 (0.010) 0.814 (0.020) 0.765 (0.093) 0.822 (0.012)
512 0.839 (0.014) 0.778 (0.101) 0.848 (0.007) 0.829 (0.024) 0.777 (0.100) 0.846 (0.008)

Law
Awareness Unawareness

# Cells DP+EA DP+EOd EA+EOd DP+EA DP+EOd EA+EOd
16 0.823 (0.049) 0.891 (0.002) 0.821 (0.052) 0.803 (0.063) 0.890 (0.002) 0.765 (0.100)
32 0.841 (0.046) 0.894 (0.004) 0.839 (0.048) 0.821 (0.060) 0.891 (0.003) 0.791 (0.085)
64 0.844 (0.045) 0.896 (0.004) 0.845 (0.046) 0.823 (0.059) 0.894(0.004) 0.796 (0.070)
128 0.849 (0.045) 0.899 (0.006) 0.853 (0.045) 0.832 (0.057) 0.897 (0.005) 0.819 (0.072)
256 0.891 (0.032) 0.910 (0.010) 0.876 (0.055) 0.879 (0.045) 0.907 (0.009) 0.833 (0.085)
512 0.902 (0.031) 0.916 (0.013) 0.892 (0.050) 0.888 (0.044) 0.914 (0.012) 0.855 (0.077)

Table 6: Average time complexity of the different optimization tasks in the proposed framework for
each dataset.

Task Adult Dutch Census Law
256 VQ Cell Training 5375s (—–) 8513s (—–) 8417s (—–)

Solving (6) 0.007s (0.007) 0.007s (0.007) 0.007s (0.008)
Solving (10) 839s (525) 1348s (941) 1644s (1823)
Solving (33) 0.033s (0.009) 0.043s (0.008) 0.035s (0.009)
Solving (35) 2773s (2327) 2104s (1855) 1785s (1743)
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M Summary of Notation

Table 7: Notation

bold face capital letter (e.g. X) ≜ matrix
bold face lowercase letter (e.g. x) ≜ column vector

X[i, j] ≜ element in ith row and jth column of X
x[i] ≜ ith element of x
T ≜ Matrix representing decorrelation mapping for feature vectors
Ta ≜ Matrix representing decorrelation mapping for feature vectors

specific to Group a
Tb ≜ Matrix representing decorrelation mapping for feature vectors

specific to Group b
abbreviation ts ≜ Affiliation to test set

A ≜ Sensitive attribute random variable
Y ≜ Class label random variable
X ≜ Feature vector random variable

X ,A,Y ≜ Sample spaces for the feature vector, sensitive attribute, and class
label random vector/variables

S ≜ Randomized Scoring function
Ŷ ≜ Class label estimator
sB ≜ Scores produced by unconstrained Bayesian oracle
sF ≜ Scores produced by fair Bayesian oracle
m ≜ deviation between scores produced by unconstrained and fair

Baysian oracles (i.e. sB and sF ). We optimize for this vector.
1k ≜ column vectors of length k containing all 1s
0k ≜ column vectors of length k containing all 0s
IM ≜ M ×M identity matrix

OM,N ≜ M and N matrix of all zeros
1M,N ≜ M and N matrix of all ones

p ≜ Vector capturing distribution involving X in which X is not a
variable on which we condition. E.g. The ith element of pa

0 is
equal to P (X = xc

i , A = a|Y = 0)
q ≜ Vector capturing distribution involving X in which X is a variable

on which we condition. E.g. The ith element of qa
0 is equal to

P (A = a|X = xc
i , Y = 0)
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