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Abstract

Recent research has developed several Monte Carlo methods for estimating the1

normalization constant (partition function) based on the idea of annealing. This2

means sampling successively from a path of distributions which interpolate be-3

tween a tractable “proposal" distribution and the unnormalized “target" distribution.4

Prominent estimators in this family include annealed importance sampling and5

annealed noise-contrastive estimation (NCE). Such methods hinge on a number6

of design choices: which estimator to use, which path of distributions to use and7

whether to use a path at all; so far, there is no definitive theory on which choices are8

efficient. Here, we evaluate each design choice by the asymptotic estimation error it9

produces. First, we show that using NCE is more efficient than the importance sam-10

pling estimator, but in the limit of infinitesimal path steps, the difference vanishes.11

Second, we find that using the geometric path brings down the estimation error12

from an exponential to a polynomial function of the parameter distance between13

the target and proposal distributions. Third, we find that the arithmetic path, while14

rarely used, can offer optimality properties over the universally-used geometric15

path. In fact, in a particular limit, the optimal path is arithmetic. Based on this16

theory, we finally propose a two-step estimator to approximate the optimal path in17

an efficient way.18

1 Introduction19

Recent progress in generative modeling has sparked renewed interest in models of data that are defined20

by an unnormalized distribution. One prominent example is energy-based (or score-based) models,21

which are increasingly used in deep learning [1], and for which there are a variety of parameter22

estimation procedures [2–5]. Another example comes from Bayesian statistics, where the posterior23

model of parameters given data is frequently known only up to a proportionality constant. Such24

models can be evaluated and compared by the probability they assign to a dataset, yet this requires25

computing their normalization constants (partition functions) which are typically high-dimensional,26

intractable integrals.27

Monte-Carlo methods have been successful at computing these integrals using sampling methods [6].28

The most common is importance sampling [6] which draws a sample from a tractable, "proposal"29

distribution to integrate the unnormalized "target" density. Noise-contrastive estimation (NCE) [3]30

uses a sample from both the proposal and the target, to compute the integral. Yet such methods31

suffer from high variance, especially when the "gap" between the proposal and target densities is32

large [7–9]. This has motivated various approaches to gradually bridge the gap with intermediate33

distributions, which is loosely referred to as "annealing". Among them, annealed importance sampling34

(AIS) [10–12] is widely adopted: it has been used to compute the normalization constants of deep35

stochastic models [13, 14] or to motivate a lower-bound for learning objectives [15, 16]. To integrate36
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Name Loss identified by ϕ(x) Estimator Ẑ1 MSE

IS x log x Ep0

f1
f0

1+ν
νN Dχ2(p1, p0)

RevIS − log x
(
Ep1

f0
f1

)−1 1+ν
N Dχ2(p0, p1)

NCE x log x− (1 + x) log(1+x
2 ) implicit (1+ν)2

νN
DHM(p1,p0)

1−DHM(p1,p0)

Table 1: Some estimators of the normalization obtained by minimizing a classification loss, and their
estimation error in terms of well-known divergences [22]. For details and definitions, see Appendix A.

the unnormalized "target" density, it draws a sample from an entire path of distributions between37

the proposal and the target. While annealed importance sampling has been shown to be effective38

empirically, its theoretical understanding remains limited [17, 18]: it is yet unclear when annealing is39

effective, for which annealing paths, and whether AIS is a statistically efficient way to do it.40

In this paper, we define a family of annealed Bregman estimators (ABE) for the normalization constant.41

We show that it is general enough to recover many classical estimators as a special case, including42

importance sampling, noise-contrastive estimation, umbrella sampling [19], bridge sampling [20]43

and annealed importance sampling. We provide a statistical analysis of its hyperparameters such44

as the choice of paths, and show the following. First, we show that using NCE is more efficient45

than the importance sampling estimator, but in the limit of infinitesimal path steps, the difference46

vanishes. Second, we find that the near-universally used geometric path brings down the estimation47

error from an exponential to a polynomial function of the parameter distance between the target48

and proposal distributions. Third, we find that using the recently introduced arithmetic path [21] is49

exponentially inefficient in its basic form, yet it can be reparameterized to be in some sense optimal.50

Based on this optimality result, we finally propose a two-stage estimation procedure which first finds51

an approximation of the optimal (arithmetic) path, then uses it to estimate the normalization constant.52

2 Background53

Importance sampling and NCE The problem considered here is how to compute the normalization54

constant 1, i.e. the integral of some unnormalized density f1(x) called "target". Importance sampling55

and noise-contrastive estimation are two common estimators which integrate the unnormalized target56

over a random sample drawn from a tractable density p0(x) called "proposal"(Table 1, column 3). In57

fact, they are part of a larger family of Monte-Carlo estimators which can be interpreted as solving a58

binary classification task, aiming to distinguish between a sample drawn from the proposal and another59

from the target [22]. Each estimator is obtained by minimizing a specific binary classification loss60

that is identified by a convex function ϕ(x). For example, minimizing the classification loss identified61

by ϕIS(x) = x log x yields the importance sampling estimator. Similarly, ϕRevIS(x) = − log x leads62

to the reverse importance sampling estimator [23], and ϕNCE(x) = x log x− (1 + x) log((1 + x)/2)63

to the noise-contrastive estimator. These estimators are summarized in Table 1.64

Annealed estimators Annealing extends the above "binary" setup, by introducing a sequence of65

K+1 distributions from the proposal to the target (included). The idea will be to draw a sample from66

all these distributions to integrate the target f1(x). These intermediate distributions are obtained67

from a path (ft)t∈[0,1], defined by interpolating between the proposal p0 and unnormalized target f1:68

this path is therefore unnormalized. Different interpolation schemes can be chosen. A general one,69

explained in Figure 1, is to take the q-mean of the proposal and target [21]. Two values of q are of70

particular interest: q → 0 defines a a near-universal path [18], obtained by taking the geometric mean71

of the target and proposal, while q = 1 defines a path obtained by the arithmetic mean.72

Once a path is chosen, it can be uniformly2 discretized into a sequence of K + 1 unnormalized73

densities, denoted by (fk/K)k∈[0,K] with corresponding normalizations (Zk/K)k∈[0,K]. In practice,74

samples are drawn from the corresponding normalized densities (pk/K)k∈[0,K] using Markov Chain75

1in this paper we also say we “estimate" the the normalization constant, though this terminology is unconven-
tional as estimation traditionally refers to the parameters of a statistical model

2other discretization schemes can be equivalently achieved by re-parameterizing the path [17]
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General (q ∈]0, 1]) ft(x) =
(
(1− t)p0(x)

q + tf1(x)
q
) 1

q

Geometric (q → 0) ft(x) = p0(x)
1−t × f1(x)

t

Arithmetic (q = 1) ft(x) = (1− t)p0(x) + tf1(s)

q 0

q = 1

p0 p1

Figure 1: Geometric and arithmetic path between the proposal and target distributions. Here, the
proposal (red) is a standard gaussian. The target (blue) is a gaussian mixture with two modes, and
same first and second moments as the proposal.

Monte Carlo (MCMC). This sampling step incurs a computational cost, which is paid in the hope76

of reducing the variance of the estimation. It is common in the literature [17, 18] to assume perfect77

sampling, meaning the MCMC has converged and produced exact and independent samples from the78

distributions along the path, which simplifies the analysis.79

Estimation error A measure of "quality" is required to compare different estimation choices,80

such as whether to anneal and which path to use. Such a measure is given by the Mean Squared81

Error (MSE), which is generally tractable when written at the first order in the asymptotic limit of a82

large sample size [24, Eq. 5.20]. These expressions have been derived for estimators obtained by83

minimimizing a classification loss [22] and are included in table 1. They measure the "gap" between84

the proposal and target distributions using statistical divergences. Note also that the estimation error85

depends on the normalized target density (column 4), while the estimators are computed using the86

unnormalized target density (column 3). Further details are available in Appendix A.87

3 Annealed Bregman Estimators of the normalization constant88

The question that we try to answer in this paper is: How should we choose the K + 1 distributions in89

annealing, and how are their samples best used? To answer this, we will study the error produced by90

different estimation choices. But first we define the set of estimators for which the analysis is done.91

Definition of Annealed Bregman Estimators We now define a new family of estimators, which92

we call annealed Bregman estimators (ABE); this terminology is explained later. We will show that93

this is a general class of estimators for computing the normalization using a sample drawn from the94

sequence of K +1 distributions. For ABE, the log normalization logZ1 is estimated additively along95

the sequence of distributions96 ÷logZ1 =

K−1∑
k=0

¤�
log

Ç
Z(k+1)/K

Zk/K

å
+ logZ0 . (1)

Defining the estimation in log-space is analytically convenient, as it is easier to analyze a sum of97

estimators than a product. Exponentiating the result leads to an estimator of Z1. We naturally extend98

the binary setup (K = 1) of Chehab et al. [22] and propose to compute each of the intermediate99

log-ratios, by solving a classification task between samples drawn from their corresponding densities100

pk/K and p(k+1)/K . Each binary classification loss is now identified by a convex function ϕk(x) and101

defined as102

Lk(β) := Ex∼pk/K
[ϕ

′

k(r(x;β))× r(x;β)− ϕk(r(x))]− Ex∼p(k+1)/K
[ϕ

′

k(r(x;β))] (2)

where r(x;β) is parameterized by the unknown log-ratio β∗ = log(Z(k+1)/K/Zk/K)103

r(x;β) = exp(−β)× f(k+1)/K(x)/fk/K(x) . (3)

The convex functions (ϕk)k∈[0,K−1] which identify the classification losses are called "Bregman"104

generators, hence ABE. As mentioned above, we assume perfect sampling and allocate the total105

sample size N equally among the K estimators in the sum.106
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Hyperparameters The annealed Bregman estimator depends on the following hyperparameters:107

(1) the choice of path q; (2) the number of distributions along that path K +1 (including the proposal108

and the target); (3) the classification losses identified by the convex functions (ϕk)k∈[0,K−1].109

Different combinations of these hyperparameters recover several common estimators of the log-110

partition function. In binary case of K = 1 this includes importance sampling, reverse importance111

sampling, and noise-contrastive estimation, each obtained for a different choice of the classification112

loss [22]. To build intuition, consider K = 2 so that we add a single intermediate distribution p1/2113

to the sequence. Using the importance sampling loss (ϕ0 = x log x) for the first ratio, and reverse114

importance sampling (ϕ1 = − log x) for the second ratio, recovers the bridge sampling estimator as115

a special case [20]116 ÷logZ1 = − logEp1

f1/2

f1
+ logEp0

f1/2

f0
logZ0 . (4)

Alternatively, we can use these classification losses in reverse order: reverse importance sampling117

(ϕ0 = − log x) for the first ratio, and importance sampling (ϕ1 = x log x) for the second ratio, and118

recover the umbrella sampling estimator [19] also known as the ratio sampling estimator [25]119 ÷logZ1 = logEp1/2

f1
f1/2

− logEp1/2

f0
f1/2

logZ0 . (5)

Another option yet, is to use the same classification loss for all ratios. With importance sampling120

(ϕk = x log x, ∀k ∈ J0,K − 1K), we recover the annealed importance sampling estimator [10–12]121 ÷logZ1 =

K∑
k=1

logEx∼pk−1

ï
fk

fk−1
(x)

ò
+ logZ0 . (6)

The family of annealed Bregman estimators is visibly large enough to include many existing esti-122

mators, obtained for different hyperparmeter choices. This raises the fundamental question of how123

these hyperparameters should be chosen, in particular in the challenging case where the target and124

proposal have little overlap and the data is high dimensional. To answer this question, we will study125

the estimation error produced by different hyperparameter choices.126

4 Statistical analysis of the hyperparameters127

We consider a fixed data budget N and investigate how the remaining hyperparameters are best128

chosen for statistical efficiency. The starting point for the analysis is that as ABE estimates the129

normalization in log-space, the estimator is obtained by a sum of independent and asymptotically130

unbiased estimators [26] given in Eq. 1 and thus the mean squared errors written in table 1 are131

additive. Each individual error actually measures an overlap between two consecutive distributions132

along the path, and annealing integrates these overlaps.133

4.1 Classification losses, ϕk134

Given the popularity of annealed importance sampling, we should first ask if the importance sampling135

loss is really an acceptable default. We recall an important limitation of annealed importance136

sampling [27]: its estimation error is notoriously sensitive to distribution tails. Without annealing, it137

is infinite when the target p1 has a heavier tail than the proposal p0. When annealing with a geometric138

path, for example between two gaussians with different covariances p0 = N (0, Id) and p1 =139

N (0, 2 Id), the geometric path produces gaussians with increasing variances Σt = (1− t/2)−1 Id140

and therefore increasing tails. Hence, the same tail mismatch holds along the path. Note that this141

concern is a realistic one for natural image data, as the target distribution over images is typically142

super-gaussian [28] while the proposal is usually chosen as gaussian.143

This warrants a better choice for the loss: In the binary setup (K = 1), the NCE loss is optimal [20, 22]144

and its error can be orders of magnitude less than importance sampling [20]. We extend this optimality145

result over a sequence of distributions K > 1 and also show that the gap between annealed IS and146

annealed NCE is closed in the limit of a continuous path:147
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Theorem 1 (Estimation error and the Fisher-Rao path length) For a finite value of K, the optimal148

loss is NCE149

MSE(p0, p1; q,K,N, ϕNCE) ≤ MSE(p0, p1; q,K,N, ϕ), ∀q,K,N, ϕ . (7)

In the limit of K → ∞, NCE, IS, and revIS converge to the same estimation error, given by the150

Fisher-Rao path length from the proposal to the target151

MSE(p0, p1; q,K,N, ϕ) → 1

N

∫ 1

0

I(t)dt, forK → ∞, ϕ ∈ {ϕNCE, ϕIS, ϕRevIS} (8)

where the Fisher-Rao metric I(t) := Ex∼p(x,t)[(
d
dt log pt(x))

2] defined as the Fisher information152

over the path, using time t as the parameter.153

This is proven in Appendix B. While the NCE estimator requires solving a (potentially non-convex)154

scalar optimization problem in Eq. 2 and IS does not, this is the price to pay for statistical optimality.155

In the following we will keep the optimal NCE loss and will indicate the dependency of the estimation156

error on ϕNCE with a subscript, instead. We highlight that our theorems in this paper apply to the157

MSE in the limit of K → ∞: their results hold the same for the IS and RevIS losses by virtue of158

theorem 1. Just as in the binary case, while the estimator is computed with the unnormalized path of159

densities (Eq. 2), the estimation error depends on the normalized path of densities (Eq. 8).160

4.2 Number of distributions, K + 1161

It is known that estimating the normalization constant using plain importance sampling (K = 1) can162

produce a statistical error than is exponential in the dimension [6, Example 9.1]. We show that in the163

binary case, NCE also suffers from an estimation error that scales exponentially with the dimension.164

In the following, we consider a proposal p0 and target p1 that are in an exponential family; note that165

certain exponential families have universal approximation capabilities [29]. The exponential family166

is defined as167

p(x;θ) := exp(⟨θ, t(x)⟩ − logZ(θ)) (9)

where Z(θ) =
∫
exp(⟨θ1, t(x)⟩). We will consider that the (unnormalized) target density f1 is what168

we call a simply unnormalized model defined as169

f1(x) = exp(⟨θ1, t(x)⟩) (10)

Note that in general, a pdf can be unnormalized in many ways: one can multiply an unnormalized170

density by any positive function of θ and it will still be unnormalized. However, the simple and171

intuitive case defined above is what we encounter in the analysis below.172

For exponential families, the log-normalization logZ(θ) is a convex function (“log-sum-exp") of the173

parameter θ [30], which implies 0 ≼ ∇2
θ logZ(θ). In our theorems we use the further assumptions174

of strong convexity with constant M , and/or smoothness with constant L (gradient is L-Liptschitz):175

∇2
θ logZ(θ) ≽ M Id (11)

176

∇2
θ logZ(θ) ≼ L Id (12)

For exponential families, the derivatives of the log partition function yield moments of the sufficient177

statistics, so we are effectively assuming that the eigenvalues of ∇2
θ logZ(θ) = Covx∼p[t(x)] are178

bounded, which will be the case for parameters in a bounded domain θ ∈ Θ. An example along with179

the proofs of the following theorems 2 and 3, are provided in Appendix B.180

Theorem 2 (Exponential error of binary NCE) Assume the proposal p0 is from the normalized181

exponential family, while the (unnormalized) target f1 is from the simply unnormalized exponential182

family (Eq. 10). The log-partition function logZ(θ) is assumed to be strongly convex (Eq. 11).183

Then in the binary case K = 1, the estimation error of NCE is (at least) exponential in the parameter-184

distance between the proposal and the target185

MSENCE(p0, p1; q,K,N) ≥ 4

N
exp

Å
1

8
M∥θ1 − θ0∥2

ã
− 1, whenK = 1 (13)

where M is the strong convexity constant of logZ(θ).186
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Annealing the importance sampling estimator (increasing K) was proposed in hope that we can trade187

the statistical cost in the dimension for a computational cost (number of classification tasks) which is188

more acceptable. Yet, there is no definitive theory on the ability of annealing to reduce the statistical189

cost in a general setup [18, 21]. For both importance sampling and noise-contrastive estimation, we190

prove that annealing with the near-universal geometric path brings down the estimation error, from191

exponential to polynomial in the parameter-distance between the proposal and target. Given that192

the parameter-distance itself scales as
√
D with the dimension, using these paths effectively makes193

annealed estimation amenable to high-dimensional problems. This corroborates empirical [31] and194

theoretical [17] results which suggested in simple cases that annealing with an appropriate path can195

reduce the estimator error up to several orders of magnitude.196

Theorem 3 (Polynomial error of annealed NCE with a geometric path) Assume the proposal p0197

is from the normalized exponential family, while the (unnormalized) target f1 is from the simply198

unnormalized exponential family (Eq. 10). The log-partition function logZ(θ) is assumed to be199

strongly convex and smooth (Eq. 11, Eq. 12).200

Then in the annealing limit of a continuous path K → ∞, the estimation error of annealed NCE with201

the geometric path is (at most) polynomial in the parameter-distance between the proposal and the202

target203

MSENCE(p0, p1; q,K,N) ≤ L2

MN
∥θ1 − θ0∥2, whenK → ∞, q = 0 (14)

where M and L are respectively the strong convexity and smoothness constants of logZ(θ).204

To our knowledge, this is the first result building on Gelman and Meng [17, Table 1] and Grosse et al.205

[18] which showcases the benefits of annealed estimation for a general target distribution.206

We conclude that annealing with the near-universal geometric path provably benefits noise-contrastive207

estimation, as well as importance sampling and reverse importance sampling, when the proposal and208

target distributions have little overlap.209

4.3 Path parameter, q — geometric vs. arithmetic210

Despite the near-universal popularity of the geometric path (q → 0), it is worth asking if there are211

other simple paths that are more optimal. Interpolating moments of exponential families was shown212

to outperform the geometric path by Grosse et al. [18], yet building such a path requires knowing213

the exponential family of the target. Other paths based on the arithmetic mean (and generalizations)214

of the target and proposal, were proposed in Masrani et al. [21], without a definitive theory of the215

estimation error.216

Next, we analyze the error of the arithmetic path. We prove that the arithmetic path (q = 1) does not217

exhibit the same benefits as the geometric path: in general, its estimation error grows exponentially in218

the parameter-distance between the target and proposal distributions. However, in the case where an219

oracle gives us the normalization Z1 to be used only in the construction of the path (we will discuss220

what this means in practice below), the arithmetic path can be reparameterized so as to bring down221

the estimation error to polynomial, even constant, in the parameter-distance. We start by the negative222

result.223

Theorem 4 (Exponential error of annealed NCE with an arithmetic path) Assume the proposal p0224

is from the normalized exponential family, while the (unnormalized) target f1 is from the simply225

unnormalized exponential family (Eq. 10). The log-partition function logZ(θ) is assumed to be226

strongly convex (Eq. 11).227

Consider the annealing limit of a continuous path K → ∞ path, and of a far-away target ∥θ1−θ0∥ →228

∞. For estimating the log normalization of the (unnormalized) target density f1, the estimation error229

of annealed NCE with the arithmetic path is (at least) exponential in the parameter-distance between230

the proposal and the target.231

MSENCE(p0, p1; q,K,N) = O

Å
f

Å
1

N
exp

Å
M

2
∥θ1 − θ0∥2

ããã
, whenK → ∞, q = 1

(15)

where f is an increasing function defined in Appendix B.3.232
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Path name Unnormalized density Normalized density Error

Geometric ft(x) = p0(x)
1−tf1(x)

t pt(x) ∝ p0(x)
1−tp1(x)

t poly

Arithmetic ft(x) = (1− wt)p0(x) + wtf1(x) pt(x) = (1− w̃t)p0(x) + w̃tp1(x)
vanilla wt = t w̃t =

tZ1

(1−t)+tZ1
exp

oracle wt =
t

t+Z1(1−t) w̃t = t poly

oracle-trig wt =
sin2

(
πt
2

)
sin2

(
πt
2

)
+Z1 cos2

(
πt
2

) w̃t = sin2
(
πt
2

)
const

Table 2: Geometric and arithmetic paths, defined in the space of unnormalized densities (second
column); “oracle" and “oracle-trig" are reparameterizations of the arithmetic path which depend
on the true normalization Z1. The corresponding normalized densities (third column) produce an
estimation error (fourth column) which we quantify.

We suggest an intuitive explanation for this negative result. We begin with the observation that the233

estimation error (Eq. 8) depends on the normalized path of densities. Suppose the target model234

is rescaled by a constant 100, so that the new unnormalized target density is f1(x) × 100 and its235

new normalization is Z1 × 100. Looking at table 2, this rescaling does not modify the geometric236

path of normalized densities, while it does the arithmetic path of normalized densities. Because the237

estimation error depends on path of normalized densities, this makes the arithmetic choice sensitive238

to target normalization, even more so as the parameter distance grows and the log-normalization239

with it, as a strongly convex function of it (Appendix, Eq. 85). This suggests making the arithmetic240

path of normalized distributions "robust" to the choice of Z1. We will show this can be achieved by241

re-parameterizing the path in terms of Z1.242

We next prove that certain reparameterizations can bring down the error to a polynomial and even243

constant function of the parameter-distance between the target and proposal. The following theorems244

may seem purely theoretical, as if necessitating an oracle for Z1, but they will actually lead to an245

efficient estimation algorithm later.246

Theorem 5 (Polynomial error of annealed NCE with an arithmetic path and oracle) Assume the same247

as in Theorem 4, replacing the strong convexity of the log-partition by smoothness (Eq. 12). Addition-248

ally, suppose an oracle gives the normalization constant Z1 to be used only in the reparameterization249

of the arithmetic path with t → t
t+Z1(1−t) (see Table 2). This brings down the estimation error of250

annealed NCE to (at most) polynomial in the parameter-distance251

MSENCE(p0, p1; q,K,N) ≤ 1

N
(2 + L∥θ1 − θ0∥2), whenK → ∞, q = 1 (16)

where L is the smoothness constant of logZ(θ).252

In fact, supposing we have (oracle) access to the normalizing constant Z1, the arithmetic path can253

even be reparameterized such that it is the optimal path in a certain limit. We next prove such254

optimality in the limits of a continuous path K → ∞ and "far-away" target and proposal:255

Theorem 6 (Constant error of annealed NCE with an arithmetic path and oracle) Suppose we256

can successively take the limit of a continuous annealing path K → ∞, then the limit of a target257

distribution that tends toward no overlap with the proposal p1(x)p0(x) → 0 pointwise (and assuming258

domination by an integrable function) 3. Then the optimal annealing path convergences pointwise to259

an arithmetic path reparameterized trigonometrically with t → t
sin2(πt

2 )+Z1(1−sin2(πt
2 ))

. In that limit,260

the estimation error is constant with respect to the parameter-distance261

MSENCE(p0, p1; q,K,N) ∼ 2π2

N
, whenK → ∞, q = 1 (17)

Two-step estimation Thus, we see that, perhaps unsurprisingly, the "optimal" mixture weights in262

the space of unnormalized densities depends on the true Z1: however, this dependency is simple. We263

3this effectively assumes that K → ∞ faster than p1(x)p0(x) → 0, so that the error in the first limit is
dominated by the error in the second limit.
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propose a two-step estimation method: first, Z1 is pre-estimated, for example using the geometric264

path; second, the estimate of Z1 is plugged into the "oracle" or "oracle-trig" weight of the arithmetic265

path (table 2, column 2), and which is used to obtain a second estimation of Z1. Note that pre-266

estimating a problematic (hyper)parameter, here Z1, has proved beneficial to reduce the estimation267

error of NCE in a related context [32].268

5 Numerical results269

We now present numerical evidence for our theory and validate our two-step estimators. Importantly,270

we do not claim to achieve state of the art in terms of practical evaluation of the normalization271

constants; our goal is to support our theoretical analysis. We follow the evaluation methods of272

importance sampling literature [18] and evaluate our methods on synthetic gaussians. This setup273

is specially convenient for validating our theory: the optimal estimation error can conveniently be274

computed in closed-form, so too can the geometric and arithmetic paths which avoids a sampling error275

from MCMC algorithms. These derivations are included in the Appendix B. We specifically consider276

the high-dimensional setting, where the computation of the determinant of a high-dimensional277

(covariance) matrix which appears in the normalization of a gaussian, can in fact be challenging [33].278

Numerical Methods The proposal distribution is always a standard gaussian, while the target279

differs by the second moment: p1 = N (0, 2 Id) in Figure 2, p1 = N (0, 0.25 Id) in Figure 3b280

and p1 = N (0, σ2 Id) in Figure 3a, where the target variance decreases as σ(i) = i−1 so that the281

(natural) parameter distance grows linearly [30, Part II-4]. We use a sample size of N = 50000282

points, and, unless otherwise mentioned, K + 1 = 10 distributions from the annealing paths and283

the dimensionality is 50. To compute an estimator of the normalization constant using the non-284

convex NCE loss, we used a non-linear conjugate gradient scheme implemented in Scipy [34]. We285

chose the conjugate-gradient algorithm as it is deterministic (no residual variance like in SGD). The286

empirical Mean-Squared Error was computed over 100 random seeds, parallelized over 100 CPUs.287

The longest experiment took 7 wall-clock hours to complete. For the two-step estimators ("two-step"288

and "two-step (trig)"), a pre-estimate of the normalization was first computed using the geometric289

path with 10 distributions. Then, this estimate was used to to re-parameterize an arithmetic path with290

10 distributions which produced the second estimate.291

Results Figure 2 numerically supports the optimality of the NCE loss for a finite K (here, K = 2292

so three distributions are used) proven in Theorem 1. Figure 3 validates our main results for annealing293

paths. It shows how the estimation error scales with the proposal and target distributions growing294

apart, either with the parameter-distance in Figure 3a or with the dimensionality in Figure 3b.295

Using no annealing path (K = 1) produces an estimation error which grows linearly in log space;296

this numerically supports the exponential growth predicted by Theorem 2. Meanwhile, annealing297

(K → ∞) sets the estimation error on different trends, depending on the choice of path. Choosing298

the geometric path brings the growth down to sub-exponential, as predicted by Theorem 3, while299

choosing the (basic) arithmetic path does not as in Theorem 4. To alleviate this, our two-step300

estimation methods consist in reparameterizing the arithmetic path so that it actually does bring down301

the estimation error. In fact, our two-step estimators in table 2 empirically approach the optimal302

estimation error in Figure 3. While this requires more computation, it has the appeal of making the303

estimation error constant with respect to the parameter-distance between the target and proposal304

distributions. Practically, this means that in Figure 3a, regular Noise-Contrastive Estimation (black,305

full line) fails when the parameter-distance between the target and proposal distributions is higher306

than 20, while our two-step estimators remain optimal.307

We next explain interesting observations in Figure 3 which are actually coherent with our theory.308

First, in Figure 3a, the "two-step (trig)" estimator is only optimal when the parameter-distance309

between the target and proposal distributions is larger than 10. This is because the optimality of310

this two-step estimator was derived in Theorem 6 conditionally on non-overlapping distributions,311

here achieved by a large parameter-distance. Second, in both Figures 3a and 3b, the "two-step"312

estimator empirically achieves the optimal estimation error that was predicted for the "two-step (trig)"313

estimator. This suggests our polynomial upper bound from Theorem 5 may be loose in certain cases.314

This further explains why, in Figure 3a, the arithmetic path is near-optimal for a single value of the315

parameter-distance. At this value of 20, the partition function happens to be equal to one Z(θ1) = 1,316

so that the arithmetic path is effectively the same as the "two-step" estimator.317
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Figure 3: Estimation error as the target and proposal distributions grow apart. Without annealing, the
error is exponential in the parameter distance (diagonal in log-scale). Annealing with the geometric
path and our two-step methods brings down the error to slower growth, as predicted by our theorems.

6 Related work and Limitations318

Previous work has mainly focused on annealed importance sampling [18, 35], which is a special case319

of our annealed Bregman estimator. They have evaluated the merits of different paths empirically,320

using an approximation of the estimation error called Effective Sample Size (ESS) and the consistency-321

gap. In our analysis, we consider consistent estimators and derive and optimize the exact estimation322

error of the optimal Noise-Contrastive Estimation. Liu et al. [27] considered the NCE estimate for Z323

(not logZ) with the name “discriminance sampling", and annealed the estimator using an extended324

state-space construction similar to Neal [10]. Their analysis of the estimation error is relevant but325

does not deal with hyperparameters other than the classification loss.326

We made the common assumption of perfect sampling [18] in order to study the estimation error327

only and obtain practical guidelines to reduce it. We note however, that this leaves a gap to bridge328

with a practical setup where the sampling error cannot be ignored; in fact, annealed importance329

sampling [10] was originally proposed such that the samples can be obtained from a Markov Chain330

that has not converged. It might also be argued that the limit of almost no overlap between proposal331

and target, which we use a lot, is unrealistic. To see why it can be realistic, consider the case of332

natural image data. A typical proposal is Gaussian, since nothing much more sophisticated is tractable333

in high dimensions. However, there is almost no overlap between Gaussian data and natural images,334

which is seen in the fact that a human observer can effortlessly discriminate between the two.335

7 Conclusion336

We defined a class of estimators of the normalization constant, annealed Bregman estimation, which337

relies on a sampling phase from a path of distributions, and an estimation phase where these samples338

are used to estimate the log-normalization of the target distribution. Our results suggest a number of339

simple recommendations regarding hyperparameter choices in annealing. First, if the path has very340

few intermediate distributions, it is better to choose NCE due to its statistical optimality (Theorem341

1). If however, the path has many intermediate distributions and approaches the annealing limit, it342

is better to use IS due to its computational simplicity (since the statistical efficiency is the same343

as NCE). Annealing can always provide substantial benefits (Theorem 2). Moreover, if we have344

a reasonable a priori estimate of Z1, the arithmetic path achieves very low error (Theorem 5) —345

sometimes even approaching optimal (Theorem 6). On the other hand, even absent an initial estimate346

of Z1, the geometric path can exponentially reduce the estimation error compared with no annealing347

(Theorems 2 and 3).348
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In the following, we will study the estimation error of of annealed Bregman estimation (ABE) in two442

importants setups: the log-normalization is computed using two distributions (K = 1), the proposal443

and the target, or else using a path of distributions (K → ∞).444

The anonymized code used for the experiments is available at https://anonymous.4open.445

science/r/annealed-nce-submission-B8A0.446

A No annealing, K = 1447

We use [22, Eq.21] for the estimation error of any suitably parameterized 4 classifier F (x;β) between448

two distributions p1 and p0. The estimation error is measured by the Mean-Squared Error (MSE)449

MSEβ̂(pn, ν, ϕ,N) =
ν + 1

N
tr(Σ) (18)

which depends on the sample sizes N = N1+N0, their ratio ν = N1/N0, the Bregman classification450

loss indexed by the convex function ϕ(x), and the asymptotic variance matrix451

Σ = I−1
w

(
Iv − (1 +

1

ν
)mwm

⊤
w

)
I−1
w . (19)

Here, mw(β
∗), Iw(β∗) and Iv(β

∗) are the reweighted mean and covariances of the paramete-452

gradient of the classifier, also known as the “relative" Fisher score ∇βF (x;β∗),453

mw(β
∗) = Ex∼pd

[
w(x)∇βF (x;β∗)

]
(20)

Iw(β
∗) = Ex∼pd

[
w(x)∇βF (x;β∗)∇βF (x;β∗)⊤

]
(21)

Iv(β
∗) = Ex∼pd

[
v(x)∇βF (x;β∗)∇βF (x;β∗)⊤

]
(22)

where the reweighting of data points is by w(x) := p1

νp0
(x)ϕ

′′( p1

νp0
(x)

)
and by v(x) =454

w(x)2 νp0(x)+p1(x)
νp0(x)

, which are all evaluated at the true parameter value β∗.455

Scalar parameterization We now consider a specific parameterization of the classifier:456

F (x;β) = log

Å
f1(x)

νf0(x)

ã
− β (23)

where the optimal parameter is the log-ratio of normalizations β∗ = log(Z1/Z0). Consequently, we457

have ∇βF (x;β∗) = −1 and plugging this into the above quantities yields458

MSE =
1 + ν

T

ÅEx∼p1

[
w2(x)νp0(x)+p1(x)

νp0(x)

]
Ex∼p1

[w(x)]2
− (1 +

1

ν
)

ã
which matches the formula found in [20, Eq 3.2]. For different choices of the Bregman classification459

loss, the estimation error is written using a divergence between the two distributions460

Name Loss identified by ϕ(x) Estimator MSE

IS x log x logEp0

f1
f0

1+ν
νN Dχ2(p1, p0)

RevIS − log x − logEp1

f0
f1

1+ν
N Dχ2(p0, p1)

NCE x log x− (1 + x) log(1+x
2 ) implicit (1+ν)2

νN
DHM(p1,p0)

1−DHM(p1,p0)

IS-RevIS (1−
√
x)2 logEp0

f1
f0

− logEp1

f0
f1

(1+ν)2

νN

1−(1−DH2 (pd,pn))
2

(1−DH2 (pd,pn))2

461

where462

Dχ2(p1, p0) :=
( ∫ p2

1

p0

)
− 1 is the chi-squared divergence463

4technically, the formula was derived in [36, 3] assuming the classifier was parameterized as F (x;β) =
log p1(x;β)/νp0(x) but the proof seems to generalize to any well-defined parameterization F (x;β).
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DH2(p1, p0) := 1−
( ∫ √

p1p0
)
∈ [0, 1] is the squared Hellinger distance464

DHM(p1, p0) := 1−
∫ (

πp−1
1 + (1− π)p−1

0

)−1
= 1− 1

πEp1

πp0

(1−π)p1+πp0
∈ [0, 1]465

is the harmonic divergence with weight π ∈ [0, 1].466

Here, the weight π = P (Y = 0) = Tn

T = ν
1+ν .467

Proof of Theorem 2 Exponential error of binary NCE468

The estimation error of binary NCE is expressed in terms of the harmonic divergence469

MSE =
4

N

DHM(p1, p0)

1−DHM(p1, p0)
(24)

which is intractable for general exponential families. Instead, we can lower-bound the estimation470

error. To do so, we lower-bound the harmonic divergence using the inequality of means (harmonic vs.471

geometric)472

DHM(p1, p0) = 1−
∫

2p0p1
p0 + p1

≥ 1−
∫

√
p0p1 = DH2(p0, p1) (25)

and therefore473

MSELB =
4

N

DH2(p1, p0)

1−DH2(p1, p0)
. (26)

This lower bound is expressed in terms of the squared Hellinger distance, that is tractable for474

exponential families:475

DH2(p1, p0) := 1−
∫
x∈RD

√
p1p0dx (27)

= 1−
∫
x∈RD

1

Z(θ1)
1
2Z(θ0)

1
2

exp

Å
1

2
(θ1 + θ0)

⊤t(x)

ã
dx (28)

= 1−
Z( 12θ1 +

1
2θ0)

Z(θ1)
1
2Z(θ0)

1
2

(29)

= 1− exp

Å
logZ

Å
1

2
θ1 +

1

2
θ0

ã
− 1

2
logZ(θ1)−

1

2
logZ(θ0)

ã
. (30)

We now wish to lower bound MSELB, and therefore DH2(p1, p0), by an expression which is expo-476

nential in the parameter distance ∥θ1 − θ0∥. To do so, we note that for exponential families, the477

log-normalization is convex in the parameters. Here, we further assume strong convexity, so that478

logZ

Å
1

2
θ1 +

1

2
θ0

ã
≤ 1

2
logZ(θ1) +

1

2
logZ(θ0)−

1

8
M∥θ1 − θ0∥2 (31)

where M is the strong convexity constant. Plugging this back into the squared Hellinger distance, we479

obtain480

DH2(p1, p0) ≥ 1− exp

Å
− 1

8
M∥θ1 − θ0∥2

ã
(32)

so that the MSE481

MSE ≥ 4

N

DH2(p1, p0)

1−DH2(p1, p0)
≥ 4

N
exp

Å
1

8
M∥θ1 − θ0∥2

ã
− 1 (33)

grows exponentially with the euclidean distance between the parameters.482
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B Annealing limit, K → ∞483

We now consider annealing paths (pt)t∈[0,1] that interpolate between between the proposal p0 and484

the target p1.485

B.1 Estimation error486

We first show the optimality of the NCE loss within the family of Annealed Bregman Estimators, in487

the sense that it produces the smallest estimation error. We then study the estimation error of different488

annealed Bregman estimators in the annealing limit of a continuous path (K → ∞).489

Proof of Theorem 1 Optimality of the NCE loss and the estimation error in the annealing limit490

K → ∞491

• Optimality of the NCE loss492

Because the annealed Bregman estimator is built by adding independent estimators493 ÷logZ1 =

K−1∑
k=0

¤�
log

Ç
Z(k+1)/K

Zk/K

å
+ logZ0 . (34)

the total Mean Squared Error (MSE) is the sum of each MSEs for each estimator (indexed494

by k ∈ J0,K − 1K)495

MSE((ϕk)k∈J0,KK) =

K−1∑
k=0

MSEk(ϕk) (35)

where we highlighted the dependency on the classification losses identified by (ϕk)k∈J0,KK.496

The MSEs follow Eq. 24. It was shown by Meng and Wong [20] that for any of these MSEs,497

the optimal loss is identified by ϕk(x) = x log x− (1 + x) log(1+x
2 ) and is in fact the NCE498

loss [22]. Thus the sum of MSEs is minimized for the same loss.499

• Annealed Noise-Contrastive Estimation (NCE)500

We are interested in the estimation error (asymptotic MSE) obtained for the NCE loss. Based501

off table 1, it is written as502

MSE =
4K

N

K−1∑
k=0

DHM(pk/K , p(k+1)/K)

1−DHM(pk/K , p(k+1)/K)
. (36)

The estimation error of balanced (ν = 1) NCE-JS between two “close" distributions pt and503

pt+h, is504

MSE(pt, pt+h) ∝
DHM(pt, pt+h)

1−DHM(pt, pt+h)
(37)

The estimation error can be simplified using a Taylor expansion. To do so, we recall that505

DHM is an f-divergence generated by ϕ(x) = 1− x
π+(1−π)x [37, 38] (π = 1

2 here) and its506

expansion is therefore [39, Eq.7.64]507

DHM(pt, pt+h) =
1

2
h2∇2

tDHM(pt, pt+h) + o(h2) (38)

=
1

2
ϕ

′′
(1)h2I(t) + o(h2) =

1

4
h2I(t) + o(h2) . (39)

It follows that508

DHM(pt, pt+h)

1−DHM(pt, pt+h)
=

1

4
I(t)h2 + o(h2) . (40)

Summing these estimation errors along the path of distributions with h = 1/K,509

MSE =
4K

N

K−1∑
k=0

Å
1

4
I(t)

1

K2
+ o

Å
1

K2

ãã
(41)

=

Å
1

NK

K−1∑
k=0

I(t)

ã
+ o(1) ∼

K→∞

1

N

∫ 1

0

I(t)dt . (42)
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In the case of a parametric path p(x|θ(t))t∈[0,1], the proof is the same. Simply, the second-510

order term in the Taylor expansion of Eq. 39 is computed using the chain rule511

∇2
tMSE(pθ(t), pθ(t+h)) (43)

= θ̇(t)⊤∇2
θMSE(pθ(t), pθ(t+h))θ̇(t) + θ̈(t)⊤∇θMSE(pθ(t), pθ(t+h)) (44)

= θ̇(t)⊤∇2
θMSE(pθ(t), pθ(t+h))θ̇(t)

⊤ + 0 (45)

= θ̇(t)⊤I(θ(t))θ̇(t) (46)

• Annealed importance sampling (IS)512

Similarly, for the choice of the importance sampling base estimator,513

MSE =
2K

N

K−1∑
k=0

Dχ2(p(k+1)/K , pk/K) (47)

=
2K

N

K−1∑
k=0

Drevχ2(pk/K , p(k+1)/K) =
2K

N

K−1∑
k=0

Å
1

2
ϕ

′′
(1)I(t)

1

K2
+ o

Å
1

K2

ãã
(48)

=

Å
1

NK

K−1∑
k=0

I(t)

ã
+ o(1) ∼

K→∞

1

N

∫ 1

0

I(t)dt . (49)

given that ϕ(x) = − log(x) and therefore ϕ
′′
(1) = 1 for the reverse χ2 divergence.514

• Annealed reverse importance sampling (RevIS)515

Similarly, for the choice of the reverse importance sampling base estimator,516

MSE =
2K

N

K−1∑
k=0

Dχ2(pk/K , p(k+1)/K) (50)

=
2K

N

K−1∑
k=0

Å
1

2
ϕ

′′
(1)I(t)

1

K2
+ o

Å
1

K2

ãã
(51)

=

Å
1

NK

K−1∑
k=0

I(t)

ã
+ o(1) ∼

K→∞

1

N

∫ 1

0

I(t)dt . (52)

given that ϕ(x) = x log(x) and therefore ϕ
′′
(1) = 1 for the χ2 divergence.517

B.2 Examples of paths518

Geometric path The geometric path is defined in the space of unnormalized densities by519

ft(x) := p0(x)
1−tf1(x)

t = p0(x)
1−tp1(x)

tZt
1 ∝ p0(x)

1−tp1(x)
t (53)

so in the space of normalized densities, the path is520

pt :=
p0(x)

1−tp1(x)
t

Zt
(54)

where the normalization is521

Zt :=

∫
x∈Rd

p0(x)
1−tp1(x)

tdx = Ex∼p1

ïÅ
p0(x)

p1(x)

ãtò
= Ex∼p0

ïÅ
p1(x)

p0(x)

ã1−tò
. (55)

Arithmetic path The arithmetic path is defined in the space of unnormalized densities by522

ft(x) := (1− t)p0(x) + tf1(x) = (1− t)p0 + tZ1p1 (56)

∝ (1− t)

(1− t) + tZ1
p0 +

tZ1

(1− t) + tZ1
p1 (57)

so in the space of normalized densities, the path is actually a mixture between the target and the523

proposal, where the weight of the mixture is a nonlinear function of the target normalization524

pt := (1− w̃t)p0 + w̃tp1, w̃t =
tZ1

(1− t) + tZ1
. (58)

15



Optimal path We know (e.g. from Gelman and Meng [17, Eq. 49]) that the optimal path is525

pt(x) =
(
a(t)

»
p0(x) + b(t)

»
p1(x)

)2
(59)

where the coefficients a(t) and b(t)526

a(t) =
cos((2t− 1)αH)

2 cos(αH)
− sin((2t− 1)αH)

2 sin(αH)
(60)

b(t) =
cos((2t− 1)αH)

2 cos(αH)
+

sin((2t− 1)αH)

2 sin(αH)
(61)

are simple functions of the squared Hellinger distance DH2(p0, p1) between the proposal and the527

target 5528

αH = arctan

Å  DH2(p0, p1)

2−DH2(p0, p1)

ã
∈ [0,

π

4
] . (62)

The estimation error produced by that optimal path is [17, Eq. 48]529

MSE =
1

N

∫ 1

0

I(t)dt =
1

N
16α2

H . (63)

For two gaussians530

p0 := N (µ0,Σ0) (64)
p1 := N (µ1,Σ1) (65)

the squared Hellinger distance can be written in closed-form531

DH2(p0, p1) = 1− |Σ0|
1
4 |Σ1|

1
4

| 12Σ0 +
1
2Σ1|

1
2

exp

Å
− 1

8
(µ1 − µ0)

⊤(1
2
Σ0 +

1

2
Σ1

)−1
(µ1 − µ0)

ã
(66)

and plugs into the optimal path formula, which is also obtained in closed-form.532

B.3 Estimation error from taking different paths533

Proof of Theorem 3 Polynomial error of annealed NCE with the geometric path534

We next study the estimation error produced by the geometric path (Figure 1). In the annealing limit535

K → ∞, the MSE is written as536

MSE =
1

N

∫ 1

0

I(t)dt . (67)

We recall from Grosse et al. [18] that the geometric path is closed for distributions in the exponential537

family: all distributions along the path remain in the exponential family. Furthermore, their Fisher538

information can be written in terms of the terms parameters [18, Eq. 17]; this is based off a a result539

of exponential families from [40, Section 3.3]540

I(t) = θ̇(t)⊤I(θ(t))θ̇(t) = θ̇(t)⊤µ̇(t) (68)

where µ(t) are the generalized moments, defined as µ(t) = Ex∼pt(x)[t(x)] = ∇θ logZt(θ). It541

follows,542

MSE =
1

N

∫ 1

0

θ̇(t)⊤µ̇(t)dt . (69)

The geometric path is defined in parameter space by θt = tθ1 + (1− t)θ0, therefore543

MSE =
1

N
(θ1 − θ0)

⊤
∫ 1

0

µ̇(t)dt =
1

N
(θ1 − θ0)

⊤(µ1 − µ0) (70)

5In Gelman and Meng [17, Eq. 49], the Hellinger distance is defined such that it is in [0,
√
2]. We here

instead use the conventional definition of the squared Hellinger distance which is normalized so that it is in
[0, 1].
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as in [18, Eq. 17]. For exponential families, logZ(θ) is convex in θ. Here, we further assume strong544

convexity (with constant M ) and smoothness (with constant L) so that545

(θ1 − θ0)
⊤(µ1 − µ0) = (θ1 − θ0)

⊤(∇θ logZt(θ1)−∇θ logZt(θ0)) (71)

≤ 1

M
∥∇θ logZt(θ1)−∇θ logZt(θ0)∥2 ≤ L2

M
∥θ1 − θ0∥2 (72)

so that the MSE546

MSE ≤ L2

MN
∥θ1 − θ0∥2 (73)

is polynomial in the euclidean distance between the parameters.547

Proof of Theorem 4 Exponential error of annealed NCE with the arithmetic path and "vanilla"548

schedule549

We now study the estimation error produced by the arithmetic path with “vanilla" schedule (table 2,550

line 3). Similarly, we start with the formula of the estimation error of NCE in the limit of a continuous551

path552

MSE =
1

N

∫ 1

0

I(t)dt . (74)

where I(t) = Ex∼p(x,t)[(
d
dt log p(x, t))

2] is the Fisher information over the path, using time t as the553

parameter. The arithmetic path is a gaussian mixture (see table 2) so we will conveniently use the554

parametric form of the path to compute the Fisher information555

I(t) = ˙̃w⊤
t I(w̃t) ˙̃wt (75)

where the parameter here is the weight of the Gaussian mixture w̃t = tZ1/(tZ1 + 1− t). We will556

need to compute two quantites: the Fisher information to that mixture parameter (not the time), and557

the parameter speed ˙̃
tw.558

I(w̃t) := Ex∼pw̃t

ïÅ
∂ log pw̃t

∂w̃t
(x)

ã2ò
= Ex∼pw̃t

ïÅ
1

pw̃t(x)

∂pw̃t

∂w̃t
(x)

ã2ò
(76)

=

∫
x∈RD

(p1(x)− p0(x))
2

pw̃t(x)
dx =

∫
x∈RD

(p1(x)− p0(x))
2

(1− w̃t)p0(x) + w̃tp1(x)
dx (77)

≥
∫
x∈RD

(p1(x)− p0(x))
2

p0(x) + p1(x)
dx =

∫
p0(x)

(
1− p1(x)

p0(x)

)2
1 + p1(x)

p0(x)

= Dϕ(p1, p0) (78)

which is an f-divergence with generator ϕ(x) = (1 − x)2/(1 + x) that provides a t-independent559

lower bound. This will allow us to factor this quantity out of the integral defining the MSE, and560

simplify computations. We also have561

˙̃
tw :=

∂

∂t
w̃t =

1

t(1− t)
× σ

Å
log

tZ1

1− t

ã
×
Å
1− σ

Å
log

tZ1

1− t

ãã
(79)

=
1

t(1− t)
× tZ1

(1− t) + tZ1
× (1− t)

(1− t) + tZ1
=

Z1

((1− t) + tZ1)2
. (80)

where we choose to keep the dependency on t. The intuition is that integrating this quantity will yield562

a function of Z1, which will drive the MSE toward high values. We next show this rigorously and563

finally compute the estimation error.564

MSE =
1

N

∫ 1

0

I(t)dt =
1

N

∫ 1

0

˙̃w(t)I(w̃(t)) ˙̃w(t)dt (81)

≥ 1

N
×Dϕ(p1, p0)×

∫ 1

0

˙̃w(t)2dt =
1

N
×Dϕ(p1, p0)× Z2

1 ×
∫ 1

0

1

(t(Z1 − 1) + 1)4
dt

(82)

=
1

N
×Dϕ(p1, p0)× Z2

1 × Z2
1 + Z1 + 1

3Z3
1

=
1

3N
×Dϕ(p1, p0)× (Z−1

1 + 1 + Z1) . (83)

17



We would like to write Z1 in terms of the parameters. To do so, we now suppose the unnormalized565

target is in a simply unnormalized exponential family. Consequently,566

Z1 := exp(logZ(θ1)− logZ(θ0) + logZ(θ0)) (84)

≥ exp

Å
∇ logZ(θ0)(θ1 − θ0) +

M

2
∥θ1 − θ0∥2 + logZ(θ0)

ã
. (85)

using the strong convexity of the log-partition function. It follows that in the limit of parameter-567

distance ∥θ1 − θ0∥ → ∞, the MSE grows (at least) exponentially with the parameter-distance568

MSE = O

Å
1

3N
×Dϕ(p1, p0)× exp

Å
M

2
∥θ1 − θ0∥2

ãã
, ∥θ1 − θ0∥2 → ∞ (86)

Proof of Theorem 5 Polynomial error of annealed NCE with the arithmetic path and "oracle"569

schedule570

We now study the estimation error produced by the arithmetic path with "oracle" schedule (table 2,571

line 4). Similarly, we start with the formula of the estimation error of NCE annealed over a continuous572

path573

MSE =
1

N

∫ 1

0

I(t)dt . (87)

where I(t) = Ex∼p(x,t)[(
d
dt log p(x, t))

2] is the Fisher information over the path, using time t as the574

parameter. The arithmetic path is the gaussian mixture pt(x) = tp1(x) + (1− t)p0(x) (see table 2).575

The Fisher information is therefore576

I(t) := Ex∼pt

ïÅ
∂ log pt

∂t
(x)

ã2ò
= Ex∼pt

ïÅ
1

pt(x)

∂pt
∂t

(x)

ã2ò
(88)

=

∫
x∈RD

(p1(x)− p0(x))
2

pt(x)
dx =

∫
x∈RD

(p1(x)− p0(x))
2

(1− t)p0(x) + tp1(x)
dx (89)

≤
∫
x∈RD

p1(x)
2 + p0(x)

2

(1− t)p0(x) + tp1(x)
dx (90)

where we choose to keep the dependency on t in the bound.577

We briefly justify this choice. We had first tried a t-independent bound, which led to an upper bound578

of the MSE that was too loose. We share insight as to why: first, recognize that the fraction can be579

broken in two terms, each of them a chi-square divergence between an endpoint of the path (p0 or580

p1) and the mixture pt. Each of them admits a t-independent upper bound given by the chi-square581

divergence between the endpoints p0 and p1, using lemma 1. However, the chi-square divergence582

between two gaussians, for example, is exponential (not polynomial) in the natural parameters [39,583

eq 7.41]. In fact, plotting I(t) for a univariate gaussian model revealed that it took high values at the584

endpoints t = 0 and t = 1, and was near zero almost everywhere else in the interval t ∈ [0, 1], which585

again suggested that dropping the dependency on t was unreasonable.586

Now we can compute the estimation error, as587

MSE =
1

N

∫ 1

0

I(t)dt ≤ 1

N

∫
Rd

∫ 1

0

p1(x)
2 + p0(x)

2

(1− t)p0(x) + tp1(x)
dtdx =

1

N
(J1 + J2) . (91)

Let us try to solve one of these integrals, say J1.588

J1 =

∫
Rd

∫ 1

0

p1(x)
2

(1− t)p0(x) + tp1(x)
dtdx =

∫
Rd

p1(x)
2

p0(x)

Å∫ 1

0

1

1 + t(p1(x)
p0(x)

− 1)
dt

ã
dx (92)

=

∫
Rd

p1(x)
2

p0(x)

Å
1

p1

p0
− 1

log
p1
p0

ã
dx = 1 + Ep1

ï
1

1− p0

p1

log
p1
p0

− 1

ò
= 1 +Dϕ(p0, p1) . (93)

which we rewrote using an f-divergence defined by ϕ(x) = − log(x)
1−x − 1. Similarly, we obtain589

J2 =

∫
Rd

∫ 1

0

p0(x)
2

(1− t)p0(x) + tp1(x)
dtdx =

∫
Rd

p0(x)
2

p1(x)

Å∫ 1

0

1
p0(x)
p1(x)

+ t(1− p0(x)
p1(x)

)
dt

ã
dx (94)

=

∫
Rd

p0(x)
2

p1(x)

Å
1

p0

p1
− 1

log
p0
p1

ã
dx = 1 + Ep0

ï
1

1− p1

p0

log
p0
p1

− 1

ò
= 1 +Dϕ(p1, p0) . (95)
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Putting this together, we get590

MSE ≤ 1

N
(2 +Dϕ(p0, p1) +Dϕ(p1, p0)) . (96)

How does this divergence depend on the parameter-distance ∥θ1 − θ0∥? Does it bring down the591

dependency from exponential to something lower? We next analyze this:592

Dϕ(p0, p1) + 1 = Ep1

1

1− p0

p1

log
p1
p0

which looks like a Kullback-Leibler divergence, where the integrand is reweighted by 1

1− p0(x)

p1(x)

. Note593

that594 
1

1− p0(x)

p1(x)

≥ 1 p0(x) ≤ p1(x)

1

1− p0(x)

p1(x)

< 1 p0(x) > p1(x)
(97)

which motivates separating the integral over both domains595

1 +Dϕ(p0, p1) =

∫
{x∈RD|p0(x)≤p1(x)}

p1(x) log
p1(x)

p0(x)

1

1− p0(x)
p1(x)

(98)

+

∫
{x∈RD|p0(x)>p1(x)}

p1(x) log
p1(x)

p0(x)

1

1− p0(x)
p1(x)

(99)

≤
∫
{x∈RD|p0(x)≤p1(x)}

p1(x) +

∫
{x∈RD|p0(x)>p1(x)}

p1(x) log
p1(x)

p0(x)
(100)

≤ 1 +DKL(p1, p0) (101)
Hence we get596

MSE ≤ 1

N
× (2 +DKL(p0, p1) +DKL(p1, p0)) . (102)

We now suppose the proposal and target are distributions in an exponential family. The KL divergence597

between exponential distributions with parameters θ0 and θ1, is given by the Bregman divergence of598

the log-partition on the swapped parameters [30, Eq. 29]599

DKL(p0, p1) = DBregman
logZ (θ1,θ0) := logZ(θ1)− logZ(θ0)−∇ logZ(θ0)(θ1 − θ0) (103)

≤ L

2
∥θ1 − θ0∥2 (104)

Hence600

MSE ≤ 1

N
× (2 + L∥∥θ1 − θ0∥2) (105)

using the L-smoothness of the log-partition function logZ(θ).601

Discussion on the assumptions for theorems 2, 3, 4, 5 For these theorems, we have supposed that602

the target and proposal distributions are in an exponential family with a log parition that verifies603

M Id ≼ ∇2
θ logZ(θ) ≼ L Id . (106)

We now look at the validity of this assumption for a simple example: the univariate gaussian, which604

is in an exponential family. The canonical parameters are its mean and variance (µ, v). Written as an605

exponential family,606

p(x) := exp(⟨θ, t(x)⟩ − logZ(θ)) (107)
the natural parameters are θ = (µ/v,−1/(2v)), associated with the sufficient statistics t(x) =607

(x, x2) [30]. The log-partition function and its derivatives are608

logZ(θ) = − θ21
4θ2

− 1

2
log(−2θ2) (108)

∇ logZ(θ) = Ex∼p[t(x)] =

Å
− θ1
2θ2

,− 1

2θ2
+

θ21
4θ22

ã
(109)

∇2 logZ(θ) = Varx∼p[t(x)] =
1

2θ2

Ç
−1 θ1

θ2
θ1
θ2

1
θ2

− 1
2
θ2
1

θ2

å
=

Å
v 2µv

2µv 2v2 − µ2

ã
(110)
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When the mean is zero, the eigenvalues of the hessian are in fact the diagonal values (v, 2v2), and609

they are bounded if and only if the variance v is bounded.610

Proof of Theorem 6 Constant error of annealed NCE with the arithmetic path and “oracle-trig"611

schedule612

We now study the estimation error produced by the arithmetic path with “oracle-trig" schedule613

(table 2, line 5). We write the optimal path of Eq. 59 in the limit where the distributions do not614

overlap: p0(x)p1(x) → 0 pointwise and is bounded by an integrable function. In that limit, many615

quantities involved in the optimal distribution simplify616

DH2(p0, p1) = 1−
∫

√
p0p1 → 1 (111)

αH = arctan

Å  DH2(p0, p1)

2−DH2(p0, p1)

ã
→ π

4
(112)

a(t) =
cos((2t− 1)αH)

2 cos(αH)
− sin((2t− 1)αH)

2 sin(αH)
→ cos

(πt
2

)
(113)

b(t) =
cos((2t− 1)αH)

2 cos(αH)
+

sin((2t− 1)αH)

2 sin(αH)
→ sin

(πt
2

)
. (114)

All these limits are pointwise: for the first line, the dominated convergence theorem is used to justify617

the pointwise convergence of the integral
∫
p0p1 → 0 (L2 convergence of

√
p0p1) and consequently618

the pointwise convergence of the integral
∫ √

p0p1 → 0 (L1 convergence of
√
p0p1). This leads to619

the following simplification of the optimal path620

pt(x) =
(
a(t)

»
p0(x) + b(t)

»
p1(x)

)2
= a(t)2p0(x) + b(t)2p1(x) + 2a(t)b(t)

√
p0p1 (115)

→ cos2
(πt
2

)
p0(x) + sin2

(πt
2

)
p1(x) (116)

which is the arithmetic path with "oracle-trig" schedule defined in table 2 (line 5). The trigonometric621

weights evolve slowly at the end points t = 0 and t = 1. The estimation error in Eq. 63 produced by622

this path converges to623

MSE =
1

N

∫ 1

0

I(t)dt =
1

N
16α2

H ∼ 1

N
16

π2

8
=

1

N
2π2 . (117)

which is a constant function of the parameter-distance.624
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C Useful Lemma625

Lemma 1 Chi-square divergence of between a density and a mixture We wish to upper bound the626

chi-square divergence between a distribution p(x) and a mixture wp(x) + (1 − w)q(x), where627

0 < w < 1.628

Dχ2(p, wp+ (1− w)q) =

∫
x∈RD

p(x)2

wp(x) + (1− w)q(x)
dx− 1 (118)

=

∫
{x∈RD|p(x)<q(x)}

p(x)2

wp(x) + (1− w)q(x)
dx (119)

+

∫
{x∈RD|p(x)>q(x)}

p(x)2

wp(x) + (1− w)q(x)
dx− 1 (120)

≤
∫
{x∈RD|p(x)<q(x)}

p(x)2

wp(x) + (1− w)p(x)
dx (121)

+

∫
{x∈RD|p(x)>q(x)}

p(x)2

wq(x) + (1− w)q(x)
dx− 1 (122)

≤
∫
x∈RD

p(x)dx+

∫
x∈RD

p(x)2

q(x)
dx− 1 (123)

=

∫
x∈RD

p(x)2

q(x)
dx = Dχ2(p, q) + 1 (124)
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