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ABSTRACT

Diffusion models optimized via variational inference (VI) have emerged as a
promising tool for generating samples from unnormalized target densities. These
models create samples by simulating a stochastic differential equation, starting
from a simple, tractable prior, typically a Gaussian distribution. However, when
the support of this prior differs greatly from that of the target distribution, diffu-
sion models often struggle to explore effectively or suffer from large discretiza-
tion errors. Moreover, learning the prior distribution can lead to mode-collapse,
exacerbated by the mode-seeking nature of reverse Kullback-Leibler divergence
commonly used in VI. To address these challenges, we propose end-to-end learn-
able Gaussian mixture priors (GMPs). GMPs offer improved control over explo-
ration, adaptability to target support, and increased expressiveness to counteract
mode collapse. We further leverage the structure of mixture models by proposing a
strategy to iteratively refine the model through the addition of mixture components
during training. Our experimental results demonstrate significant performance im-
provements across a diverse range of real-world and synthetic benchmark prob-
lems when using GMPs without requiring additional target evaluations.

1 INTRODUCTION

Sampling methods are designed to address the challenge of generating approximate samples or esti-
mating the intractable normalization constant Z for a probability density π on Rd of the form

π(x) =
ρ(x)

Z
, Z =

∫

Rd

ρ(x)dx, (1)

where ρ : Rd → (0,∞) can be evaluated pointwise. This formulation has broad applications in
fields such as Bayesian statistics, the natural sciences (Liu & Liu, 2001; Stoltz et al., 2010; Frenkel
& Smit, 2023).

Monte Carlo (MC) methods (Hammersley, 2013), Annealed Importance Sampling (AIS) (Neal,
2001), and their Sequential Monte Carlo (SMC) extensions (Del Moral et al., 2006; Arbel et al.,
2021; Matthews et al., 2022; Midgley et al., 2022) have long been regarded as the gold standard
for tackling complex sampling problems. An alternative approach is variational inference (VI) (Blei
et al., 2017), which approximates an intractable target distribution by parameterizing a family of
tractable distributions. Recently, there has been growing interest in diffusion models (Zhang &
Chen, 2021; Berner et al., 2022; Richter et al., 2023; Vargas et al., 2023a;b), which employ stochas-
tic processes to transport samples from a simple, tractable prior distribution to the target distribution.
While diffusion models have shown great success in generative modeling (Ho et al., 2020; Song
et al., 2020), their application to sampling tasks introduces unique challenges.

We identify these challenges as follows (C1–C3): Unlike generative modeling, where the support
of the target distribution is often known, in sampling tasks, the target’s support is usually unknown.
This makes it difficult to set the prior appropriately and requires the model to explore the relevant
regions of the space—an exploration that becomes exponentially harder as dimensionality increases
(C1). Additionally, large discrepancies between the support of the prior and the target distribution
can lead to highly non-linear dynamics, necessitating many diffusion steps to mitigate discretization
errors (C2). Finally, while joint optimization of the prior and diffusion process is possible, using
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C1: Lack of exploration capabilities. C2: Non-linear dynamics requires many diffusion steps.

C3: Mode collapse due to reverse KL minimization. Learned Gaussian mixture priors to address C1-C3.

π π

π π

Figure 1: Illustration of challenges (C1-C3) associated with diffusion-based sampling methods and how
learned Gaussian mixture priors address them (bottom right). Here, π denotes the target distribution.

simple priors like Gaussians can result in mode collapse due to the mode-seeking behavior of the re-
verse Kullback-Leibler (KL) divergence commonly used in VI (C3). These challenges are illustrated
in Figure 1.

Outline. In Section 3, we present an overview of diffusion-based sampling methods within the
framework of variational inference. Next, we discuss the necessary adaptations for supporting the
learning of arbitrary prior distributions, illustrated through specific examples of diffusion models
(Section 4). We then provide a rationale for our choice of Gaussian Mixture Priors (GMPs) and
introduce a novel training scheme designed to iteratively refine diffusion models during training
(Section 5). Finally, in Section 6, we assess our method through experiments on a range of real-
world and synthetic benchmark problems, demonstrating consistent improvements in performance.

2 RELATED WORK

Sampling and Variational Inference. Numerous works have studied the problem of sampling from
unnormalized densities to estimate the partition function Z, including Monte Carlo (MC) methods
such as Markov Chain Monte Carlo (MCMC) (Kass et al., 1998) and Sequential Importance Sam-
pling (Liu et al., 2001). Seminal works include Annealed Importance Sampling (Neal, 2001) and
its Sequential Monte Carlo extensions (Del Moral et al., 2006; Arbel et al., 2021; Wu et al., 2020;
Matthews et al., 2022; Midgley et al., 2022). Another line of work approaches the sampling problem
by utilizing tools from optimization to fit a parametric family of distributions to the target density π,
known as Variational Inference (VI) (Blei et al., 2017). To that end, one typically uses the reverse
Kullback-Leibler divergence, although other discrepancies have been studied (Li & Turner, 2016;
Midgley et al., 2022; Dieng et al., 2017; Richter et al., 2020; Wan et al., 2020; Naesseth et al., 2020).

Diffusion-based Sampling Methods. Recently, there has been growing interest in combining
Monte Carlo methods with variational techniques by constructing a sequence of variational dis-
tributions through the parameterization of Markov chains (Naesseth et al., 2018; Geffner & Domke,
2021; Thin et al., 2021; Zhang et al., 2021; Chen et al., 2024). In the limit of infinitely many
steps, these Markov chains converge to stochastic differential equations (SDEs) (Särkkä & Solin,
2019), which has led to further research on diffusion-based models for sampling, particularly in
light of advances in generative modeling (Ho et al., 2020; Song et al., 2020). One line of work con-
sidered parameterized drift functions to improve annealed Langevin diffusions in the overdamped
(Doucet et al., 2022a) or underdamped (Geffner & Domke, 2022) regime. Another line of work casts
diffusion-based sampling as a stochastic optimal control problem (Dai Pra, 1991) including denois-
ing diffusion models (Berner et al., 2022; Vargas et al., 2023a), and Follmer sampling (Föllmer,
2005; Zhang & Chen, 2021; Vargas et al., 2023b). A unifying view was later provided by Vargas
et al. (2024); Richter et al. (2023). Further extensions to diffusion-based sampling methods have
been proposed such as improved learning objectives (Zhang et al., 2023; Akhound-Sadegh et al.,
2024) or combinations with sequential importance sampling (Phillips et al., 2024). Another study
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leverages physics-informed neural networks (PINNs, (Raissi et al., 2019)) to learn the Fokker-Planck
equation governing the density evolution of the diffusion process (Sun et al., 2024).

3 PRELIMINARIES

In this section, we offer a concise overview of diffusion models within the context of variational
inference. Our discussion draws primarily from the works of Richter et al. (2023); Vargas et al.
(2024). While these studies emphasize the continuous-time perspective, we adopt an approach that
largely emphasizes discrete time, aiming to make the topic more accessible to readers without a
background in stochastic calculus.

3.1 CONTROLLED DIFFUSIONS, DISCRETIZATION, AND COUPLINGS

We consider two Rd-valued stochastic processes on the time-interval [0, T ]: X⃗ starts from a prior
distribution p0 and runs forward in time whereas ⃗X starts from the target distribution pT = π and
runs backward in time. These processes are governed by the stochastic differential equations (SDEs)
given by controlled diffusions, that is,

dXt =
[
f(Xt, t) + σuθ(Xt, t)

]
dt+

√
2σdBt, X0 ∼ p0, (2a)

dXt = [f(Xt, t)− σvγ(Xt, t)] dt+
√
2σdBt, XT ∼ pT = π, (2b)

with drift, and parameterized control functions f, uθ, vγ : Rd × [0, T ]→ Rd, respectively. Further,
(Bt)t∈[0,T ] is a d-dimensional Brownian motion and σ ∈ R+ a diffusion coefficient. For integration,
we consider the Euler-Maruyama (EM) method with constant discretization step size δt ≥ 0 such
that N = T/δt is an integer. To simplify notation, we write xn, instead of xnδt. Integrating Eq. 2a
yields

xn+1 = xn +
[
f(xn, n) + σuθ(xn, n)

]
δt+ σ

√
2δtϵn, x0 ∼ p0, (3)

where ϵn ∼ N (0, I). The EM discretizations of X⃗ and ⃗X admit the following Markov Processes

Pθ(x0:N ) = p0(x0)

N∏

n=1

F θ
n(xn|xn−1), and (4)

Qγ(x0:N ) = pT (xN )

N∏

n=1

Bγ
n−1(xn−1|xn), (5)

in a sense that Pθ and Qγ converge to the law of X⃗ and ⃗X, respectively, as δt→ 0. Here,

F θ
n(xn+1|xn) = N

(
xn+1|xn +

[
f(xn, n) + σuθ(xn, n)

]
δt, 2σ2δtI

)
, and (6)

Bγ
n−1(xn−1|xn) = N

(
xn−1|xn − [f(xn, n)− σvγ(xn, n)] δt, 2σ

2δtI
)
. (7)

The goal of diffusion-based sampling methods is to obtain a coupling/bridge between p0 and pT = π
by learning control functions uθ and vγ such that

Pθ(x0:N ) = Qγ(x0:N ). (8)

Assuming Eq. 8 holds, we have
∫
Pθ(x0:N )dx0:N−1 =

∫
Qγ(x0:N )dx0:N−1 = π(xN ), meaning

that we can sample x0 ∼ p0 and integrate the ‘forward’ diffusion process X⃗ to obtain samples from
π. In contrast, the ‘backward’ process ⃗X is not needed for generating samples from π, but is required
for estimating the normalization constant Z, and obtaining a tractable optimization objective which
is discussed in the next section. Lastly, we want to highlight that this formulation of diffusion-based
sampling is very generic and that most instances of samplers, such as denoising diffusion samplers
(Berner et al., 2022; Vargas et al., 2023a), can be recovered by choosing the drift and/or control
functions in Eq. 2 appropriately. We refer the interested reader to Richter et al. (2023) for further
details.
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Pθ(x0:N ) = p0(x0)
∏N

n=1 F
θ
n(xn|xn−1)

Qγ(x0:N ) = π(xN )
∏N

n=1 B
γ
n−1(xn−1|xn)

minθ,γ DKL

(
Pθ∥Qγ

)
p0

π

p0

π

Figure 2: Diffusion-Based Sampling: The goal is to align two parameterized Markov Processes Pθ and Qγ .
The former starts at the prior p0 and runs forward in time while the latter starts at the target π and runs backward.

3.2 VARIATIONAL INFERENCE FOR DIFFUSION MODELS

Variational Inference (Blei et al., 2017) uses a parameterized tractable distribution pθ and minimizes
a divergence to the target distribution π with respect to its parameters θ, typically the Kullback-
Leibler divergence, i.e.,

DKL

(
pθ(x)∥π(x)

)
= Ex∼pθ

[
log

pθ(x)

ρ(x)

]
+ logZ = −ELBO(θ) + logZ, (9)

It directly follows that minimizing DKL, or equivalently, maximizing the ELBO1 does not require
access to the true normalization constant Z as it is independent of θ. Moreover, using the fact that
DKL ≥ 0, it is straightforward to see that ELBO(θ) ≤ logZ.

In the case of diffusion models, we are interested in learning the parameters θ, γ of the control
functions uθ, vγ . Directly minimizing DKL between pθT (xN ) =

∫
Pθ(x0:N )dx0:N−1 and π is

challenging. However, the data-processing inequality (Cover, 1999), that is,

DKL

(
pθT (xT )∥π(xT )

)
≤ DKL

(
Pθ(x0:N )∥Qγ(x0:N )

)
, (10)

provides an auxiliary, tractable, objective for optimizing (θ, γ), that is,

DKL

(
Pθ(x0:N )∥Qγ(x0:N )

)
= Ex0:N∼Pθ

[
log

p0(x0)

ρ(xN )
+

N∑

n=1

log
F θ
n(xn|xn−1)

Bγ
n−1(xn−1|xn)

]

︸ ︷︷ ︸
−L(θ,γ)

+ logZ,

(11)
where L(θ, γ) is often referred to as augmented or extended evidence lower bound, as it has ad-
ditional looseness due to the latent variables x0:N−1 (Geffner & Domke, 2021). Note that the VI
setting for optimizing diffusion models is different from techniques used when samples from the tar-
get, i.e., xN ∼ π are available. The former requires simulations x0:N ∼ Pθ for optimization, while
the latter minimizes the forward KL DKL

(
Qγ(x0:N )∥Pθ(x0:N )

)
, allowing for simulation-free op-

timization techniques such as denoising score-matching (Vincent, 2011; Song & Ermon, 2019) or
bridge matching (Liu et al., 2022; Shi et al., 2024). Moreover, recent works consider minimizing
other loss functions that the KL divergence in Eq. 11. A recent overview of possible alternatives can
be found in Domingo-Enrich (2024). For further details, the interested reader is referred to Berner
et al. (2022); Vargas et al. (2024).

4 END-TO-END LEARNING OF PRIOR DISTRIBUTIONS

We aim to learn a parametric prior pϕ0 with parameters ϕ end-to-end when maximizing the extended
ELBO L (Eq. 11). To that end, we consider two requirements:

1Evidence Lower Bound. The terminology stems from Bayesian inference, where logZ is equivalent to the
evidence of the data.
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1. We can compute gradients of L with respect to ϕ.

2. There exists a ϕ and γ such that pϕ0 (x0) =
∫
Qγ(x0:N )dx1:N .

For the former, we assume that pϕ0 (x0) is amendable to the reparameterization trick2, i.e., we can
express a sample x0 from pϕ0 as a deterministic function of a random variable ξ with some fixed
distribution and the parameters ϕ, i.e., x0 = g(ξ, ϕ). We can then obtain gradients of

L(θ, γ, ϕ) = Ex0:N∼Pθ,ϕ

[
log

ρ(xN )

pϕ0 (x0)
+

N∑

n=1

log
Bγ

n−1(xn−1|xn)

F θ
n(xn|xn−1)

]
, (12)

with Pθ,ϕ(x0:N ) = pϕ0 (x0)
∏N

n=1 F
θ
n(xn|xn−1), with respect to ϕ, by differentiating through the

stochastic process

xn+1 = xn +
[
f(xn, n) + σuθ(xn, n)

]
δt+ σ

√
2δtϵn, x0 = g(ξ, ϕ). (13)

The second requirement is necessary to obtain a coupling between pϕ0 and π, i.e., to satisfy Eq. 8.
This requirement is trivially fulfilled for a controlled process ⃗X, where we can learn a vγ such that
Qγ transports π back to pϕ0 . However, this requirement can be more intricate for other processes and
will be discussed in the next sections. In particular, we look at two instances of Eq. 2, namely de-
noising diffusion models (Berner et al., 2022; Vargas et al., 2023a) and annealed Langevin diffusions
(Doucet et al., 2022a; Vargas et al., 2024).

4.1 DENOISING DIFFUSION MODELS

Denoising diffusion models use an Ornstein Uhlenbeck (OU) process3 for ⃗X, that is,

dXt = −σ2Xtdt+
√
2σdBt, XT ∼ pT = π, (14)

and, hence, a special case of Eq. 2 with f(Xt, t) = −σ2Xt and vγ = 0. Assuming a sufficiently
large σ (or T ), it holds that p0(x0) =

∫
Q(x0:N )dx1:N ≈ N (0, I). In other words, the OU process

transports the target π to a Gaussian distribution. We extend denoising diffusion models to support
learning arbitrary priors based on Proposition 1, whose proof can be found in Appendix A.1.

Proposition 1. Let ⃗X be a (uncontrolled) stochastic process as defined in Eq. 2 with vγ = 0,
starting from pT = π. For a time-independent drift, i.e., f(x, t) = f(x), the stationary distribution
ps(x) for which ∂pt(xt)

∂t = 0 holds, is given by

ps(x) =
1

Zs
exp

(
− 1

σ2

∫
f(x)dx

)
, (15)

with normalization constant Zs.

Rewriting Eq. 15, yields f = σ2∇x log ps, resulting in the SDE

dXt = σ2∇x log ps(Xt)dt+
√
2σdBt, XT ∼ pT = π, (16)

with stationary distribution ps(x). Note that denoising diffusion models leverage this result by
setting ps = N (0, I), resulting in the OU process (Eq. 14) since ∇x log ps(x) = −x. Hence, we
can adapt existing denoising diffusion sampling methods (Vargas et al., 2023a; Berner et al., 2022)
to arbitrary priors pϕ using

dXt = σ2∇x log p
ϕ(Xt)dt+

√
2σdBt, XT ∼ pT = π. (17)

However, contrary to the OU process, where the relaxation time, i.e., the time scale over which
the system loses memory of its initial conditions and approaches its stationary distribution, can be
estimated analytically, it is unknown for general pϕ and is only guaranteed as T → ∞ (Roberts &
Tweedie, 1996).

2Note that this requirement is not necessary when minimizing loss function where the expectation is not
computed with respect to samples from Pθ . For further details see e.g. (Richter et al., 2023).

3Often referred to as Variance Preserving (VP) SDE, a term coined by Song et al. (2020).
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We address this by additionally learning T = Nδt by treating the discretization step size δt as a
learnable parameter. As such, the parameters ϕ of the stationary distribution, i.e., the prior distribu-
tion and the discretization step size δt are optimized jointly by maximizing the extended ELBO

L(θ, ϕ, δt) = Ex0:N∼Pθ,ϕ,δt

[
log

ρ(xN )

pϕ0 (x0)
+

N∑

n=1

log
Bϕ,δt

n−1(xn−1|xn)

F θ,ϕ,δt
n (xn|xn−1)

]
, (18)

with additional parameters ϕ, δt. Proposition 1 thus suggests, that for any ϕ, there exists a δt such
that pϕ0 (x0) =

∫
Qϕ,δt(x0:N )dx1:N as N →∞. Empirically, we observe substantial improvements

for finite values of N , as demonstrated in Section 6

4.2 ANNEALED LANGEVIN DIFFUSIONS

Annealed Langevin Diffusions use an annealed version of the (overdamped) Langevin diffusion
equation by constructing a sequence of distributions (πt)t∈[0,T ] that anneal smoothly from the prior
distribution π0 = p0 to the target distribution πT = π. One typically uses the geometric average,
that is, πt(x) = p0(x)

βtπ(x)1−βt , for βt monotonically increasing in t with β0 = 0 and βT = 1.
When learning the prior, we can use a parametric annealing, i.e., πϕ

t (x) = pϕ0 (x)
βtπ(x)1−βt . The

corresponding stochastic processes X⃗ and ⃗X can be described as an instance of Eq. 2 given by

dXt =
[
σ2∇x log π

ϕ
t (Xt) + σuθ(Xt, t)

]
dt+

√
2σdBt, X0 ∼ p0 = pϕ, (19)

dXt =
[
σ2∇x log π

ϕ
t (Xt)− σvγ(Xt, t)

]
dt+

√
2σdBt, XT ∼ pT = π, (20)

when setting f = ∇x log π
ϕ
t . Note that∇x log π

ϕ
t can be computed without knowing the normaliza-

tion constant Z of π. Different variants can be derived from using either controlled or uncontrolled
processes: Monte Carlo Diffusions (MCD) (Doucet et al., 2022b) uses a controlled process ⃗X but
uncontrolled X⃗ and Controlled Monte Carlo Diffusions (CMCD) (Vargas et al., 2024) control both
processes. Since both methods use controlled backward processes ⃗X, the second requirement is sat-
isfied. Finally, while this work focuses on overdamped approaches, we want to highlight that there
exist methods that are based on the underdamped Langevin equation (Geffner & Domke, 2021;
Geffner & Domke, 2022), however, the idea of learning a prior end-to-end straightforwardly trans-
fers to these approaches.

5 GAUSSIAN MIXTURE PRIORS AND ITERATIVE MODEL REFINEMENT

In this work, we focus on end-to-end learned Gaussian mixture priors (GMPs), that is,

pϕ0 (x0) =

K∑

k=1

αkp
ϕk

0 (x0) =

K∑

k=1

αkN (x0|µk,Σk), αk ≥ 0,

K∑

k=1

αk = 1, (21)

with mixture weights αk, Gaussian components pϕk

0 (x0) = N (x0|µk,Σk) and parameters ϕ =⋃K
k=1{αk, ϕk} with ϕk = {µk,Σk}. Having established how the prior is learned in Section 4, we

discuss desirable properties to address the challenges outlined in Section 1 and how GMPs address
them.

A key objective is to improve the exploration capabilities of diffusion-based sampling methods to
address C1. GMPs allow control over exploration by adjusting the initial variance of each Gaussian
component. Additionally, the means of the Gaussian components can be initialized to incorporate
prior knowledge of the target density, even if this knowledge is limited to a rough estimate of the
target’s support. This aspect will be elaborated on later in this section.

Another important consideration is to adjust the support of the prior such that it matches the target
density, which reduces the complexity of the dynamics and, in turn, minimizes the number of dif-
fusion steps required. GMPs demonstrate rapid adaptation capabilities, partially through their small
parameter count, making them particularly suitable for addressing C2.

To prevent the model from focusing only on a subset of the target support (C3), which may occur
due to the optimization of the mode-seeking reverse KL divergence, we require a more expressive

6
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distribution than a single Gaussian prior. GMPs provide a solution by combining multiple Gaussian
components, each of which can focus on different subsets of the target support.

Finally, efficient evaluation of pϕ0 is crucial, as it must be performed at each discretization step of
the stochastic differential equation (SDE) that governs the diffusion process. This requirement is
satisfied by GMPs, particularly when using diagonal covariance matrices.

Iterative Model Refinement. Gradually increasing the model complexity during the optimization
process has demonstrated promising results in previous studies (Guo et al., 2016; Miller et al., 2017;
Arenz et al., 2018; Cranko & Nock, 2019), and is directly applicable to our approach. We begin with
an initial prior distribution pϕ0 = pϕ1

0 with parameters ϕ1. These parameters are optimized using Eq.
48. After a predefined criterion is met, such as a fixed number of iterations, a second distribution
pϕ2

0 is added, forming a new prior: pϕ0 = α1p
ϕ1

0 + α2p
ϕ2

0 , with α ∈ R+ and α1 + α2 = 1. This
process is repeated, resulting in a mixture model pϕ0 (x) =

∑K
k=1 αkp

ϕk

0 (x).

We identify the benefits of this iterative scheme as twofold: First, it can simplify optimization by
focusing on learning a subset of parameters ϕk at a time, rather than jointly optimizing all ϕk (Bengio
et al., 2009). Second, it enables the initialization of newly added components based on a partially
trained model, potentially preventing mixture components to focus on similar parts of the target
support. For GMPs, for instance, the mean of a new component µnew can be placed in a promising
region, potentially informed by prior knowledge of the task or by running a π-invariant Markov
chain to obtain a set of promising samples. More generally, consider a set of candidate samples
C = {xi}Ci=1. We propose initializing the mean of a new component µnew as follows:

µnew = argmax
x0∈C

Ex1:N∼Pθ,ϕ,δt

[
log

ρ(xN )

pϕ0 (x0)
+

N∑

n=1

log
Bγ,ϕ,δt

n−1 (xn−1|xn)

F θ,ϕ,δt
n (xn|xn−1)

]
, (22)

where pϕ0 is the current model. This heuristic balances exploration and exploitation by favoring
samples with high target likelihood and low prior likelihood, while also accounting for the diffusion
process.

6 NUMERICAL EVALUATION

METHOD (X) f uθ vγ

MCD ∇ log πϕ
t

CMCD3 ∇ log πϕ
t

DIS ∇ log pϕ

DBS ANY

Table 1: Diffusion-based sampling
methods considered in this work based
on Eq. 2. Crosses indicate that the con-
trol is set to zero.

In this section, we test the impact of our proposed end-to-
end learning scheme for prior distributions. Specifically, we
consider three distinct settings: First, we evaluate these meth-
ods with a Gaussian prior that is fixed during training. Sec-
ond and third, we consider learned Gaussian (GP) and Gaus-
sian mixture priors (GMP). We indicate these different settings
as X, X-GP, and X-GMP, respectively, where X is the corre-
sponding acronym of the diffusion-based sampling methods.
We consider four different methods: Time-Reversed Diffusion
Sampler (DIS) (Berner et al., 2022), Monte Carlo Diffusions
(MCD) (Doucet et al., 2022b), Controlled Monte Carlo Diffu-
sions (CMCD) (Vargas et al., 2024) and Diffusion Bridge Sampler (DBS) (Richter et al., 2023). A
summary is shown in Table 1. It is worth noting that we do not separately consider the Denoising
Diffusion Sampler (DDS) (Vargas et al., 2023a), as it can be viewed as a special case of DIS. For
reference, we consider Gaussian (GVI) and Gaussian mixture (GMVI) mean-field approximations
(Wainwright & Jordan, 2008), both of which are special cases of the aforementioned methods for
N = 0 diffusion steps with K = 1, K ≥ 1, respectively (cf. Appendix B). Lastly, we consider
three competing state-of-the-art methods, namely, Sequential Monte Carlo (SMC) (Del Moral et al.,
2006), Continual Repeated Annealed Flow Transport (CRAFT) (Matthews et al., 2022), and Flow
Annealed Importance Sampling Bootstrap (FAB) (Midgley et al., 2022).

For evaluation, we consider the effective sample size (ESS) and the marginal or extended evidence
lower bound as performance criteria. Both are denoted as ‘ELBO’ for convenience. Next, if the
ground truth normalization constant Z is available, we use an importance-weighted estimate Ẑ to

3Vargas et al. (2024) use the same in control in X⃗ and ⃗X by leveraging Nelson’s relation (Nelson, 2020).
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compute the estimation error ∆ logZ = | logZ − log Ẑ|. Additionally, if samples from the target π
are available, we compute the Sinkhorn distanceW2

γ (Cuturi, 2013).

To ensure a fair comparison, all experiments are conducted under identical settings. Our evaluation
methodology adheres to the protocol by Blessing et al. (2024). For a comprehensive overview of
the experimental setup see Appendix C. Moreover, a comprehensive set of ablation studies and
additional experiments, are provided in Appendix D.

Funnel (d = 10)

Method ELBO ↑ ∆ logZ ↓ ESS ↑ W2
γ ↓

GVI −1.841±0.003 0.691±0.070 0.092±0.006 178.007±0.164

GMVI −0.212±0.001 0.056±0.004 0.744±0.018 102.826±0.109

MCD −0.721±0.003 0.201±0.017 0.207±0.012 164.882±0.363

MCD-GP −0.724±0.003 0.173±0.046 0.206±0.026 164.967±0.334

MCD-GMP −0.059±0.002 0.014±0.001 0.922±0.012 100.174±0.174

CMCD −0.210±0.002 0.020±0.006 0.588±0.013 104.652±0.593

CMCD-GP −0.211±0.002 0.023±0.003 0.567±0.023 104.644±0.710

CMCD-GMP −0.027±0.001 0.005±0.000 0.950±0.004 102.027±0.200

DIS −0.286±0.002 0.041±0.008 0.483±0.025 107.458±0.670

DIS-GP −0.296±0.002 0.047±0.003 0.498±0.021 107.458±0.826

DIS-GMP −0.058±0.002 0.019±0.002 0.929±0.017 100.093±0.028

DBS −0.180±0.002 0.019±0.005 0.600±0.014 102.964±0.442

DBS-GP −0.187±0.003 0.021±0.003 0.603±0.014 102.653±0.586

DBS-GMP −0.047±0.002 0.012±0.002 0.949±0.008 100.230±0.088

SMC −0.242±0.047 0.187±0.054 - 149.353±2.973

CRAFT −0.027±0.060 0.091±0.018 - 134.335±0.663

FAB −0.014±0.003 0.001±0.000 - 153.894±3.916

DIS-GP: K = 1, N = 128 DIS-GMP: K = 10, N = 128

GVI: K = 1, N = 0 GMVI: K = 10, N = 0

K: Num. mixture components N : Num. diffusion steps

Figure 3: Left side: Results for Funnel target, averaged across four seeds. Evaluation criteria include evidence
lower bound ELBO, importance-weighted errors for estimating the log-normalizing constant ∆logZ, effective
sample size ESS, Sinkhorn distance Wγ

2 . The best overall results are highlighted in bold, with category-specific
best results underlined. Arrows (↑, ↓) indicate whether higher or lower values are preferable, respectively. Blue
and green shading indicate that the method uses learned Gaussian (GP) and Gaussian mixture priors (GMP),
respectively. Red shading indicate competing state-of-the-art methods. Note that ESS cannot be computed due
to the use of resampling schemes. Right side: Visualization of the first two dimensions of the Funnel target.
Colored ellipses and circles denote standard deviations and means of the Gaussian components, respectively.
Red dots illustrate samples of the model.

6.1 BENCHMARK PROBLEMS

We evaluate the different methods on various real-world and synthetic target densities.

Real-World Densities. We consider six real-world target densities: Four Bayesian inference tasks,
where inference is performed over the parameters of a logistic regression model, namely Credit
(d = 25), Cancer (d = 31), Ionosphere (d = 35), and Sonar (d = 61). Moreover, Seeds (d = 26)
and Brownian (d = 32), where the goal is to perform inference over the parameters of a random
effect regression model, and the time discretization of a Brownian motion, respectively. For these
densities, we do not have access to the ground truth normalizer Z or samples from π preventing us
from computing errors for log normalization estimation ∆ logZ and Sinkhorn distances W2

γ . The
resulting ELBO values are presented in Table 2.

Synthetic Densities. The Funnel density was introduced by Neal (2003) as has a shape that resem-
bles a funnel, where one part is tight and highly concentrated, while the other is spread out over a
wide region, making it challenging for sampling algorithms to explore the distribution effectively.
Next, we consider the Fashion target which uses NICE (Dinh et al., 2014) to train a normalizing flow
on the high-dimensional d = 28 × 28 = 784 MNIST Fashion dataset. A recent study by Blessing
et al. (2024) showed that current state-of-the-art methods were not able to generate samples with
high quality from multiple modes.

6.2 RESULTS

Impact of Learned Gaussian (GP) and Gaussian Mixture (GMP) Priors. We evaluated the
performance of our proposed methods on both real-world tasks and the Funnel density, employing
N = 128 diffusion steps across all methods and K = 10 mixture components for X-GMP. To
ensure a fair comparison, we initialized the priors of all diffusion-based methods with zero mean

8
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METHOD CREDIT SEEDS CANCER BROWNIAN IONOSPHERE SONAR

GVI −605.561±0.166 −76.741±0.007 −147.453±0.144 −3.885±0.005 −123.391±0.013 −137.696±0.043

GMVI −603.424±0.154 −75.221±0.011 −145.456±0.254 −2.250±0.011 −122.019±0.019 −135.959±0.031

MCD −1399.241±497.114 −75.699±0.015 −148.471±8.565 −15.498±0.158 −114.320±0.007 −112.639±0.025

MCD-GP −585.350±0.015 −73.542±0.003 −89.676±0.189 0.771±0.008 −111.897±0.004 −109.338±0.004

MCD-GMP −585.276±0.013 −73.461±0.004 −88.562±0.243 0.993±0.003 −111.827±0.007 −109.197±0.004

CMCD −586.956±0.018 −74.033±0.010 −80.076±0.118 −1.346±0.013 −112.183±0.006 −109.332±0.006

CMCD-GP −585.178±0.013 −73.456±0.003 −78.576±0.068 1.043±0.005 −111.687±0.003 −108.669±0.007

CMCD-GMP −585.162±0.002 −73.429±0.002 −78.402±0.037 1.087±0.001 −111.682±0.000 −108.634±0.000

DIS −589.636±0.757 −74.400±0.007 −86.592±2.107 −3.503±0.019 −112.525±0.008 −110.153±0.022

DIS-GP −585.247±0.009 −73.540±0.005 −85.005±1.286 0.588±0.013 −111.847±0.006 −109.280±0.024

DIS-GMP −585.223±0.006 −73.492±0.003 −84.061±2.117 0.885±0.005 −111.811±0.002 −109.157±0.000

DBS −587.366±0.683 −73.918±0.008 −82.466±4.090 −0.773±0.010 −112.070±0.005 −109.188±0.005

DBS-GP −585.524±0.414 −73.437±0.001 −83.395±4.184 1.081±0.004 −111.673±0.002 −108.595±0.006

DBS-GMP −585.148±0.002 −73.418±0.001 −78.160±0.063 1.118±0.002 −111.657±0.002 −108.548±0.000

SMC −698.403±4.146 −74.699±0.100 −194.059±0.613 −1.874±0.622 −114.751±0.238 −111.355±1.177

CRAFT −594.795±0.411 −73.793±0.015 −95.737±1.067 0.886±0.053 −112.386±0.182 −115.618±1.316

FAB −585.102±0.001 −73.418±0.002 −78.287±0.835 1.031±0.010 −111.678±0.003 −108.593±0.008

Table 2: Evidence lower bound (ELBO) values for various real-world benchmark problems, averaged across
four seeds. The best overall results are highlighted in bold, with category-specific best results underlined. Blue
and green shading indicate that the method uses learned Gaussian (GP) and Gaussian mixture priors (GMP),
respectively. Red shading indicate competing state-of-the-art methods.

and unit variance. Table 2 and Figure 3 present our findings. The analysis demonstrates that GP
consistently achieves tighter ELBO values compared to fixed priors, with GMP yielding further
improvements over GP. Furthermore, Figure 3 illustrates both qualitatively and quantitatively that
GMP effectively combines the strengths of Gaussian mixture and diffusion models, resulting in
significant improvements. Specifically, we observed that the Gaussian components adapt well to
the target’s support, covering both the neck and opening of the funnel shape. This results in less
non-linear dynamics and better target coverage for DIS-GMP compared to using a single Gaussian
(DIS-GP). Notably, the combination of DBS and GMP outperforms state-of-the-art methods across
the majority of tasks and evaluation metrics.

Fashion (d = 784)

Method ELBO ↑ ∆ logZ ↓ W2
γ ↓ EMC ↑

GVI −73.793±0.032 47.868±0.767 1590.212±0.818 0.000±0.000

GMVI −72.654±0.176 45.927±0.380 1505.656±1.644 0.034±0.011

GMVI + IMR −57.021±0.052 30.444±0.571 589.881±1.374 0.761±0.039

DIS −41.63k±35.37 32.65k±390.6 17.72k±54.21 0.213±0.026

DIS-GP −24.712±0.253 10.581±0.496 1671.411±2.394 0.007±0.004

DIS-GMP −38.873±0.175 18.056±0.508 1703.023±3.050 0.012±0.021

DIS-GMP + IMR −62.482±2.752 27.645±3.118 513.776±13.936 0.780±0.089

SMC −12.18k±134.6 11.74k±139.2 6696.287±250.4 0.026±0.027

CRAFT −520.47±5.531 445.10±8.273 1413.303±11.20 0.016±0.027

FAB −892.97±151.8 350.54±599.0 1186.967±263.4 0.349±0.137

x ∼ π DIS-GMP DIS-GMP + IMR

SMC CRAFT FAB

Figure 4: Left side: Results for Fashion target, averaged across four seeds. Evaluation criteria include ev-
idence lower bound ELBO, importance-weighted errors for estimating the log-normalizing constant ∆logZ,
and Sinkhorn distance Wγ

2 . The best overall results are highlighted in bold, with category-specific best results
underlined. Arrows (↑, ↓) indicate whether higher or lower values are preferable, respectively. Blue and green
shading indicate that the method uses learned Gaussian (GP) and Gaussian mixture priors (GMP), respectively.
Orange shading indicates that the method uses iterative model refinement (IMR). Red shading indicate com-
peting state-of-the-art methods. Right side: Visualization of the d = 28 × 28 = 784 dimensional Fashion
samples. Top left corner visualizes samples from the target distribution. Colored frames indicate samples from
different components of the Gaussian mixture.

Ablation Study: Number of Mixture Components K and Diffusion Steps N . We further in-
vestigated the effect of varying the number of diffusion steps N and mixture components K on a
subset of tasks for DIS. The results, shown in Figure 5, demonstrate consistent improvements in
effective sample size (ESS) with increases in both K and N . Additionally, we consistently observed
that the combination of a higher number of components and diffusion steps yields the best overall
performance. These trends hold across other metrics, as further detailed in Appendix D.
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Iterative Model Refinement (IMR). Lastly, we investigated the impact of IMR, as detailed in
Section 5, using DIS. For this analysis, we focused on the multi-modal Fashion target, which neces-
sitates exploration in a high-dimensional space (d = 784). In addition to the performance criteria
outlined in Section 6, we quantify how many of the modes the model discovered via the entropic
mode coverage (EMC) introduced by Blessing et al. (2024). EMC evaluates the mode coverage of
a sampler by leveraging prior knowledge of the target density. It holds that EMC ∈ [0, 1] where
EMC = 1 indicates that the model achieves uniform coverage over all modes whereas EMC = 0
indicates that the model only produces samples from a single mode. We employed the Metropolis-
adjusted Langevin algorithm (MALA) (Cheng et al., 2018) to generate a set of candidate samples,
noting that the computational cost of this process is comparable to a single gradient step in most
diffusion-based sampling methods. The initial candidate samples as well as the support of DIS
without learned prior are initialized such that they roughly cover the target support. Additional de-
tails are provided in Appendix C.2. We iteratively increased the number of components to K = 10,
utilizing N = 128 diffusion steps throughout. Figure 4 presents our findings, demonstrating that
the absence of IMR leads to mode collapse across all methods, as evidenced by high Sinkhorn dis-
tance values. The qualitative results highlight the role of candidate samples in facilitating mode
discovery. Notably, the color-coding of DIS-GMP + IMR illustrates that each mixture component
concentrates on a distinct mode, validating the effectiveness of the initialization heuristic proposed
in Eq. 22 in balancing exploration and exploitation. This finding is also quantitatively reflected by
the high EMC and low Sinkhorn distance values. In contrast, the ELBO and ∆ logZ values are
slightly worse when using GMPs and IMR. This is attributed to the fact that these performance cri-
teria are not well-suited for quantifying the model performance for multi-modal targets and tend to
favor models that fit a single mode perfectly (Blessing et al., 2024). Moreover, with higher K, the
diffusion model has to learn more complex control functions, as it needs to operate over the support
of the entire Gaussian Mixture Model (GMM) rather than a single Gaussian. This added complexity
can introduce more opportunities for approximation errors, which may negatively impact ELBO and
∆ logZ values compared to using a single learnable Gaussian. Nevertheless, the resulting samples
from DIS-GMP are closer to the target distribution in terms of optimal transport (as indicated by the
Sinkhorn distance). Importantly, these errors remain significantly smaller than those observed with
non-learnable priors.
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Figure 5: Effective sample size (ESS) of DIS-GMP for various real-world benchmark problems, averaged
across four seeds. Here, N denotes the number of discretization steps and K the number of components in den
Gaussian mixture.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach for improving diffusion-based sampling techniques by
introducing end-to-end learnable Gaussian Mixture Priors (GMPs). Our method addresses key chal-
lenges in diffusion models—namely, non-linear drifts, mode collapse, and poor exploration—by
providing more expressive and adaptable priors compared to the conventional Gaussian priors. We
conducted comprehensive experiments on both synthetic and real-world datasets, which consistently
demonstrated the superior performance of our proposed method. The results underscore the effec-
tiveness of GMPs in overcoming the limitations of traditional diffusion models while requiring lit-
tle to no hyperparameter tuning. Furthermore, we developed a novel strategy for iterative model
refinement, which involves progressively adding components to the mixture during training, and
demonstrated its effectiveness on a challenging high-dimensional problem.

A promising direction for future research is the improvement of the iterative model refinement strat-
egy. While we showed that progressively increasing the number of components in the Gaussian
mixture improves performance, optimizing the selection criteria for adding new components, gener-
ating better candidate samples, or dynamically adjusting the number of components during training,
could lead to further gains in efficiency and accuracy.
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A PROOFS

A.1 PROOF OF PROPOSITION 1

We will use the Fokker-Planck equation (FPE) and show that the given stationary distribution satis-
fies it when the time derivative is set to zero:

First, recall the FPE for the probability density p(x, t) of a process described by the stochastic
differential equation (SDE)

dxt = −f(xt)dt+ σdwt (23)
is given as

∂p(x, t)

∂t
= ∇ · [f(x)p(x, t)] + σ2

2
∇2p(x, t). (24)

For the stationary distribution ps(x), we set ∂p(x,t)
∂t = 0:

0 = ∇ · [f(x)ps(x)] +
σ2

2
∇2ps(x) (25)

Next, recall the proposed stationary distribution:

ps(x) ∝ exp

(
− 2

σ2

∫
f(x)dx

)
(26)

Next, we verify that this satisfies stationary FPE (Eq. 25). First, let’s compute the gradient and
Laplacian of ps(x):

∇ps(x) = ps(x) ·
(
− 2

σ2

)
f(x) (27)

∇2ps(x) = ∇ · [ps(x) ·
(
− 2

σ2

)
f(x)] (28)

= ps(x) ·
(
− 2

σ2

)2

[f(x)]2 + ps(x) ·
(
− 2

σ2

)
∇ · f(x) (29)

Finally, we substitute these into the left side of Eq. 25, that is,

∇ · [f(x)ps(x)] +
σ2

2
∇2ps(x) (30)

= ∇ · [f(x)ps(x)] +
σ2

2

[
ps(x) ·

(
− 2

σ2

)2

[f(x)]2 + ps(x) ·
(
− 2

σ2

)
∇ · f(x)

]
(31)

= ps(x)∇ · f(x) + f(x)∇ps(x) + ps(x)

[
− 2

σ2

]
[f(x)]2 − ps(x)∇ · f(x) (32)

= ps(x)∇ · f(x) + f(x)ps(x)

(
− 2

σ2

)
f(x) + ps(x)

[
− 2

σ2

]
[f(x)]2 − ps(x)∇ · f(x) (33)

= 0, (34)
which yields the desired result.

B ADDITIONAL DETAILS FOR DIFFUSION-BASED SAMPLER

Pseudocode: We additionally provide pseudocode in Algorithm 1 for a generic diffusion sampler
with learnable prior pϕ0 . For clarity, we present an update step for a single sample. In practice,
however, one would use mini-batches for these updates.

Special Cases of X-GMP: Consider the generic (extended) ELBO for X-GMP, that is,

LGMP(θ, γ, ϕ, δt) = Ex0:N∼Pθ,ϕ,δt

[
log

ρ(xN )
∑K

k=1 αkp
ϕk

0 (x0)
+

N∑

n=1

log
Bγ,ϕ,δt

n−1 (xn−1|xn)

F θ,ϕ,δt
n (xn|xn−1)

]
, (35)

with pϕk

0 (x0) = N (x0|µk,Σk). We obtain the following special cases:
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Algorithm 1 Training of diffusion sampler with learnable prior
Require:

• control functions uθ, vγ with initial parameters θ0, γ0
• prior distribution pϕ0 with initial parameters ϕ0

• initial step size δt0
• number of gradient steps G, number of diffusion steps N , step size η

Θ0 = {θ0, γ0, ϕ0, δt0}
for i← 0, . . . , G− 1 do

x0 ← g(ξ, ϕi), ξ ∼ p(·) ▷ sample pϕi via reparameterization (batched in practice)
L ← log pϕi(x0)
for n← 0, . . . , N − 1 do

xn+1 = xn +
[
f(xn, n) + σuθi(xn, n)

]
δti + σ

√
2δtiϵn

L ← L+ logF θi,ϕi,δti
n+1 (xn+1|xn)− logBγi,ϕi,δti

n (xn|xn+1)

L ← L− log ρ(xN )
Θi+1 ← Θi + η∇ΘL ▷ maximize (extended) ELBO

return optimized parameters ΘG

• GVI (K = 1, N = 0): For a single Gaussian mixture component and zero diffusion
steps, Equation (35) reduces to the marginal ELBO objective in Equation (9) for a Gaussian
distribution, that is,

LGVI(ϕ) = Ex0∼pϕ
0

[
log

ρ(x0)

pϕ0 (x0)

]
. (36)

• GVI (K > 1, N = 0): Similarily, if we have zero diffusion steps, but multiple Gaussian
mixture components we obtain the marginal ELBO for Gaussian mixture models, i.e.,

LGMVI(ϕ) = Ex0∼pϕ
0

[
log

ρ(x0)∑K
k=1 αkp

ϕk

0 (x0)

]
. (37)

Please note that there are more sophisticated methods to train Gaussian mixture models for
VI, see Arenz et al. (2018; 2022).

• X-GP (K = 1, N > 0): For a single mixture component and multiple diffusion steps, we
obtain the objective for X-GP, i.e., for a diffusion-model with learned Gaussian prior, given
by

LGP(θ, γ, ϕ, δt) = Ex0:N∼Pθ,ϕ,δt

[
log

ρ(xN )

pϕ0 (x0)
+

N∑

n=1

log
Bγ,ϕ,δt

n−1 (xn−1|xn)

F θ,ϕ,δt
n (xn|xn−1)

]
. (38)

• X-GMP (K > 1, N > 0): Having multiple multiple mixture components K and diffusion
steps N results in the full X-GMP objective, as in Equation (35).

Forward and Backward Transitions. We provide further information about the diffusion-based
sampling methods considered in this work in Table 3. Specifically, we provide expressions for the
forward and backward transitions.

Time complexity. Diffusion-based samplers that use a Gaussian prior have a time complexity
of O(N), whereas Gaussian Mixture Priors (GMPs) incur a time complexity of O(NK). The
additional factor K arises from the need to compute the likelihood of the GMP at each diffusion
step. However, in practice, the evaluation of the likelihood of the GMP can be parallelized across its
components, which substantially reduces the computational overhead. This parallelization allows
for efficient implementation despite the increased theoretical complexity.
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Method F θ,ϕ,∆
n+1 (xn+1|xn) Bγ,ϕ,∆

n−1 (xn−1|xn)

DIS N
(
xn+1|xn +

[
−σ2∇ log pϕ0 (xn) + σuθ(xn, n)

]
δt, 2σ2δtI

)
N

(
xn−1|xn + σ2∇ log pϕ0 (xn)δt, 2σ

2δtI
)

MCD N
(
xn+1|xn + σ2∇x log π

ϕ
n(xn)δt, 2σ

2δtI
)

N
(
xn−1|xn −

[
σ2∇x log π

ϕ
n(xn)− σvγ(xn, n)

]
δt, 2σ2δtI

)

CMCD N
(
xn+1|xn +

[
σ2∇x log π

ϕ
n(xn) + σuθ(xn, n)

]
δt, 2σ2δtI

)
N

(
xn−1|xn −

[
σ2∇x log π

ϕ
n(xn)− σuθ(xn, n)

]
δt, 2σ2δtI

)

DBS N
(
xn+1|xn +

[
f(xn, n) + σuθ(xn, n)

]
δt, 2σ2δtI

)
N

(
xn−1|xn − [f(xn, n)− σvγ(xn, n)] δt, 2σ

2δtI
)

Table 3: Comparison of different forward and backward transitions F θ,ϕ,δt, and Bγ,ϕ,δt, respectively, for
diffusion-based sampling methods based on f , πϕ

n, pϕ0 , uθ and vγ as defined in the text.

Memory consumption. When using the standard ”discrete-then-optimize” approach to minimize
the KL divergence in Eq. 11, which requires differentiation through the SDE, memory consumption
scales linearly with both K (number of components) and N (number of diffusion steps). In contrast,
methods like the stochastic adjoint approach for KL optimization (Li et al., 2020) achieve constant
memory consumption, making them more suitable for scenarios with a large number of components
or diffusion steps.

In our experiments, we opted for the former approach due to its simplicity. However, for tasks
involving extensive components or steps, the stochastic adjoint method or similar approaches may
be more practical.

Additionally, constant memory consumption can also be achieved by using alternative loss functions
such as the log-variance loss (Richter et al., 2020; 2023) or moment-loss (Hartmann et al., 2019).

C EXPERIMENTAL DETAILS

C.1 BENCHMARKING TARGETS

This section introduces the target densities considered in our experiments. Please note that the major-
ity of tasks are taken from the recent benchmark study from Blessing et al. (2024). For convenience,
we provide a brief explanation of the target densities.

Bayesian Logistic Regression: We evaluate a Bayesian logistic regression model on four standard-
ized binary classification datasets:

• Ionosphere (d = 35, 351 (xi, yi) pairs)

• Sonar (d = 61, 208 (xi, yi) pairs)

• German Credit (d = 25, 1000 (xi, yi) pairs)

• Breast Cancer (d = 31, 569 (xi, yi) pairs)

The model assumes:

ω ∼ N (0, σ2
ωI),

yi ∼ Bernoulli(sigmoid(ω⊤xi)),

where features are standardized for linear logistic regression. Here, we perform inference over the
parameters ω of the (linear) logistic regression model. In Blessing et al. (2024), the authors used an
uninformative prior for the parameters of the Bayesian logistic regression models for the Credit and
Cancer tasks, which frequently caused numerical instabilities. To maintain the challenge of the tasks
while ensuring stability, we opted for a Gaussian prior with zero mean and variance of σ2

ω = 100.
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Random Effect Regression: We apply random effect regression to the Seeds dataset (d = 26):

τ ∼ Gamma(0.01, 0.01),

a0, a1, a2, a12 ∼ N (0, 10),

bi ∼ N (0,
1√
τ
), i = 1, . . . , 21,

logitsi = a0 + a1xi + a2yi + a12xiyi + b1,

ri ∼ Binomial(logitsi, Ni),

with inference conducted over model parameters given observed data.

Time Series Models: For time series analysis, we use the Brownian model (d = 32):

αinn ∼ LogNormal(0, 2),

αobs ∼ LogNormal(0, 2),

x1 ∼ N (0, αinn),

xi ∼ N (xi−1, αinn), i = 2, . . . , 20,

yi ∼ N (xi, αobs), i = 1, . . . , 30,

with inference focusing on parameters αinn, αobs, and latent states {xi}30i=1.

Funnel: (d = 10), a funnel-shaped distribution defined by:

π(x) = N (x1; 0, σ
2
f )N (x2:10; 0, exp(x1)I),

with σ2
f = 9.

Fashion and Digits. MNIST variants (DIGITS) and Fashion MNIST (Fashion) datasets using
NICE (Dinh et al., 2014) to train normalizing flows, with resolutions 14 × 14 and DIGITS and
28× 28 for Fashion.

C.2 DIFFUSION-BASED METHODS: DETAILS AND TUNING

General setting: All experiments are conducted using the Jax library (Bradbury et al., 2021). Our
default experimental setup, unless specified otherwise, is as follows: We use a batch size of 2000
(halved if memory-constrained) and train for 140k gradient steps to ensure approximate conver-
gence. We use the Adam optimizer (Kingma & Ba, 2014), gradient clipping with a value of 1, and a
learning rate scheduler that starts at 8× 10−3 and uses a cosine decay starting at 60k gradient steps.
We utilized 128 discretization steps and the Euler-Maruyama method for integration. The control
functions uθ and vγ were parameterized as two-layer neural networks with 128 neurons. For DBS,
we set the drift to f = σ2∇ log π.

Unlike Zhang & Chen (2021), we did not include the gradient of the target density in the network
architecture. Inspired by Nichol & Dhariwal (2021), we applied a cosine-square scheduler for the
discretization step size: δt = a cos2

(
π
2

n
N

)
, where a : [0,∞) → (0,∞) is learned for all methods.

We enforced non-negativity of a via an element-wise softplus transformation. The diffusion coeffi-
cient σ was set to 1 for all experiments. Furthermore, we set the initial a to 0.1 for all experiments
except Brownian, where we set 0.01. We did not perform any hyperparameter tuning since most
parameters are learned end-to-end.

Gaussian Priors (GP) and Gaussian Mixture Priors (GMP): We learn diagonal Gaussian priors
and ensure positive definiteness with an element-wise softplus transformation. We use a separate
learning rate of 10−2 for all experiments to allow for quick adaptation of the Gaussian components.
Furthermore, the mean was initialized at 0 and the initial covariance matrix was set to the identity
except for Fashion where we set the initial variance to 5 which roughly covers the support of the
target. The individual components in the Gaussian mixture follow the setup of Gaussian priors. The
mixture weights are uniformly initialized and fixed during training. If not otherwise specified, we
use K = 10 mixture components for X-GMP.
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Methods / Parameters Grid Funnel Fashion Credit Cancer Brownian Sonar Seeds Ionosphere ϕ4

SMC
Initial Scale {0.1, 1, 10} 1 5† 0.1 1 1 1 1 1 5†

HMC stepsize (β ≤ 0.5) {0.005, 0.001, 0.01, 0.05, 0.1, 0.2} 0.001 0.2 0.01 0.01 0.001 0.05 0.2 0.2 0.1
HMC stepsize (β > 0.5) {0.005, 0.001, 0.01, 0.05, 0.1, 0.2} 0.1 0.2 0.005 0.005 0.05 0.001 0.05 0.2 0.05

CRAFT
Initial Scale {0.1, 1, 10} 1 5† 1 1 1 1 0.1 0.1
Learning Rate {10−3, 10−4, 5× 10−4, 10−5} 10−3 10−4 5× 10−4 5× 10−4 10−3 10−3 10−3 10−3

FAB
Initial Scale {0.1, 1, 10} 1 5† 1 1 1 0.1 0.1 1
Learning Rate {10−3, 10−4, 5× 10−4, 10−5} 10−4 10−3 10−4 10−3 10−3 10−3 10−4 10−3

Table 4: Hyperparameter selection for all different sampling algorithms. The ‘Grid’ column indicates the
values over which we performed a grid search. The values in the column which are marked with experiment
names indicate which values were chosen for the reported results. The values for parameters indicated with †
are set by using prior knowledge about the task.

Iterative Model Refinement (IMR): For IMR, we add a new component after 500 training itera-
tions starting with a single component. The initial means were selected with the heuristic presented
in Equation (22). The variance of the newly added components was set to be 1. The candidate sam-
ple set was generated using the Metropolis Adjusted Langevin Algorithm (MALA) (Cheng et al.,
2018). For that, we used 2000 random samples from a Gaussian with zero mean and variance 5,
which roughly covers the support of the Fashion target. Please note that competing methods also
use this prior knowledge for initialization of the prior, see Table 4. We use 128 steps steps, that is,

xi+1 = xi + σ̃2∇ log π(xi)δt+ σ̃
√
2δtϵ, ϵ ∼ N (·|0, I) (39)

with σ̃ = 5 and an additional Metropolis adjustment step. Here, σ̃ was chosen such that the final
set of samples yields high target log-likelihoods log ρ(x). The final samples are used as candidate
set. We note that this procedure brings the new components close to different modes in the target
distribution and therefore facilitates exploration. Moreover, the computation of such a candidate set
is very cheap, i.e., the equivalent of a single gradient step for e.g. MCD or CMCD.

C.3 COMPETING METHODS: DETAILS AND TUNING

The results for competing methods presented in this work are primarily drawn from Blessing et al.
(2024), where hyperparameters were carefully optimized. For convenience, we repeat the details.
Since our experimental setup differs for the Credit and Cancer tasks (detailed in Section C.1), we
adhered to the tuning recommendations provided by Blessing et al. (2024). Details about hyperpa-
rameters can be found in Table 4.

Sequential Monte Carlo (SMC) and Continual Repeated Annealed Flow Transport (CRAFT):
The Sequential Monte Carlo (SMC) approach was implemented with 2000 particles and 128 an-
nealing steps, matching the number of sequential steps used in diffusion-based sampling methods.
Resampling was performed with a threshold of 0.3, and one Hamiltonian Monte Carlo (HMC) step
was applied per temperature, using 5 leapfrog steps. The HMC step size was tuned according to
Table 4, with different step sizes based on the annealing parameter βt. Additionally, the scale of the
initial proposal distribution was tuned. As CRAFT builds on the SMC framework, it used the same
SMC specifications, incorporating diagonal affine flows (Papamakarios et al., 2021) as transition
models.

Flow Annealed Importance Sampling Bootstrap (FAB): Automatic step size tuning for the SMC
sampler was applied on top of the normalizing flow (Papamakarios et al., 2021). The flow architec-
ture utilized RealNVP (Dinh et al., 2016), with an 8-layer MLP serving as the conditioner. FAB’s
replay buffer was employed to accelerate computations. The learning rate and base distribution scale
were adjusted for target specificity as outlined in Table 4. A batch size of 2000 was used, and FAB
was trained until reaching approximate convergence, which was sufficient to achieve approximate
convergence.

C.4 EVALUATION

Evaluation protocol and model selection We follow the evaluation protocol of prior work (Bless-
ing et al., 2024) and evaluate all performance criteria 100 times during training, using 2000 samples
for each evaluation. To smooth out short-term fluctuations and obtain more robust results within a
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single run, we apply a running average with a window of 5 evaluations. We conduct each experiment
using four different random seeds and average the best results of each run.

Performance Criteria: In order to define the performance criteria, we first define the unnormal-
ized (extended) importance weights w̃, that is,

w̃ :=
ρ(xN )

∏N
n=1 B

γ,ϕ,δt
n−1 (xn−1|xn)

pϕ0 (x0)
∏N

n=1 F
θ,ϕ,δt
n (xn|xn−1)

. (40)

We consider the following following performance criteria:

• Evidence lower bound (ELBO): We compute the (extended) ELBO as

ELBO := Ex0:N∼Pθ,ϕ,δt [log w̃] ≈ 1

m

m∑

i=1

log w̃(i). (41)

• Evidence upper bound (EUBO): We compute the (extended) EUBO as

EUBO := Ex0:N∼Qγ,ϕ,δt [log w̃] ≈ 1

m

m∑

i=1

log w̃(i). (42)

Please note that we need samples from the target, i.e., xT ∼ π to compute the expectation
in Eq. 42 by simulating the backward process ⃗X. Moreover, it is straightforward to see that
the EUBO serves as an upper bound on the log normalization constant since

DKL

(
Qγ,ϕ,δt∥Pθ,ϕ,δt

)
= Ex0:N∼Qγ,ϕ,δt [log w̃]− logZ = EUBO− logZ (43)

and thus EUBO ≥ logZ due to DKL(·∥·) ≥ 0. Since the evidence upper bound is based on
the mode-seeking forward KL, it is well suited for quantifying mode-collapse. For further
details, see Blessing et al. (2024).

• Estimation error ∆ logZ: When having access to the ground truth normalization constant
logZ, we can compute the estimation error ∆ logZ = | logZ−log Ẑ| using an importance
weighted estimate, that is,

log Ẑ := logEx0:N∼Pθ,ϕ,δt [w̃] ≈ log
1

m

m∑

i=1

w̃(i). (44)

• Effective sample size (ESS): Moreover, we compute the (normalized) ESS as

ESS :=

(∑m
i=1 w̃

(i)
)2

m
∑m

i=1

(
w̃(i)

)2 . (45)

• Sinkhorn distance: We estimate the Sinkhorn distanceW2
γ (Cuturi, 2013), i.e., an entropy

regularized optimal transport distance between a set of samples from the model and target
using the Jax ott library (Cuturi et al., 2022). Note that computingW2

γ requires samples
from the target density which are typically not available for real-world target densities.

• Entropic mode coverage (EMC): EMC evaluates the mode coverage of a sampler by
leveraging prior knowledge of the target density. It holds that EMC ∈ [0, 1] where EMC =
1 indicates that the model achieves uniform coverage over all modes whereas EMC = 0
indicates that the model only produces samples from a single mode. Please note that EMC
does not provide any information about the sample quality. For further details, we refer the
interested reader to Blessing et al. (2024).

D FURTHER NUMERICAL RESULTS

Here, we provide further numerical results.
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DIS-GMP CMCD-GMP
K ABS. [s] REL. [%] ABS. [s] REL. [%]

1 0.103 - 1.123 -
5 0.128 24.27 1.166 3.82

10 0.155 50.48 1.203 7.12

Table 5: Wallclock time of DIS-GMP and CMCD-GMP for the Fashion target for N = 128. Here, K the
number of components in den Gaussian mixture, ‘abs.’ denotes the absolute time per gradient step in seconds,
and ‘rel.’ denotes the relative increase in percent compared to K = 1.
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Figure 6: Wallclock time per gradient step of DIS-GMP for various benchmark problems. Here, N denotes
the number of discretization steps and K the number of components in den Gaussian mixture.

Wallclock time We further report the wallclock time per gradient step for DIS for a different
number of diffusion steps N and mixture components K. The results are shown in Figure 6. For
N ≤ 64, the Gaussian mixture prior barely influences the wallclock time where using K = 10
components roughly adds a 20 percent increase. Considering the performance improvements this is
a good trade-off. For N = 128, Using K = 10 roughly results in a 50 percent increase as the like-
lihood of the prior has to be evaluated in every diffusion step. However, since most diffusion-based
methods apart from DIS additionally require evaluating the target density at every step, the relative
costs of using GMPs reduce if the target is more expensive to evaluate. We empirically validated
this by additionally including a comparison between the wallclock time for DIS and CMCD on the
Fashion target in Table 5. In this setting, the relative cost added by the GMP is minor.

Additional results for DIS-GMP We present further details regarding the ablation study from
Section 6. Specifically, we report ELBO values for the real-world benchmark problems in Figure 7
and various metrics for the Funnel target in Figure 8. The results are consistent with the results
in Figure 5, where the performance improves with a higher number of mixture components K and
diffusion steps N .

DIS-GMP on Digits target We additionally investigate the performance of DIS-GMP on the syn-
thetic digits target. The results are reported in Figure 9. Here, we observe that the ELBO get looser
when using more mixture components K, while ∆ logZ stays roughly constant. However, the sam-
ple diversity improves significantly as shown quantitatively from the Sinkhorn distance W2

γ and
qualitatively in the Figure on the right-hand side.
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Figure 7: Evidence Lower Bound (ELBO) of DIS-GMP for various real-world benchmark problems, averaged
across four seeds. Here, N denotes the number of discretization steps and K the number of components in den
Gaussian mixture.
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Figure 8: Various performance criteria of DIS-GMP for the Funnel target, averaged across four seeds. Here,
N denotes the number of discretization steps and K the number of components in den Gaussian mixture.

Digits (d = 196)

K ELBO ↑ ∆ logZ ↓ W2
γ ↓

1 −12.090±0.050 5.269±0.416 197.566±0.340

5 −12.303±0.350 4.419±0.316 183.241±8.776

10 −13.820±0.831 4.658±0.260 164.827±2.626

20 −15.413±0.317 5.663±0.085 151.006±0.640

K = 1 K = 5

K = 10 K = 20

K: Num. mixture components

Figure 9: Left side: Results for Digits target, averaged across four seeds using DIS-GMP+IMR. Evaluation
criteria include evidence lower bound ELBO, importance-weighted errors for estimating the log-normalizing
constant ∆logZ, and Sinkhorn distance Wγ

2 . The best results are highlighted in bold. Arrows (↑, ↓) indicate
whether higher or lower values are preferable, respectively. Right side: Visualization of the d = 14×14 = 196
dimensional Digits samples for a different number of mixture components K.

Ablation on Gaussian Mixture Target We additionally experiment with using a two-dimensional
Gaussian mixture model (GMM) as the target density. The GMM has ten components where the
means are uniformly sampled in [−12, 12] and the covariance matrices are sampled from a Wishart
distribution. In addition to the performance criteria outlined in Section 6, we quantify the variation
of the dynamics over time using the spectral norm of the Jacobian of the learned control, i.e.,

S = Ex0:T∼Pθ

[∫ T

0

∥∂σu
θ(x, t)

∂x
∥2dt

]
. (46)

For DIS we initialized the prior with a standard deviation of 12 such that the prior covers the support
of the target. For DIS-GMP, we use K = 10 components that are initialized with a standard devia-
tion of 1. We report qualitative and qualitative results in Figure 10 and Figure 11. We find that DIS
without learned prior and sufficiently large prior support is able to cover all modes as indicated by
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Figure 10: Visualization of a two-dimensional Gaussian mixture target density for different variants of DIS
with N = 128 diffusion steps and K = 10 components for GMP versions. Colored ellipses and circles denote
standard deviations and means of the Gaussian components, respectively. Red dots illustrate samples of the
learned model.
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Figure 11: Results for the two-dimensional Gaussian mixture target, averaged across four seeds and reported
across different numbers of diffusion steps N for different variants of DIS. Evaluation criteria include evidence
lower bound ELBO, importance-weighted errors for estimating the log-normalizing constant ∆logZ, and
Sinkhorn distance Wγ

2 , entropic mode coverage EMC, and the time-integrated spectral norm of the control S
(see Equation (46)).

EMC ≈ 1. While the sample quality is similar between DIS and GMP counterparts (seeW2
γ ), plain

DIS needs significantly more diffusion steps in order to achieve similar ELBO/ESS values compared
to the GMP counterparts which achieve good performance with as few as 8 diffusion steps. The re-
quirement of plain DIS for more discretization steps is additionally reflected in the variation of the
dynamics over time S. Lastly, the GP version is not able to cover all modes due to the mode-seeking
nature of the reverse KL as indicated by the EMC andW2

γ values.

Ablation: Influence of the control architecture We further evaluate the performance using the
architecture by Zhang & Chen (2021) which additionally incorporates the score of the target, i.e.
∇ log π, into the architecture via

uθ(x, t) = fθ
1 (x, t) + fθ

2 (t)∇ log π(stop gradient(x)). (47)

where f1 and f2 are parameterized function approximatior with parameters θ. Zhang & Chen (2021);
Vargas et al. (2023a) found that detaching, that is, using a stop-gradient operator on x yields superior
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METHOD ∇ log π CREDIT SEEDS CANCER BROWNIAN IONOSPHERE SONAR

DIS-GP −585.247±0.009 −73.540±0.005 −85.005±1.286 0.588±0.013 −111.847±0.006 −109.280±0.024

DIS-GP −592.262±0.794 −73.497±0.001 −96.180±10.044 N/A −111.957±0.090 −109.473±0.143

DIS-GMP −585.223±0.006 −73.492±0.003 −84.061±2.117 0.885±0.005 −111.811±0.002 −109.157±0.000

DIS-GMP −586.817±0.906 −73.475±0.002 −84.732±0.466 N/A −112.108±0.002 −109.248±0.001

Table 6: Evidence lower bound (ELBO) values for various real-world benchmark problems, averaged across
four seeds. Here, ∇ log π indicates if the model architecture uses target score as described in Equation (47).
The best overall results are highlighted in bold, with category-specific best results underlined. Blue and green
shading indicate that the method uses learned Gaussian (GP) and Gaussian mixture priors (GMP), respectively.

METHOD DIV. CREDIT SEEDS CANCER BROWNIAN IONOSPHERE SONAR

DIS KL −589.636±0.757 −74.400±0.007 −86.592±2.107 −3.503±0.019 −112.525±0.008 −110.153±0.022

DIS LV −5170.845±5.627 −74.654±0.022 −88.379±1.491 −5.682±0.303 −112.609±0.053 −110.622±0.071

DIS-GP KL −585.247±0.009 −73.540±0.005 −85.005±1.286 0.588±0.013 −111.847±0.006 −109.280±0.024

DIS-GP LV −5163.451±3.296 −73.703±0.177 −549.071±466.902 0.729±0.004 −111.839±0.006 −109.498±0.005

DIS-GMP KL −585.223±0.006 −73.492±0.003 −84.061±2.117 0.885±0.005 −111.811±0.002 −109.157±0.000

DIS-GMP LV −5152.728±18.004 −73.777±0.007 −86.456±0.557 0.722±0.005 −111.844±0.000 −109.443±0.000

Table 7: Evidence lower bound (ELBO) values for various real-world benchmark problems, averaged across
four seeds. Here, ‘Div.’ indicates if the model is trained using the Kullback-Leibler (KL) or log-variance (LV)
divergence. The best overall results are highlighted in bold, with category-specific best results underlined. Blue
and green shading indicate that the method uses learned Gaussian (GP) and Gaussian mixture priors (GMP),
respectively.

results due to the simplification of the computational graph. We adopt this change and report the
results in Table 6. We find that using the score of the target leads, in the majority of experiments,
slightly worse results, with one exception where it yields superior results.

Ablation: Kullback-Leibler vs. Log-Variance divergence We further compare the KL diver-
gence to the log-variance divergence introduced in Richter et al. (2020) and later extended to diffu-
sion models in Richter et al. (2023). The log-variance divergence is defined as

L(θ, ϕ, δt) = Vx0:N∼R

[
log
Qγ,ϕ,δt(x0:N )

Pθ,ϕ,δt(x0:N )

]
, (48)

where R describes a reference process, e.g. Equation (2a) where uθ is replaced with an arbitrary
control. In practice, one typically uses the generative process Pθ,ϕ,δt with an additional stop gradi-
ent operator on the parameters (Richter et al., 2023). Not computing the expectations with respect
to samples from the generative process significantly reduces memory consumption and does not
require the prior distribution to be amendable to the reparameterization trick. The results are re-
ported in Table 7 and follow the same experimental setting as outlined in the main part of the paper.
We find that the KL divergence typically performs better than the log-variance divergence. Most
significantly, the log-variance divergence seems to be numerically unstable for the Credit target.

Comparison to long-run Sequential Monte Carlo We additionally compare diffusion samplers
with a learned Gaussian mixture prior to a Sequential Monte Carlo with a high number of discretiza-
tion steps N . The results are shown in Table 8 and Table 9. While long-run SMC significantly
increases ELBO values, GMP-based diffusion sampler yield superior results in most experiments.
Moreover, the results on the Fashion target indicate that more discretization steps yield better ELBO,
∆ logZ and Sinkorn distances, but are not able to prevent mode collapse as indicated by the low
EMC values.
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METHOD N CREDIT SEEDS CANCER BROWNIAN IONOSPHERE SONAR

MCD-GMP 128 −585.276±0.013 −73.461±0.004 −88.562±0.243 0.993±0.003 −111.827±0.007 −109.197±0.004

CMCD-GMP 128 −585.162±0.002 −73.429±0.002 −78.402±0.037 1.087±0.001 −111.682±0.000 −108.634±0.000

DIS-GMP 128 −585.223±0.006 −73.492±0.003 −84.061±2.117 0.885±0.005 −111.811±0.002 −109.157±0.000

DBS-GMP 128 −585.148±0.002 −73.418±0.001 −78.160±0.063 1.118±0.002 −111.657±0.002 −108.548±0.000

SMC

128 −698.403±4.146 −74.699±0.100 −194.059±0.613 −1.874±0.622 −114.751±0.238 −111.355±1.177

256 −708.185±14.225 −73.972±0.034 −140.757±7.041 −0.360±0.136 −113.110±0.046 −109.822±0.630

512 −686.335±18.333 −73.667±0.015 −137.028±2.336 0.414±0.048 −112.353±0.036 −109.197±0.420

1024 −690.011±12.879 −73.532±0.038 −128.809±6.046 0.786±0.047 −111.962±0.018 −108.291±0.325

2048 −672.602±15.229 −73.496±0.017 −128.376±3.504 0.992±0.036 −111.785±0.022 −108.261±0.565

4096 −665.973±19.849 −73.438±0.004 −121.950±3.315 1.088±0.029 −111.692±0.013 −108.736±0.227

Table 8: Evidence lower bound (ELBO) values for various real-world benchmark problems and different
numbers of discretization steps N , averaged across four seeds. The best overall results are highlighted in bold,
with category-specific best results underlined. green shading indicate that the method Gaussian mixture priors
(GMP).

FASHION (d = 784)

METHOD N ELBO ↑ ∆logZ ↓ W2
γ ↓ EMC ↑

DIS-GMP+IMR 128 −62.482±2.752 27.645±3.118 513.776±13.936 0.780±0.089

SMC

128 −12181.932±134.611 11747.518±139.292 6696.287±250.4 0.026±0.027

256 −10095.076±1076.723 9901.113±1078.916 6018.423±197.144 0.191±0.112

512 −9340.232±803.694 9254.499±804.027 5821.422±396.492 0.141±0.140

1024 −9229.557±742.223 9190.558±742.656 5610.511±283.885 0.075±0.129

2048 −8472.660±281.288 8454.062±281.475 5718.030±328.909 0.257±0.038

4096 −8399.465±153.637 8390.302±153.707 5583.099±179.370 0.102±0.108

Table 9: Results for Fashion target, averaged across four seeds and reported across different numbers of
discretization steps N . Evaluation criteria include evidence lower bound ELBO, importance-weighted errors
for estimating the log-normalizing constant ∆logZ, and Sinkhorn distance Wγ

2 and entropic mode coverage
EMC. The best overall results are highlighted in bold, with category-specific best results underlined. Arrows
(↑, ↓) indicate whether higher or lower values are preferable, respectively. Orange shading indicates that the
method uses iterative model refinement (IMR).

Ablation: Iterations for IMR We additionally conducted an ablation study which considers dif-
ferent numbers of iterations for the iterative model refinement scheme at which new components
are added. The results are reported in Table 10 and indicate that the performance remains stable for
different choices of the hyperparameter. Nevertheless, the concept of iteratively adding components
is important, such that when a new component is added, the initialization is informed by the already
existing mixture model (note that the heuristic in Eq. 22 depends on the likelihood of the GMP) to
prevent initializing components at the same location.

Ablation: Variation of dynamics We additionally compare the variability in the dynamics of the
learned model between DIS and DIS-GMP via time-integrated spectral norm of the control S (see
Equation (46)). The results are shown in Table 11 and show that DIS-GMP indeed has less variation
in the dynamics. These findings are also in line with those in Figure 3 and Table 2 where DIS-GMP
has significantly higher ELBO values compared to DIS without learned prior.

E LATTICE ϕ4 THEORY

We apply our method to simulate a statistical lattice field theory near and beyond the phase transi-
tion. This phase transition marks the progression of the lattice from disordered to semi-ordered and
ultimately to a fully ordered state, where neighboring sites exhibit strong correlations in sign and
magnitude.
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FASHION (d = 784)

IMR ITER. ELBO ↑ ∆logZ ↓ W2
γ ↓ EMC ↑

100 −60.129±3.045 26.473±3.765 520.483±14.923 0.764±0.091

500 −62.482±2.752 27.645±3.118 513.776±13.936 0.780±0.089

1000 −65.784±3.567 32.134±4.054 538.145±15.678 0.751±0.097

2000 −61.478±3.321 25.129±3.832 505.781±14.342 0.785±0.094

Table 10: Results for Fashion target, averaged across four seeds and reported for different numbers of iter-
ations at which components are added (IMR. iter). Evaluation criteria include evidence lower bound ELBO,
importance-weighted errors for estimating the log-normalizing constant ∆logZ, and Sinkhorn distance Wγ

2

and entropic mode coverage EMC. Arrows (↑, ↓) indicate whether higher or lower values are preferable, re-
spectively.

METHOD FUNNEL SEEDS BROWNIAN IONOSPHERE SONAR

DIS 2.993±0.042 4.688±0.055 6.266±0.329 4.394±0.066 4.840±0.031

DIS-GMP 1.898±0.002 2.367±0.008 2.445±0.004 2.736±0.004 3.861±0.036

Table 11: Variability in the dynamics of the learned model via time-integrated spectral norm of the control
S×102 (see Equation (46)) for various benchmark problems. Both DIS and DIS-GMP use N = 128 diffusion
steps. Here, DIS-GMP uses K = 10 components. Lower values indicate lower variability in the dynamics of
the learned model.

We study the lattice ϕ4 theory in D = 2 spacetime dimensions (distinct from the problem’s di-
mensionality as described below). The random variables in this setting are field configurations
ϕ ∈ RL×L, where L represents the lattice extent in space and time. The density of these configura-
tions is defined as

π(ϕ) =
e−U(ϕ)

Z
,

where the potential U(ϕ) is given by:

U(ϕ) = −2κ
∑

x

∑

µ

ϕxϕx+µ + (1− 2λ)
∑

x

ϕ2
x + λ

∑

x

ϕ4
x. (49)

Here, the summation over x runs over all lattice sites, and the summation over µ considers the
neighbors of each site. The parameters λ and κ are referred to as the bare coupling constant and the
hopping parameter, respectively. Following Nicoli et al. (2021), we set λ = 0.022, identifying the
critical threshold of the theory (the transition from ordered to disordered states) at κ ≥ 0.3. Near
this threshold, sampling becomes increasingly challenging due to the multimodality of the density,
with modes becoming more separated for larger values of κ.

We conduct experiments for κ ∈ {0.2, 0.3, 0.5} across various problem dimensions d = L × L.
The methods compared include DIS, DIS-GP, and DIS-GMP, each with N = 128 diffusion steps,
as well as a long-run SMC sampler with N = 4096. For all methods, the initial support is set to 5,
approximately covering the target’s support for all tested values of κ. The tuned parameters of the
HMC kernel for the SMC sampler are detailed in Table 4, while additional parameter settings are
provided in Appendix C.2. Note that DIS (and its extensions) do not undergo hyperparameter tuning
due to their end-to-end learning framework.

To compare the different methods, we utilize the negative variational free energy of the system,
defined as:

−F =
1

L2
logZ ≥ 1

L2
ELBO. (50)

This bound follows from the inequality logZ ≥ ELBO as discussed in Section 3.2 and provides
a means of comparison between sampling methods. However, as the ELBO (and thus F) is not
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METHOD κ d = 16 d = 64 d = 100 d = 144 d = 196 d = 256

DIS

0.2

0.6263±0.0000 0.6186±0.0009 0.6166±0.0008 0.6145±0.0014 0.5997±0.0011 0.5749±0.0013

DIS-GP 0.6274±0.0000 0.6219±0.0001 0.6200±0.0001 0.6175±0.0000 0.6158±0.0001 0.6113±0.0015

DIS-GMP 0.6276±0.0000 0.6232±0.0004 0.6231±0.0002 0.6166±0.0027 0.6139±0.0006 0.6156±0.0005

SMC 0.6167±0.0022 0.6175±0.0005 0.6186±0.0003 0.6164±0.0072 0.6087±0.0029 0.6142±0.0099

DIS

0.3

1.0653±0.0195 1.0277±0.0004 1.0217±0.0004 1.0040±0.0024 0.9534±0.0017 0.8905±0.0014

DIS-GP 1.0831±0.0021 1.0459±0.0001 1.0411±0.0001 1.0372±0.0011 1.0343±0.0010 1.0319±0.0004

DIS-GMP 1.0940±0.0000 1.0496±0.0033 1.0461±0.0001 1.0406±0.0001 1.0380±0.0007 1.0347±0.0006

SMC 1.0848±0.0013 1.0514±0.0007 1.0488±0.0002 1.0437±0.0052 1.0339±0.0043 1.0389±0.0098

DIS

0.5

12.2545±0.0004 12.2097±0.0023 9.2610±2.9035 11.7179±0.0799 9.4392±1.9044 10.8546±0.0716

DIS-GP 12.2735±0.0000 12.2715±0.0000 12.2692±0.0012 12.2670±0.0010 10.1714±2.0923 12.2629±0.0001

DIS-GMP 12.3167±0.0001 12.2806±0.0003 12.2761±0.0003 12.2730±0.0002 12.2722±0.0000 12.2588±0.0001

SMC 12.3049±0.0025 12.2707±0.0013 12.2679±0.0027 12.2499±0.0101 12.2416±0.0040 12.2407±0.0024

Table 12: Lower bound values for negative variational free energy −F as defined in Eq. 50 for the lattice ϕ4

theory problem with different values for the space-time extend
√
d = L averaged across two seeds. The best

(i.e. the highest) overall results are highlighted in bold for each configuration of the hopping parameter κ and
space-time extend.
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Figure 12: Normalized histogram of the average magnetization M(ϕ) =
∑

x ϕx for 2000 samples ϕ ∈ RL×L

and space-time extend L = 14 for DIS, DIS-GP, DIS-GMP and long-run SMC for different values of the
hopping parameter κ. The plots are generated using the same random seed 0.

sensitive to mode collapse (Blessing et al., 2024), and since samples from the target distribution are
unavailable, we also qualitatively assess the methods by visualizing the (normalized) histogram of
the average magnetization M(ϕ) =

∑
x ϕx across lattice configurations ϕ.

Quantitative results are presented in Table 12, with qualitative findings illustrated in Figure 12. The
results indicate that learning the prior (i.e. DIS-GP/DIS-GMP) significantly improves free energy
estimates compared to DIS without a learned prior. Moreover, Figure 12 demonstrates that DIS-
GMP avoids mode collapse while achieving comparable or better free energy estimates than both
DIS-GP and the long-run SMC sampler in the majority of settings. While SMC captures multi-
modality at the phase transition (κ = 0.3), it struggles with the multimodality in the fully ordered
phase (κ = 0.5). By contrast, DIS and DIS-GP are prone to mode collapse. Lastly, the performance
of DIS degrades significantly with increasing problem dimension d, which is mitigated when using
a learned Gaussian or Gaussian mixture prior.
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