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A DATA

A.1 NEURAL DATA

Data from real neural activity is used in Fig. 1, in Fig. 3 panel a and panel b on the right side, and
in Fig. 4. Responses were obtained via two-photon calcium imaging of layer L2/3 of the primary
visual cortex (area V1) of the mouse. Recordings, experimental paradigm and pre-processing was
similar to [16]. The data for Fig. 1 and Fig. 3 consists of the responses of 7672 neurons to 360 images
where each image was presented 20 times. Since 7 trials were missing, this makes for a total of 7193
trials per neuron. The data for Fig. 4 consists of the responses of 5335 neurons to 4472 images in the
training set, 522 images in the validation set and 100 images in the test set. The images of the test set
were repeated 10 times which makes for 999 test trials per neuron since one trial was missing.

A.2 SIMULATED NEURAL DATA

Simulated neural data is used in Fig. 3 in the left part of panel b and both parts of panel c. We
generated samples for 100 neurons, 360 stimuli, and 31 repeats per stimulus. Briefly, we simulated
the data assuming a zero-inflated Log-Normal distribution where the parameters µ and σ2 of the
Log-Normal part are normal-gamma distributed. The complete description of the simulation is as
follows:

y ∼ ZIL(µ, σ2, q, τ)

µ ∼ N (µµ, σ
2/ν)

σ2 ∼ Gamma(ασ2 , βσ2)

q ∼ Beta(21, 117)

τ = exp(−10)

ν ∼ Gamma(8.29, 7.32)

ασ2 ∼ Gamma(27.81, 0.8)

βσ2 = ασ2/σ2
noise[

µµ

σ2
noise

]
∼ N

([
−3.13
0.36

]
,

[
0.158 −0.017
−0.017 0.003

])
The parameter values were chosen such that the resulting simulated data resembles the real neural
activity.

Simulating data with different SNRs In order to simulate data with different SNR values, we first
generated samples y as described above and then transformed the data into the log space z = log(y).
Next, to extract the noise we subtracted the mean per stimulus, scaled the noise and then added the
mean back. This results in a set of samples where the mean stays the same while the noise level
has been scaled. Finally, we transformed the data back into the original space by applying the exp
function on the resulting samples:

y = exp ((z − z) ∗ c+ z) ,

where z is the average across repeats and c is the scaling factor for the noise across repeats. The
SNR of the (simulated) responses is computed as Varx(Ey [y|x])

Ex[Vary(y|x)] where Varx(Ey[y|x]) is the variance of
averaged responses and Ex[Vary(y|x)] is the average noise level.

Data for comparison of likelihood and correlation The artificial data used in Fig. 6 is not
intended to simulate accurate patterns of neural activity. It is thus simply drawn from a normal and a
gamma distribution, in the left and right plot respectively. We sampled 5000 train and 500 test repeats
to three "stimuli" for two "neurons", resulting in three 2D distributions. In the case of gamma data
(left plot):
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[
y11
y12

]
∼ Gamma

([
.56
.43

]
,

[
.28
.34

])
[
y21
y22

]
∼ Gamma

([
.32
.27

]
,

[
.13
.39

])
[
y31
y32

]
∼ Gamma

([
.45
.34

]
,

[
.35
.37

])
And in the case of normal data (right plot):[

y11
y12

]
∼ N

([
15.
21.

]
,

[
1. 0.
0. 1.

])
[
y21
y22

]
∼ N

([
16.8
16.3

]
,

[
4.2 0.
0. .5

])
[
y31
y32

]
∼ N

([
21.0
10.1

]
,

[
2.5 0.
0. 5.3

])
The fitted likelihoods are a gamma and a χ2 distribution, respectively.
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B MOMENT MATCHING FOR ZERO-INFLATED LIKELIHOOD

In this section we demonstrate how to compute the moments of each component of a zero-inflated
mixture model. Since the uniform zero part does not have any parameters, we express the moments
of the non-zero part as a function of the moments of the entire data, under the assumption of a
zero-inflated distribution. We then use those for moment-matching the parameters of the non-zero
part. The detailed step-by-step derivation is as follows:

We first express the total mean µtotal and total variance σ2
total in terms of the means and variances of

each component of the mixture model. We then solve for mean µ1 and variance σ2
1 of the positive

distribution:
µtotal = Ey[y] = (1− q) · µ0 + q · µ1

To compute the total variance we make use of the law of total variance Vary(y) = Em[Vary|m(y)] +
Varm(Ey|m[y]) where

Em[Vary|m(y)] = Em[{Vary|m=0(y),Vary|m=1(y)}]
= (1− q) · σ2

0 + q · σ2
1

and
Varm(Ey|m[y]) = Em[Ey|m[y]2]− Em[Ey|m[y]]2

= Em[{Ey|m=0[y]
2,Ey|m=1[y]

2}]− Em[{Ey|m=0[y],Ey|m=1[y]}]2

= (1− q) · µ2
0 + q · µ2

1 − ((1− q) · µ0 + q · µ1)
2

= (1− q) · µ2
0 + q · µ2

1 − (1− q)2 · µ2
0 − q2 · µ2

1 − 2q(1− q) · µ0µ1

= ((1− q)− (1− q)2) · µ2
0 + (q − q2) · µ2

1 − 2q(1− q) · µ0µ1

= q(1− q) · µ2
0 + q(1− q) · µ2

1 − 2q(1− q) · µ0µ1

= q(1− q) · (µ0 − µ1)
2.

Notation E[{a, b, ...}] is used to denote that the expectation involves the terms in the set {a, b, ...}.
The total variance can then be computed as

σ2
total = Vary[y] = Em[Vary|m(y) + Varm(Ey|m[y])

= (1− q) · σ2
0 + q · σ2

1 + q(1− q) · (µ0 − µ1)
2

The mean and variance of the non-zero part can thus be computed as

µ1 =
µtotal − (1− q) · µ0

q

σ2
1 =

σ2
total − (1− q) · σ2

0 − q(1− q)(µ0 − µ1)
2

q

The parameters of the non-zero part can then be obtained by moment matching with µ1 and σ2
1 . Note,

however, that the mean of the non-zero distribution is not µ1 itself but µ1 − τ . In a case where there
are no responses above the zero-threshold τ , µ1 and σ2

1 are not defined because of the denominator
q = 0. In this case we assign a small value of 0.1 to the mean and 0.3 to the variance. We chose these
values because they resulted in the best GS model performance for the PE approach.

B.1 ZERO-INFLATED LOG-NORMAL LIKELIHOOD

In the case of a Log-Normal non-zero part, the parameters µLogN and σ2
LogN evaluate to

µLogN = log

 µ1 − τ√
σ2
1

(µ1−τ)2 + 1


σ2
LogN = log

(
σ2
1

(µ1 − τ)2
+ 1

)
Note that µ0, µ1, σ2

0 and σ2
1 are the means and variances of the zero and non-zero part of the

distribution, respectively. The parameters µLogN and σ2
LogN are not the mean and variance of the

Log-Normal distribution but of the underlying Normal distribution in log space.
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C POSTERIOR PREDICTIVE FOR ZERO-INFLATED LIKELIHOOD

Our goal is to probabilistically infer the parameters of the distribution per image, in a leave-one-out
manner. That is, to compute p(yi|y\i, x). For brevity, we drop the conditioning on x in the following
derivations. Following the graphical model in Fig. 2, let’s define some of the density functions that
will be used later on:

p(y, θ,m, q) = p(y|θ,m)p(m|q)p(θ)p(q)
p(m|q) = qm · (1− q)1−m

p(y|θ,m) = p(y|θ0)1−m · p(y|θ1)m

p(q) = qα−1 · (1− q)β−1 · 1

B(α, β)
Marginalizing over m:

p(y, θ, q) =
∑

m∈{0,1}

p(y, θ,m, q)

= p(θ)p(q)
∑

m∈{0,1}

p(y|θ,m)p(m|q)

= p(θ)p(q) [p(y|θ,m = 0)p(m = 0|q) + p(y|θ,m = 1)p(m = 1|q)]
= p(θ)p(q) [p(y|θ0)(1− q) + p(y|θ1) · q]
= p(θ)p(q)p(y|θ, q)

Our goal is to compute the posterior predictive distribution p(yi|y\i):

p(yi|y\i) =

∫
θ,q

p(yi, θ, q|y\i)dθdq

=

∫
θ,q

p(yi|θ, q,y\i)︸ ︷︷ ︸
=p(yi|θ,q) since yi⊥⊥y\i|θ,q

p(θ, q|y\i)dθdq

=

∫
θ,q

p(yi|θ, q)︸ ︷︷ ︸
likelihood

p(θ, q|y\i)︸ ︷︷ ︸
posterior

dθdq

Let us now compute the quantities we need for the posterior predictive p(yi|y\i), for a single neuron
and a single image.

We know the likelihood: p(y|θ, q) = (1− q) · p(y|θ0) + q · p(y|θ1). Since the two distributions of
our mixture model are not overlapping we can re-write the likelihood as follows:

p(y|θ, q) =
{
(1− q) · p(y|θ0) if y ≤ τ (m = 0)

q · p(y|θ1) otherwise (m = 1)

The posterior can be derived as follows:

p(θ, q|y\i) ∝ p(y\i|θ, q)p(θ)p(q)

∝

p(θ0) ·
∏

yj∈y0
\i

(1− q) · p(yj |θ0)

 ·

p(θ1) ·
∏

yj∈y1
\i

q · p(yj |θ1)

 · p(q)

∝

p(θ0) ·
∏

yj∈y0
\i

p(yj |θ0)

 ·

p(θ1) ·
∏

yj∈y1
\i

p(yj |θ1)

 · (1− q)n0 · qn1 · p(q)

∝ p(θ0)p(y
0
\i|θ0) · p(θ1)p(y

1
\i|θ1) · (1− q)n0 · qn1 · qα−1 · (1− q)β−1 · 1

B(α, β)

∝ p(θ0)p(y
0
\i|θ0) · p(θ1)p(y

1
\i|θ1) · (1− q)n0+β−1 · qn1+α−1 · 1

B(α, β)
,

15



Published as a conference paper at ICLR 2023

where y0
\i are the zero responses, y1

\i are the positive responses, and n0 and n1 are the number of
zero and positive responses, respectively. Since the joint distribution factorizes, the whole posterior
factorizes (because it is just a re-scaled version of the joint). Normalizing each factor by its own
constant, respectively, we get:

p(θ, q|y\i) =
p(θ0)p(y

0
\i|θ0)

Z1
·
p(θ1)p(y

1
\i|θ1)

Z2
· (1− q)n0+β−1 · qn1+α−1

B(n1 + α, n0 + β)

= p(θ0|y0
\i) · p(θ1|y

1
\i) · Beta(n1 + α, n0 + β) (7)

Note that in the case of the posterior over q since the distribution takes the form of a beta distribution
we can simply adjust the denominator to the appropriate normalization factor for a beta distribution
B(n1 + α, n0 + β).

Let us now combine these two components of the posterior predictive to compute p(yi|y\i):

p(yi|y\i) =

∫
θ,q

p(yi|θ, q)p(θ, q|y\i) dθdq

=

∫
θ,q

p(yi|θ, q)p(θ0|y0
\i)p(θ1|y

1
\i)p(q|y\i) dθdq

=

∫
q

(∫
θ

p(yi|θ, q)p(θ0|y0
\i)p(θ1|y

1
\i) dθ

)
︸ ︷︷ ︸

=p(yi|q,y\i)

p(q|y\i) dq

=

∫
q

p(yi|q,y\i)p(q|y\i) dq (8)

The posterior predictive can then be evaluated depending on whether the target response yi is below
the zero-threshold τ or above it:

If yi < τ :

p(yi|y\i) =

∫
q

∫
θ

p(yi|θ, q)p(θ0|y0
\i)p(θ1|y

1
\i) dθ p(q|y\i) dq

=

∫
q

∫
θ

p(yi|θ0, q)p(θ0|y0
\i)p(θ1|y

1
\i) dθ p(q|y\i) dq

=

∫
q

∫
θ0

p(yi|θ0, q)p(θ0|y0
\i) dθ0

∫
θ1

p(θ1|y1
\i) dθ1︸ ︷︷ ︸

=1

p(q|y\i) dq

=

∫
q

∫
θ0

p(yi|θ0, q)p(θ0|y0
\i) dθ0 p(q|y\i) dq

=

∫
q

p(yi|q,y0
\i) p(q|y\i) dq

=

∫
q

(1− q) · p(yi|y0
\i) p(q|y\i) dq

= p(yi|y0
\i)

∫
q

(1− q) · p(q|y\i) dq
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And if yi ≥ τ :

p(yi|y\i) =

∫
q

∫
θ1

p(yi|θ1, q)p(θ1|y1
\i) dθ1 p(q|y\i) dq

=

∫
q

p(yi|q,y1
\i) p(q|y\i) dq

=

∫
q

q · p(yi|y1
\i) p(q|y\i) dq

= p(yi|y1
\i)

∫
q

q · p(q|y\i) dq

This means that depending on the target response yi we either need to compute the posterior predictive
of the zero distribution (i.e., Uniform) or positive distribution (i.e., Log-Normal).

Finally, the complete posterior predictive distribution is estimated via numerical integration over q.
Numerical integration in this particular case is feasible since q only takes values between 0 and 1.

C.1 ZERO-INFLATED LOG-NORMAL LIKELIHOOD

We now apply the generic derivation in the previous section to zero-inflated Log-Normal distribution
and derive the posterior predictive distribution for it. Let us start by assuming that the target response
yi is below the zero-threshold τ . In this case, the response falls into the Uniform distribution whose
parameters are fixed and do not depend on the other zero responses. Therefore, the posterior predictive
stays a uniform distribution: p(yi|y\i) = 1/τ .

Alternatively, the target response yi could be higher than the zero-threshold τ falling into the Log-
Normal distribution. In this case, we first transform the responses via the log function into the
Gaussian space, then compute the posterior predictive distribution, and finally normalize the resulting
distribution to go back into the log space:

p(yi|y\i) = p(log(yi)| log(y\i)) · | det∇yi exp(yi)|

= p(log(yi)| log(y\i)) ·
1

yi
(9)

We now focus on computing the posterior predictive in the Gaussian space. For brevity let us assign
log(y) to a new variable z = log(y). To compute the posterior predictive distribution we need to
specify a prior over our likelihood parameters, in this case µ and σ2. For a Gaussian distribution with
unknown µ and σ2 the conjugate prior is the Normal-inverse gamma distribution with parameters µ0,
ν, α, and β. These parameters are estimated form the data. Once the prior parameters are known,
we can then compute the posterior predictive distribution, which is a t-distribution in the case of a
Gaussian likelihood:

p(zi|z\i) = t2α′

(
zi|µ

′
,
β

′
(ν

′
+ 1)

ν′ + α′

)
, (10)

where

µ
′
=

νµ0 + nz̄\i

ν + n

ν
′
= ν + n

α
′
= α+

n

2

β
′
= β +

1

2

n∑
zj∈z\i

(zj − z̄\i)
2 +

nν(z̄\i − µ0)
2

2(ν + n)

with n being the number of left-out repeats z\i and z̄\i being the mean of the left-out repeats. As
the final step, to compute the posterior predictive in the original log space, we plug Eq. 10 back into
Eq. 9:
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p(yi|q,y\i) = t2α′

(
log(yi)|µ

′
,
β

′
(ν

′
+ 1)

ν′ + α′

)
· 1

yi
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D IN WHICH CASES DOES THE BAYESIAN GS OUTPERFORM THE PE

The PE approach to obtain a Gold Standard model fails in many cases which is the reason behind
using the Bayesian Posterior Predictive approach instead. Fig. S1 provides insight into why and in
which cases the PE fails compared to the Bayesian GS. In summary: This is due to the combination
of low-valued responses that fall into the positive distribution and the sparsity in the data:
Target responses that are slightly greater than the threshold value are not covered by the uniform
distribution of the zero part but are an extreme value for the positive part (left panel). When this
coincides with overfitting due to sparse data, i.e. low proportion q of positive responses (right panel),
the Point Estimate results in a low log-likelihood. Note that the reason for this not being visible for
the smallest value of q (q = 0) is that in this case no positive responses were available to estimate the
PE parameters on. Since the target trial could still be positive, we needed to assign the PE parameters
of the positive part of the distribution as a hyper parameter. This is equivalent to applying a delta-peak
prior and results in a quasi-Bayesian approach for the PE in these rare cases.
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Fig. S1: Comparison between Bayesian and Point Estimate (PE) Gold Standard models. Since the two
GS models share the same zero distribution, this analysis was only performed on the responses that
fall into the positive distribution (y ≥ τ ). a: Distance of the positive response from the zero-threshold
τ as a function of the difference between Bayesian and the PE GS models. b: Fraction q\i of positive
leave-one-out responses y\i as a function of the difference between Bayesian and PE GS models.
Data is per neuron, per repeat, and per stimulus).
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E NORMALIZED INFORMATION GAIN IN TERMS OF KL DIVERGENCES

Here we provide the normalized information gain formulated in terms of KL divergence and derive
the estimate presented in Eq.1:

NInGa =
⟨DKL [p(y | x)∥p0(y)]⟩x − ⟨DKL[p(y | x)∥p̂(y | x)]⟩x
⟨DKL [p(y | x)∥p0(y)]⟩x − ⟨DKL [p(y | x)∥p∗(y | x)]⟩x

=

〈〈
log p(y|x)

p0(y)

〉
y|x

〉
x

−
〈〈

log p(y|x)
p̂(y|x)

〉
y|x

〉
x〈〈

log p(y|x)
p0(y)

〉
y|x

〉
x

−
〈〈

log p(y|x)
p∗(y|x)

〉
y|x

〉
x

=

〈
⟨log p̂(y | x)⟩y|x

〉
x
−
〈
⟨log p0(y)⟩y|x

〉
x〈

⟨log p∗(y | x)⟩y|x
〉
x
−
〈
⟨log p0(y)⟩y|x

〉
x

≈
∑

i (log p̂(yi | xi)− log p0(yi))∑
i (log p∗(yi | xi)− log p0(yi))
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F RELATION BETWEEN NORMALIZED INFORMATION GAIN AND FEVE

Here we go through the complete derivation underlying Eq. 5. Let us start by defining FEVE:

FEV E = 1−
〈
(µx − µ̂x)

2
〉
x

σ2
s

, (11)

where µx is the true conditional mean, µ̂x the estimated conditional mean by the model, and σ2
s is the

signal variance. An estimator of FEVE was previously used by Cadena et al. [7] (which we also use
to compute FEVE in Fig. 5b):

FEV E = 1−
〈
(µx − µ̂x)

2
〉
x

σ2
s

= 1−
〈
(µx − µ̂x)

2
〉
x

σ2
y − σ2

ϵ

= 1−
σ2
ϵ +

〈
(µx − µ̂x)

2
〉
x
− σ2

ϵ

σ2
y − σ2

ϵ

= 1−

〈
(y − µx)

2
〉
x,y

+
〈
(µx − µ̂x)

2
〉
x
−

=0︷ ︸︸ ︷
2 ⟨(y − µx)(µx − µ̂x)⟩x,y −σ2

ϵ

σ2
y − σ2

ϵ

= 1−

〈
(y − µx + µx − µ̂x)

2
〉
x,y

− σ2
ϵ

σ2
y − σ2

ϵ

= 1−

〈
(y − µ̂x)

2
〉
x,y

− σ2
ϵ

σ2
y − σ2

ϵ

, (12)

where σ2
y = Var(y) and σ2

ϵ = Ex[Var(y|x)] are estimated from the data. Now let us expand
⟨DKL[p(y|x)||p̂(y|x)]⟩x in the case of a Gaussian likelihood:

⟨DKL[p(y|x)||p̂(y|x)]⟩x = ⟨log (p(y|x))− log(p̂(y|x))⟩x,y

=

〈
log
((

2πσ2
x

)−1/2
)
− (yx − µx)

2

2σ2
x

− log
((

2πσ̂2
x

)−1/2
)
+

(yx − µ̂x)
2

2σ̂2
x

〉
x,y

=

〈
log

(
σ̂x

σx

)
− (yx − µx)

2

2σ2
x

+
(yx − µ̂x)

2

2σ̂2
x

〉
x,y

=

〈
log

(
σ̂x

σx

)
− (yx − µx)

2

2σ2
x

〉
x,y

+

〈
(yx − µx + µx − µ̂x)

2

2σ̂2
x

〉
x,y

=

〈
log

(
σ̂x

σx

)
− 1

2

〉
x

+

〈
(yx − µx)

2 + (µx − µ̂x)
2 + 2(yx − µx)(µx − µ̂x)

2σ̂2
x

〉
x,y

=

〈
log

(
σ̂x

σx

)
− 1

2

〉
x

+

〈〈
(yx − µx)

2
〉
y|x + (µx − µ̂x)

2 + 2

=0︷ ︸︸ ︷
⟨(yx − µx)(µx − µ̂x)⟩y|x

2σ̂2
x

〉
x

=

〈
log

(
σ̂x

σx

)
− 1

2

〉
x

+

〈
σ2
x + (µx − µ̂x)

2

2σ̂2
x

〉
x

=

〈
log

(
σ̂x

σx

)
− 1

2
+

σ2
x + (µx − µ̂x)

2

2σ̂2
x

〉
x

=

〈
log

(
σ̂x

σx

)
− 1

2
+

σ2
x

2σ̂2
x

+
(µx − µ̂x)

2

2σ̂2
x

〉
x

= ⟨f(σ̂x)⟩x +
1

2

〈
(µx − µ̂x)

2

σ̂2
x

〉
x

(13)
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where σ̂x is the noise estimated by the model, σx is the true noise, and f(σ̂x) = log
(

σ̂x

σx

)
− 1

2 +
σ2
x

2σ̂2
x

.
Note that if σ̂x = σx then f(σ̂x) = 0, and we would have:

⟨DKL[p(y|x)||p̂(y|x)]⟩x =
1

2

〈
(µx − µ̂x)

2

σ̂2
x

〉
x

The term with the expectation can further be simplified. If the noise variance σ̂2
x is not dependent

on the stimulus x, which is the case for a Gaussian distribution, then σ̂2
x = σ̂2

ϵ =
〈
σ̂2
x

〉
x

and we can
simply bring it outside the expectation:〈

(µx − µ̂x)
2

σ̂2
x

〉
x

=

〈
(µx − µ̂x)

2
〉
x

σ̂2
ϵ

(14)

This would also mean that f(σ̂x) = f(σ̂ϵ) = log
(

σ̂ϵ

σϵ

)
− 1

2 +
σ2
ϵ

2σ̂2
ϵ

. However, if the noise variance is
stimulus-dependent then the term with the expectation can be approximated via first-order Taylor ex-
pansion around the expected values of the numerator and denominator c = (

〈
(µx − µ̂x)

2
〉
x
,
〈
σ̂2
x

〉
x
):〈

(µx − µ̂x)
2

σ̂2
x

〉
x

≈
〈
(µx − µ̂x)

2
〉
x

⟨σ̂2
x⟩x

≈
〈
(µx − µ̂x)

2
〉
x

σ̂2
ϵ

Since we are dealing with a Gaussian distribution we will continue with the case where noise variance
is not stimulus-dependent. However, the derivation applies to the approximate case too. Let us now
relate Eq. 11 and Eq. 13:

⟨DKL[p(y|x)||p̂(y|x)]⟩x = f(σ̂ϵ) +
1

2

〈
(µx − µ̂x)

2
〉
x

σ̂2
ϵ

= f(σ̂ϵ) +
1

2

〈
(µx − µ̂x)

2
〉
x

σ2
ϵ

× σ2
s

σ2
s

= f(σ̂ϵ) +
1

2

〈
(µx − µ̂x)

2
〉
x

σ2
s

× σ2
s

σ̂2
ϵ

= f(σ̂ϵ) +
1

2
(1− FEV E)× σ2

s

σ̂2
ϵ

(15)

Note that when estimated noise variance matches the true noise variance, then Eq. 15 becomes:

⟨DKL[p(y|x)||p̂(y|x)]⟩x =
1

2
(1− FEV E)× SNR
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G RELATION BETWEEN NORMALIZED INFORMATION GAIN AND
CORRELATION

Another commonly used metric is the trial-averaged correlation between the model prediction
µ̂x = ⟨ŷ|x⟩ŷ|x and true responses µx = ⟨y|x⟩y|x:

ρ(µ̂x, µx) =
Cov(µ̂x, µx)√

σ̂2
s · σ2

s

To relate this quantity to ⟨DKL[p(y|x)||p̂(y|x)]⟩x, we start by expanding Eq. 14. Specifically, we
add and subtract µ = ⟨µx⟩ = ⟨µ̂x⟩ in the numerator:〈

(µx − µ̂x)
2
〉
x

σ̂2
ϵ

=

〈
((µx − µ)− (µ̂x − µ))2

〉
x

σ̂2
ϵ

=

〈
(µx − µ)2 + (µ̂x − µ)2 − 2(µx − µ)(µ̂x − µ)

〉
x

σ̂2
ϵ

=
σ2
s + σ̂2

s − 2Cov(µ̂x, µx)

σ̂2
ϵ

=
σ2
s + σ̂2

s − 2Cov(µ̂x, µx)

σ̂2
ϵ

× σ2
s

σ2
s

=
σ2
s + σ̂2

s − 2Cov(µ̂x, µx)

σ2
s

× σ2
s

σ̂2
ϵ

=

(
1 +

σ̂2
s

σ2
s

− 2σ̂s

σs
ρ(µ̂x, µx)

)
× σ2

s

σ̂2
ϵ

Putting this back into Eq. 13:

⟨DKL[p(y|x)||p̂(y|x)]⟩x = f(σ̂ϵ) +
1

2

(
1 +

σ̂2
s

σ2
s

− 2σ̂s

σs
ρ(µ̂x, µx)

)
× σ2

s

σ̂2
ϵ

(16)

Again, if the model’s noise variance matches the true noise variance (σ2
ϵ = σ̂2

ϵ ), we have:

⟨DKL[p(y|x)||p̂(y|x)]⟩x =
1

2

(
1 +

σ̂2
s

σ2
s

− 2σ̂s

σs
ρ(µ̂x, µx)

)
× SNR

If we further assume that the model’s signal variance matches the true signal variance, σ̂2
s = σ2

s , we
get:

⟨DKL[p(y|x)||p̂(y|x)]⟩x = (1− ρ(µ̂x, µx))× SNR
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H OPTIMIZING CORRELATION ONLY FOCUSES ON MATCHING
TRIAL-AVERAGED RESPONSES

In addition to trial-averaged correlation, neural encoding models are also evaluated via single-trial
correlation [23]. While in the trial-averaged case the correlation obviously only focuses on conditional
means, here we show this is the case even for single-trial correlation. That is, optimizing single-trial
correlation only focuses on matching the conditional means:

ρst(µ̂x, y) =
Cov(µ̂x, y)√

σ̂2
sσ

2
y

=
Cov(µ̂x, y)√

σ̂2
sσ

2
y

=
Cov(E[µ̂x|x],E[y|x]) +

=0︷ ︸︸ ︷
E[Cov(µ̂x, y|x)]√

σ̂2
sσ

2
y

=
Cov(µ̂x, µx)√

σ̂2
sσ

2
y

where µ̂x is the predicted conditional mean, µx is the trial-averaged response, σ̂2
s is the model signal

variance, and σ2
y is the total data variance computed across all trials. Note that this quantity is

invariant to affine transformations of the predicted conditional mean.
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I OTHER APPROACHES FOR A GS ESTIMATE

I.1 MAXIMUM A POSTERIORI ESTIMATE

Instead of using the full posterior predictive to obtain a good GS model, one can use the maximum a
posteriori (MAP) estimate of the distribution parameters. Here, we show the derivation of the MAP
estimate for the zero-inflated Log-Normal distribution. However, it does not perform as well as the
posterior predictive approach, see Fig. S2.

The maximum a posteriori estimator of a parameter ϕ ∈ {θ0, θ1, q} of a zero inflated likelihood can
be computed as

ϕ̂MAP = argmax
ϕ

p(y\i|θ, q)p(θ)p(q)

= argmax
ϕ

p(y0
\i|θ0)p(θ0)p(y

1
\i|θ1)p(θ1) · q

n1(1− q)n0p(q)

= argmax
ϕ

log
(
p(y0

\i|θ0)p(θ0)
)
+ log

(
p(y1

\i|θ1)p(θ1)
)
+ log (qn1(1− q)n0p(q))

where the second step is analogous to Eq. 7.

MAP estimate for q. In order to obtain the maximum a posteriori estimator for q we set the deriva-
tive with respect to q to zero. As a prior for q we choose a Beta distribution p(q) = Beta(q;α′′, β′′):

q̂MAP = argmax
q

log (qn1(1− q)n0p(q))

= argmax
q

log

(
qn1(1− q)n0

qα
′′−1(1− q)β

′′−1

B(α′′, β′′)

)
= argmax

q
log
(
qn1+α′′−1(1− q)n0+β′′−1

)
︸ ︷︷ ︸

:=f(q)

∂f(q)

∂q
=

∂

∂q

[
log
(
qn1+α′′−1(1− q)n0+β′′−1

)]
=

∂

∂q
[(n1 + α′′ − 1) log(q) + (n0 + β′′ − 1) log(1− q)]

= (n1 + α′′ − 1)
1

q
− (n0 + β′′ − 1)

1

1− q
!
= 0

q̂MAP =
n1 + α′′ − 1

n0 + n1 + α′′ + β′′ − 2

MAP estimate for θ1. The parameters θ1 are all parameters of the non-zero part of the distribution.
In the case of a LogNormal distributions, this is θ1 ∈ {µ, σ2} and we assume a Normal-Inverse-
Gamma prior p(θ1) = NG−1(µ′′, λ′′, α′′, β′′). The posterior then follows a Normal-Inverse-Gamma
distribution as well

p(y1
\i|θ1)p(θ1) ≈ p(θ1|y1

\i)

= NG−1(µ′, λ′, α′, β′)

=

√
λ′β′α′

√
2πΓ (α′)

1

σ

(
1

σ2

)α′+1

exp

(
−2β′ + λ′(µ− µ′)2

2σ2

)
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with

µ′ =
µ′′ν′′ + n1y

ν′′ + n1

ν′ = ν′′ + n1

α′ = α′′ +
n1

2

β′ = β′′ +
1

2

n1∑
yj∈y1

\i

(yj − y)2 +
n1ν

′′(y − µ′′)2

2(ν′′ + n1)

where y := 1/n1

∑
yj∈y1

\i
yj

The maximum a posteriori estimator of µ can then be obtained as follows:

µ̂MAP = argmax
µ

log
(
p(y1

\i|θ1)p(θ1)
)

= argmax
µ

log

(
exp

(
−2β′ + λ′(µ− µ′)2

2σ2

))
= argmax

µ
−λ′(µ− µ′)2

2σ2

= µ′

And for σ2:

σ̂2
MAP = argmax

σ2

log

(
1

σ

(
1

σ2

)α′+1

exp

(
−2β′ + λ′(µ− µ′)2

2σ2

))
︸ ︷︷ ︸

:=f(σ2)

∂f(σ2)

∂σ2
=

∂

∂σ2

(
−1

2
log σ2 − (α′ + 1) log σ2 − 2β′ + λ′(µ− µ′)2

2

1

σ2

)
= (−α′ − 3

2
)
1

σ2
+

2β′ + λ′(µ− µ′)2

2

1

σ4

!
= 0

σ̂2
MAP =

2β′ + λ′ (µ̂MAP − µ′)
2

2α′ + 3

MAP estimate for θ0 In general, the maximum a posteriori estimator for θ0 can be obtained
analogously. In our case we model the zero part of the response distribution with a uniform distribution
which does not have a parameter θ0.

26



Published as a conference paper at ICLR 2023

I.2 GOLD STANDARD MODEL AS A MIXTURE OF NULL AND POSTERIOR PREDICTIVE
DISTRIBUTIONS

For some individual neurons and images the null model performs better than the Gold Standard
model because the prior of the GS model is fitted per neuron but not per image. In cases with few
positive responses where the GS model has to rely heavily on the prior, the performance can thus be
sub-optimal for individual images. One idea, suggested by one of the reviewers, to circumvent this is
to build a mixture model p∗∗ between the GS p∗ and Null p0 model:

p∗∗(yi|y\i, y) = wi · p∗(yi|y\i) + (1− wi) · p0(y),

where w ∈ [0, 1]. We optimized w in a leave-one-out manner, just like p∗ itself is obtained in a
leave-one-out-manner: we obtained a w for each target repeat (per neuron per image) by optimizing
p∗∗ with respect to w on the other repeats. However, the resulting GS mixture model does not
outperform the Bayesian GS model, see Fig. S2.
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Fig. S2: Comparison of different methods to obtain an upper bound (GS): a–d: Various GS model
log-likelihood vs. the Null model log-likelihood. Data is per neuron (averaged over repeats and
stimuli). e: The full Bayesian Posterior Predictive outperforms the Point Estimate, the Maximum a
posteriori (MAP), and the Mixture model. Each bar is the difference between the corresponding GS
model and the Null model, averaged over repeats, stimuli, and neurons. Error bars correspond to the
SEM and evaluate to ±0.03 for the PE and ±0.002 for the other GS models.
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J NINGA ACROSS DIFFERENT DATASETS

We performed an analysis similar to Fig. 4c (blue bar) but for multiple datasets. We trained the
same model described in section 3.2 on five different additional datasets from [23]. Our results
show that using NInGa allows a better comparison of models that are trained on different datasets
which can exhibit different levels of achievable performance (Fig. S3, compare left vs. right) . When
models with the same architecture are trained on different datasets the resulting performances are
more similar in NInGa (Eq. 1) than in the unnormalized IG (i.e. the numerator of Eq. 1), because the
performance of the model is reported relative to the Null and Gold Standard model.
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Fig. S3: Comparison of Trained Model performance on different datasets. Left: Models evaluated on
simple Information Gain (IG), i.e. the numerator of Eq. 1. Right: Models evaluated on Normalized
Information Gain (NInGa), i.e. the full Eq. 1.
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