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Abstract

Evaluating the open-form textual responses generated by Large Language Models
(LLMs) typically requires measuring the semantic similarity of the response to a
(human generated) reference. However, there is evidence that current semantic
similarity methods may capture syntactic or lexical forms over semantic content.
While benchmarks exist for semantic equivalence, they often suffer from high
generation costs due to reliance on subjective human judgment, limited availability
for domain-specific applications, and unclear definitions of equivalence. This
paper introduces a novel method for generating benchmarks to evaluate semantic
similarity methods for LLM outputs, specifically addressing these limitations.
Our approach leverages knowledge graphs (KGs) to generate pairs of natural-
language statements that are semantically similar or dissimilar, with dissimilar
pairs categorized into one of four sub-types. We generate benchmark datasets in
four different domains (general knowledge, biomedicine, finance, biology), and
conduct a comparative study of semantic similarity methods including traditional
natural language processing scores and LL.M-as-a-judge predictions. We observe
that the sub-type of semantic variation, as well as the domain of the benchmark
impact the performance of semantic similarity methods, with no method being
consistently superior. Our results present important implications for the use of
LLM-as-a-judge in detecting the semantic content of text. Code is available at
https://github.com/QiyaoWei/semantic-kg and the dataset is available at
https://huggingface.co/datasets/QiyaoWei/Semantic-KG.

1 Introduction

Large language models (LLMs) are increasingly being adopted across diverse domains [3]], where
their usage is shifting beyond simple question-answering, towards applications involving language
parsing and understanding [10]. For example, LLMs in retrieval-augmented generation (RAG)
applications might be required to review and synthesize large quantities of text, containing potentially
contradictory findings, to identify passages relevant to a user’s query. In addition, LLMs are being
used to verify the outputs of other text generation methods, such as the LLM-as-a-judge paradigm,
which asks LLMs to simulate ground-truth feedback when the problem is not easily verifiable. It
is clear that having robust and reliable LLM evaluation pipelines are crucial in these situations [24]]
otherwise we run the risk of deploying models that perform suboptimally in real-life applications,
potentially leading to incorrect decisions, user dissatisfaction, or even serious consequences in
high-stakes applications like biomedicine [35].

When parsing large textual corpora it is important these LLMs detect semantic rather than
syntactic content. Two pieces of text might be syntactically similar, in terms of their token-
content, but semantically dissimilar, in terms of their overall meaning (see Figure . There is
a rich suite of semantic similarity methods from the natural language processing (NLP) field,
such as token-based methods (e.g. ROUGE, BLEU) and language-embedding models [[16} 22].
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However commonly used metrics such as ROUGE
and BLEU have been shown to capture surface
similarity while ignoring semantic content and
can fail in the presence of small perturbations to
text that alter their meaning [25} 9, [19]. As LLMs
are increasingly deployed to diverse applications
requiring deep textual understanding, it is essential
to ensure that they can capture subtle variations
in the semantic meaning of text. Additionally, in
the LLM-as-a-judge paradigm, it is important for
evaluation metrics to reflect the semantic content
of responses rather than rewarding superficial sim-
ilarities. There is therefore a need for high-quality
semantic similarity benchmarks, i.e. benchmarks
that can test semantic similarity methods across a
range of diverse domains.

Several benchmark datasets exist to test a model’s
ability to detect semantic equivalence between
text, such as the STS benchmark, Winograd, and
MRPC [2, 13, [12, |8]]. There are also domain-
specific benchmarks like BIOSSES for testing
semantic equivalence in the biomedical domain
[32]. However, these benchmarks are often costly
to generate, relying on expensive human judge-
ment [, 4]. Furthermore, it is often not clear how
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Figure 1: Difference between semantic and
syntactic variations. Two text samples that are
syntactically different but semantically equiva-
lent (top), and syntactically similar but semanti-
cally different (bottom). ROUGE-1 and ROUGE-
L scores are shown for each statement pair, high-
lighting the limitations of these methods to detect
semantic meaning.

semantic equivalence is defined, with several of

these benchmarks relying on subjective human judgement rather than a clear notion of semantic
equivalence [41]]. Despite efforts to reduce human judgment subjectivity via annotation guidelines and
structured scores such as Likert scales [2], human annotations may still be conflicting or unavailable
for a specific domain.

Contribution In this paper we introduce a scalable knowledge-graph (KG) based framework for
generating semantic similarity benchmark data for any domain. The key advantage of our approach
is that we can specify the semantic content of a natural language statement and directly control
the semantic similarity/dissimilarity through KG perturbations, allowing us to generate a semantic
similarity benchmark without having to rely on human judgment. Our contributions in this paper are
threefold: (C1) We introduce the Semantic-KG framework that can generate semantic benchmark data
containing targeted semantic variations in text. (C2) We publish a version of this dataset containing
text from four different domains: General-knowledge, Biomedicine, Finance, and Biology. (C3)
We assess the performance of several semantic-similarity methods including LL.M-as-a-judge, and
traditional NLP methods on our benchmark, presenting a comparison of how different methods
compare at evaluating the semantic similarity of statements from various domains and contexts. The
paper is organised as follows: In section 2, we present our semantic similarity benchmark based on
KGs. Then, we summarize the works related to benchmarks for measuring semantic similarities.
Finally, we benchmark the performance of semantic-similarity methods across the generated datasets.

2 The Semantic-KG Framework

Our framework seeks to generate benchmark datasets to evaluate the ability of semantic textual
similarity (STS) methods such as LLM-as-a-judge, ROUGE, BLEU etc. to detect variations in the
semantic content of text. We use knowledge graphs (KGs) which represent the semantic relationships
between entities across diverse domains. A KG represents relationships as a graph, storing the entities
as nodes and the relationships as edges. The data can be stored in a triple format consisting of a
source-node, relation, and target-node.

Generating our benchmark involves several key stages (see Figure[2). First, we apply perturbations to
KGs to subtly alter the semantic relationships between entities, applying one of 4 perturbation-types,
corresponding to different types of semantic variation in text. Next we use an LLM to generate textual
statements grounded by the original and perturbed KGs. These generated statements are used to form
similar and dissimilar statement pairs that can be used as an evaluation benchmark dataset (see Figure



[B). To ensure the quality of all LLM generated statements, each statement undergoes a validation
step to ensure we can reconstruct the KG using the generated text. Our framework can be applied
to any domain for which KGs are available, enabling the scalable generation of semantic-similarity
evaluation benchmarks across a wide range of domains.

In this section we detail the four key steps of the proposed method: 1) Subgraph sampling, 2)
Subgraph perturbation, 3) Response generation, 4) Response validation.
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Figure 2: Overview of the Semantic KG Framework. Semantic KG consists of 4 stages: 1)
Sampling: A subgraph is sampled from a knowledge-graph dataset, 2) Perturbation: The knowledge-
graph is perturbed, 3) Generation: Textual statements are generated from the subgraph and perturbed
subgraphs, 4) Validation: Statements are validated for correctness using reconstruction accuracy.

2.1 Subgraph sampling

In the first stage of generation we sample a subgraph from a KG database. A KG database stores
knowledge in a particular domain in the form of nodes describing individual entities, and edges
describing relationships between entities.

As a first step, we randomly select a node in the KG as the seed node. Then, we perform subgraph
sampling by traversing the node’s neighbors in a breadth-first search (BFS) manner, such that between
5 and 20 neighbors are randomly selected for exploration. To ensure diversity of nodes, we also
reduce the selection probability of visiting nodes of a given type (e.g. nodes of type “Person”) once a
node of a that type has been visited. We use BFS rather than depth-first search (DFS) for the same
reason, namely to encourage exploration in node diversity when sampling the subgraph. The total
number of nodes and edges in the sampled subgraphs are shown in Table[3]and[6]

2.2 Subgraph perturbation

We next introduce a set of perturbations into the sampled subgraphs to modify the semantic content
of the subgraph. The goal of a perturbation is to alter the semantic content of a subgraph in a targeted
manner. The perturbations we apply either remove existing information, or modify information.
Perturbations are applied both to entities contained within the subgraph, through perturbations to
nodes, and the relationships between entities, by targeting edges. We apply perturbations of the
following types:

* Node Removal: A node is randomly removed from the subgraph. All edges between the
removed node and its neighbours are also removed. Nodes are only removed if connected
nodes in the subgraph have at least 2 neighbours to avoid creating isolated nodes.

* Node Replacement: A node is randomly replaced with another node and all edges to and
from the old node are modified to point to and from the new node. To ensure the sampled



node maintains logical consistency with the existing subgraph, the node is only replaced
by nodes of same type. For example a node of type “Person” would only be replaced by
another person.

» Edge Removal: An edge is randomly removed between 2 nodes. As with node removal, an
edge is only removed if both nodes have at least 2 edges to avoid creating an isolated node.

Edge Replacement: The value of an edge is randomly replaced with a new value. An edge-
replacement value is chosen such that it modifies the meaning of the triple. For example,
for the triple (“benidipine”, “increases effect”, “bradycardia”), a valid edge-replacement
value for “increases effect” might be “decreases effect”. Or for the triple (“Henry VIII”,
“child”, “Elizabeth I’), “parent” or “spouse” would be a valid replacement for “child” as
this fundamentally alters the relationship. For each dataset a custom mapping was manually
defined, specifying the allowed edge-replacements for a given edge-value. Please see

Appendix [H|for the defined mapping for each dataset.

A random number of perturbations between 1 and 70% of the total number of nodes in the graph was
applied to any given subgraph, to ensure variability in the semantic similarity between a subgraph
and perturbed subgraph pair.

For the benchmark presented in this paper our choice of perturbation was arbitrary, aiming to address
common forms of semantic variation such as missing or conflicting information. However, the
flexibility of our framework allows for the incorporation of new perturbations tailored to specific
applications, such as the introduction of noise or irrelevant information, in future benchmarks.

2.3 Response generation

In this stage we convert the subgraph and perturbed subgraphs into natural-language statements
using an LLM. First, each subgraph is converted into a triple format, consisting of “source-node”,
“relation”, and “target-node” tuples. The number of triples per subgraph is equal to the number of
edges (see Tables [5|and [6). An LLM is then instructed to generate a natural-language statement
using all provided triples. Few-shot examples are used to encourage the LLM to express logical
relationships that may not be explicitly represented by individual triples. For example given the
triples: (“Norway”, “member of”, “Organisation for the Prohibition of Chemical Weapons”) and
(“Colombia”, “member of”’, “Organisation for the Prohibition of Chemical Weapons”), the LLM
might choose to represent this as a single statement: “Both Norway and Colombia are members of
the Organisation for the Prohibition of Chemical Weapons”. Please see Appendix [[.2] for the full
prompt used for each dataset.

We refer to the generated statements for the original subgraphs as “original statements”, and the
generated statements for the perturbed subgraph as “perturbed statements”. For each subgraph, we
generate at least two different original statements to form semantically similar pairs and one perturbed
statement containing one of the four previously mentioned perturbations to form a semantically
dissimilar pair (using one of the original statements as the other statement in the dissimilar pair).

For details on the models and parameters used for generation please see Appendix

2.4 Response validation

Finally, we perform validation on each statement to ensure its quality. In this stage we use an LLM
to reconstruct a subgraph using a generated statement. This reconstructed KG is compared for
equivalence to the original subgraph to score it for correctness. Response validation occurs in two
stages: entity-extraction and KG-extraction. In the first stage an LLM is provided with a generated
statement and a list of entity-types (e.g. “Person”, “Place”, etc.) and instructed to extract all entities
from the generated statement. The list of entity-types is generated on a per-dataset basis based on all
types within the full KG dataset. The entity-extraction prompt uses a one-shot example. In the second
stage an LLM is provided with the response, the entities extracted in the entity-extraction stage, and a
list of valid edge-types. As with entity-extraction, the list of valid edges is generated on a per-dataset
basis based on the full KG dataset. The LLM is then instructed to generate triples describing the
relationships between all the provided entities using the generated statement. The KG-extraction
prompt uses three-shot examples. For full details of the prompts, models and generation parameters
used for entity-extraction and KG-extraction, see Appendix and[L.3]

When comparing the reconstructed triples to the original triples, post-processing is applied to both
sets of triples. In this step all entities are made lower-case, stop-words and whitespace are removed,



and each entity is lemmatized. This ensures the comparison does not penalize trivial differences
between entities, such as “The United Kingdom” and “United Kingdom”. A generated response is
only considered valid if the reconstructed triples exactly match the original triples. This ensures that
all generated statements accurately reflect the KG structure of the original subgraph.

3 Dataset Overview

Table 1: Summary Statistics for Semantic-KG Dataset. See Appendix [Ij for extended statistics

Number of Statements ~ Avg Word Count
Dataset Name  Perturbation Type

Codex Edge Deletion 114 158.94
Edge Replacement 82 154.79
Node Removal 134 141.46
Node Replacement 171 143.96
FinDKG Edge Deletion 75 120.45
Edge Replacement 127 112.35
Node Removal 159 100.27
Node Replacement 135 112.90
Globi Edge Deletion 167 205.99
Edge Replacement 145 199.19
Node Removal 200 189.70
Node Replacement 148 205.87
Oregano Edge Deletion 218 118.03
Edge Replacement 478 86.91
Node Removal 174 105.25
Node Replacement 162 123.65

In this section, we describe the 4 KG datasets used to generate the benchmark dataset we publish with
this manuscript. The flexibility of this framework will allow this benchmark to be expanded to any
KG dataset from any domain. To generate a semantic similarity benchmark for a new domain, a KG
must contain triples consisting of the name and type of a source and target node, and a description
or name of the edge between the source and target node. Summary statistics for our benchmark are
shown in Table[]l

* Codex[27] A general-knowledge KG based on WikiData [38] containing 77,951 entities
and 69 relations based on Wikipedia data.

* Oreganol1] A biomedical KG containing data on relationships between drug compounds
and biological entities. The dataset contains 11 types of node and 18 types of edge.

* FinDKGJ[15] A financial KG containing 13,645 entities and 15 relations representing global
economic and market trends.

* Globi[23] A biology KG containing global biotic interaction data such as predator-prey
relationships and pollinator-plant relationships.

4 Dataset Validation

To validate the quality of our generated dataset we performed analyses to evaluate the generated
statements for correctness and linguistic naturalness.

Correctness: To validate the robustness of the response-validation step, we performed a manual
spot-check experiment where a human annotator manually scored 100 generated statements (50
from original subgraphs; 50 from perturbed subgraphs) for correctness (see Table[2). A statement
was evaluated as correct if it accurately and completely reflected the semantic content of its source
subgraph without introducing extraneous information. 99% of evaluated statements were evaluated
as correct.



Naturalness: We next evaluated linguistic nat- Table 2: Summary of Manual Spot-Check Val-

uralness to ensure the generated data resembled jdation Results for the Generated Dataset.
real-world text. First, we analysed generated re-

sponses using a suite of standard NLP metrics t0  petric Sal.nple Num. Result
assess the readability, lexical characteristics, and Size  Annotators (%)
syntactic complexity of the generated data (see ~ Correctness 100 1 99
Appendix [E)). The statements matched academic ~_Naturalness 100 2 75

paper readability (Flesch 10-30 range), and exhib-

ited high lexical diversity, typical of specialized academic writing. Additionally, statements were
similar in syntactic complexity to academic literature, though with shorter sentences and slightly
lower noun ratios. We additionally performed a manual spot-check for naturalness (see Table[2). Two
human annotators independently scored the same 100 statements from the correctness check, rating
each for linguistic fluency and “naturalness”. A statement was considered natural if both annotators
agreed. In this evaluation, 75% of statements were rated as natural.

5 Related Works

In this section we summarize the related works focusing on four areas (1) Automated pipelines to
generate LLM evaluation data (2) LLM-as-a-judge evaluation data (3) Semantic similarity benchmarks
(4) Using KGs for LLM validation.

Automated pipelines to generate LLM evaluation data Several works propose automated
pipelines to generate LLM evaluation data. For instance, 7] use word-order perturbations to create
natural-language inference data that introduce contradictions into textual statements. [28] uses
sentence templates to introduce perturbations into text that impact on properties of the text such as
introducing contradictions or irrelevant information. Additionally, [33]] uses WikiData [38]] to intro-
duce different types of knowledge conflicts into text to assess the impact on LLM behaviour. Despite
the success of these works they largely consist of simple English-language or general-knowledge
statements that may not be applicable to more complex domains such as biomedicine or finance.

LLM-as-a-judge evaluation data Several benchmarks exist with applications for LLM-as-a-judge
evaluations. For instance, MTBench [42]] establishes a platform to evaluate LLLMs based on open
interactions with users and user ratings. These benchmarks often rely on agreement with subjective
human preferences. As such, it is unclear whether these benchmarks specifically measure a model’s
capability to capture semantic content rather than any other human rating preference. [34] proposes an
LLM-as-a-judge benchmark based on factual accuracy that can also be applied to new datasets. This
approach is limited to datasets with a ground-truth answer and restricted outputs, such as question-
answering. Additionally, these benchmarks only evaluate a judge on its capability to distinguish
correct answers from incorrect ones, but not a judge’s ability to detect more subtle variations in
semantic content.

Semantic similarity benchmarks Within the semantic textual similarity (STS) field there are
several widely used benchmarks. SemEval [2] aggregates different benchmarks for evaluating various
capabilities of STS methods, such as sentiment analysis, toxicity capture, and temporal relations.
[L3]] proposes the Winograd scheme challenge, consisting of pairs of sentences with a referential
ambiguity in the two sentences. Commonly used STS benchmarks typically contain human-annotated
sentence pairs, and primarily focus on general domains [18} 20]. There are also a small number
of domain-specific STS benchmarks. BIOSSES [32] contains sentences annotated for similarity
from the biomedical literature, MedSTS [39] consists of expert-annotated sentence-pairs for clinical
applications, and [12] contains questions related to COVID-19, annotated for similarity. To our
knowledge, there are no widely used STS benchmarks specific to domains outside of biomedicine.
Additionally, most of these benchmarks rely on human annotation, making them costly to generate,
and for some complex domains, finding expert annotators may not be possible.

Using Knowledge Graphs for LLM validation KGs have been used as components in LLM
validation systems (e.g. RAG), but there is limited work using KGs to explicitly construct benchmark
datasets [[14]. [L7] also use a KG to construct evaluation data, using KGs to generate simple factual
statements for accuracy evaluation in LLMs. Unlike our work they do not focus on constructing
benchmark data for assessing semantic similarity, additionally the focus of this work is on factual
accuracy and correctness rather than subtle semantic changes.



6 Experiments

6.1 Task Setup

The generated benchmark dataset consists of semantically similar pairs of statements generated
from the same subgraph, labeled 1. These form half of the samples in the dataset. The other
half consist of semantically dissimilar pairs of samples generated from a subgraph and perturbed
subgraph respectively, labeled O (see Figure[3). The dissimilar pairs are further categorized into the 4
perturbation sub-types (section[2.2)) to allow the results to be stratified according to semantic variation
type. In the evaluation task the semantic-similarity model or method is tasked with predicting the
label of the natural-language statement pairs.
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Figure 3: Overview of the Semantic KG Task. Positive response pairs fop left, are generated by
sampling 2 responses from the same subgraph. Negative response pairs bottom left are generated by
sampling a response from the original subgraph and a perturbed subgraph. The model is tasked with
predicting the label of the response pairs.

In the Results Section [6.2] we apply this task to 3 types of semantic-similarity method: 1) LLM-
as-a-judge, 2) Embedding-models and 3) NLP methods (e.g. ROUGE and BLEU). For LLMs,
both statements are formatted into a prompt, and the LLM is asked whether the two statements
are semantically similar. For full details of the prompt see Appendix For embedding models,
we embed the two statements and compute the cosine similarity, and for NLP methods we simply
compute the metric for the statement pair. For methods that output a continuous score, the score must
be converted to a binary label using a threshold. To compute this threshold we split the data into
validation and test data and find the threshold that maximizes the F1-score using the validation data.
The test data is then used to report the final results. For LLMs we only report results for the test data.

6.2 Results

Figures[]and[5|show the results for different semantic-similarity methods on our benchmark, stratified
by perturbation-type and dataset respectively.

Stratification by perturbation-type revealed disparities in performance across all semantic sim-
ilarity methods, depending on the type of perturbation applied with statistical analysis revealing
a significant effect of perturbation type for both node-removal (5 = 0.124, p = 0.039) and node-
replacement (5 = 0.155, p = 0.01). Many methods appear to under-perform when distinguishing
between statements that differ as a result of edge perturbations compared to node perturbations.
Interestingly, the relative superiority of LLMs compared to classic NLP methods appears to depend
on the perturbation-type. When perturbing edges, LLMs appear to match or out-perform traditional
methods, especially state-of-the-art models, with statistical analyses revealing a significant interaction
effect between perturbation-type and method for GPT-40 (GPT40 x edge-replacement: 5 = 0.184,
p = 0.031). However for node perturbations, such as node-deletions, the traditional methods actually
out-perform the majority of LLMs with statistical analyses revealing a significant interaction effect
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between perturbation type and model for Sentence-T5-Base (Sentence-T5-Base x node-removal:
8 = 0.260, p = 0.002; Sentence-T5-Base x node-replacement: g = 0.216, p = 0.011). See Table
[I4] for full statistical analysis results. This has important implications for real-world applications of
semantic-similarity methods. LLMs might be better suited for applications that require detecting
variations in the relationships between entities in a statement, for example detecting contradictions in
text. However traditional methods likely suffice for settings that simply involve detecting whether
statements encompass the same entities.

Stratification by dataset also revealed disparities in performance, though these were less pro-
nounced for LLMs than for perturbation-type disparities, and significant effects were only observed
for one interaction (see Table|14]for full results). All methods appeared to show strong performance
on the general-knowledge dataset (Codex), with slightly lower performance on domain-specific
datasets such as Globi and FinDKG, though a marked performance drop was observed for Sentence-
T5-Base (Sentence-T5-Base x Globi: § = —0.413, p = 0.002. Performance disparities were
higher among traditional NLP methods with Bertscore outperforming all methods including LLMs
on Globi, yet reductions in performance observed for the finance dataset (FinDKG) for methods
such as ROUGE1 and ROUGEL, though this effect was not observed to be statistically significant
(Rouge-1 x FindKG: 3 = —0.236, p = 0.081). A closer inspection of results, (see Appendix [F.2))
reveals that this performance drop was largely driven by poor performance for edge-replacement
perturbations, further highlighting the insufficiency of these methods to detect modifications in textual
relationships. Additionally, the relative benefit of LLMs appeared to be domain-dependent with some
LLMs under-performing for certain domains such as Globi and Oregano, whereas other LLMs such
as Gemini-1.5 Pro, showed superior performance on domain-specific datasets like Oregano. These
results highlight that semantic-similarity performance in one domain may not necessarily translate to
performance in another. As more datasets are adopted into this framework, this will further elucidate
the strengths and weaknesses of different methods within domain-specific applications.

By applying our framework to four diverse domains and evaluating a range of semantic similarity
methods, we demonstrate that both traditional metrics and modern LLMs can display notable
weaknesses — particularly for perturbations such as relationship changes. Our findings emphasize
the importance of domain-specific and semantic-aware evaluation, showing that method performance
can vary widely depending on the nature of the semantic variation and the target domain.

7 Discussion

In this work, we introduced the Semantic-KG framework, a scalable and domain-agnostic method for
generating high-quality semantic similarity benchmarks using knowledge graph (KG) perturbations.
Our framework enables fine-grained control over semantic variations and supports benchmark creation
across any domain with an available KG, without relying on human annotation which is both
expensive and subjective. Furthermore, our benchmark enables straightforward comparison of STS
methods, addressing the important challenge of automatic and scalable STS dataset generation. In our
experiments, we show that performance across all STS methods (embedding models, LLM-as-a-judge,
etc) vary depending on the type of KG perturbation and the domain of the KG, and LLMs are not by
default the best choice for STS tasks.

Using our novel Semantic-KG framework, we benchmarked several semantic similarity methods,
revealing nuances in their performance with important implications for real-world applications
of LLMs. The strong performance of NLP methods on node-perturbations suggests they may be
sufficient in contexts that simply rely on detecting the presence or absence of entities in text. For
example, in a RAG system designed to return documents relevant to a user’s query, it may be sufficient
for a system to detect whether a document contains information on “Quantum Entanglement” vs.
“Quantum Computing”. However, if RAG systems are involved in synthesising that information,
particularly in high-stakes domains like medicine, then the inability of these methods to detect
edge-perturbations may pose risks. For example, an LLM might need to distinguish between a paper
stating, "Drug A treats disease X and another claiming “Drug A causes side-effect similar to disease
X, and failure to do so may present a risk to patients.

Furthermore, domain-specific performance variations may present risks in certain applications. An
investment firm relying on LLMs to summarize financial reports might use traditional metrics like
ROUGE, or LLM-as-a-judge, to validate the relevance of LLM-generated summaries, by comparing
these to source documents. The marked decrease in performance of ROUGE on FinDKG, could



lead to an NLP-based verifier failing to detect incorrect information in a report, particularly if
that information relates to relationships between entities. Additionally LLMs can underperform
in domains like biology (Globi) compared to their general knowledge performance emphasizing
that deploying an LLM in a high-stakes field like biomedicine requires rigorous, domain-specific
validation.

Our framework and our presented results demonstrate that validating the outputs of LLMs in real-
world settings necessitates a granular understanding of semantic content. By introducing a framework
that can precisely target different types of semantic variations across diverse domains, our approach
facilitates a more informed selection and fine-tuning of LLMs and semantic-similarity tools. This
is vital for ensuring that these powerful models perform reliably and safely, preventing incorrect
decisions and building user trust, especially as they become increasingly integrated into critical
applications. Future work will focus on expanding the diversity of KG datasets and perturbation types
to further refine our understanding and evaluation of LLM semantic understanding.

8 Limitations & Future Work

This paper presents a novel benchmark for semantic similarity evaluation, though it is not without its
limitations.

(1) Dependency on Knowledge Graph Availability and Quality: The availability and quality of
the generated benchmarks depends on the availability of high-quality KGs. For some domains, KG
datasets may not be available, or they may be of low quality containing inaccurate or incomplete data,
which will impact the quality of the generated textual pairs. (2) Scope of Semantic Variations: Our
current benchmark applies perturbations designed to create clear semantic distinctions. However
real-world semantic variations are likely complex and not well captured by simple node or edge
deletions and replacements, such as variations in intent or implicature, changes in tone, or context-
dependent changes in meaning. Our framework is flexible to many perturbation types and future work
might seek to apply more complex, realistic perturbations to generate benchmark data. Additionally,
we might explore methods to control the semantic closeness of candidate replacement nodes using
techniques such as embedding models, to understand how this impacts on the performance of different
methods. However it is likely that some real-world semantic variations will not be well captured
by structural knowledge-graph perturbations. Nonetheless our benchmark identified key limitations
of different semantic-similarity methods highlighting that even simple semantic perturbations still
have utility for evaluating these methods. (3) Statement Validation: The validation step, relying
on KG reconstruction accuracy, primarily ensures the generated text is grounded in and reflects the
subgraph. It may not fully capture other aspects of textual quality, such as fluency, naturalness, or the
absence of unintended connotations, which could subtly influence how methods perceive similarity.
(4) Limitations of Knowledge-Graphs for encoding semantic knowledge: One key limitation
of using knowledge-graphs to encode semantic knowledge is that they inherently operate under a
closed-world assumption [26] whereby missing information is assumed false, however this may
not capture the incompleteness or evolving nature of the knowledge encoded in datasets generated
using our framework. In future work, a more nuanced evaluation might explore how performance
of different semantic-similarity methods varies under an open-world assumption. (5) Limitations
on reliance on LLMs for generation: Our framework relies on LLMs to generate benchmark data.
Though all generated samples are validated and grounded in a knowledge-graph, LLLM generated
textual data may still differ in distribution from real-world text, potentially introducing subtle biases.
This framework is not intended to replace real human-labelled data, though still offers a valuable tool
for identifying weaknesses in semantic-similarity methods, where data is scarce or human labelling
too costly. (6) Simple task setup: Our current benchmark only evaluates semantic-similarity methods
in the simple binary setting, however graded annotation schemes inspired by human-labeled datasets
[2]] might be incorporated into future versions of our dataset, using metrics such as perturbation-
count or graph similarity measures [29]. (7) Limitations of subgraph-size: The success of the
generation and validation pipeline in our framework declines at higher subgraph sizes (>12 triples;
see Figure[7)), which limits the size of generated statements. As LLMs improve we hope to build on
our framework to encompass larger subgraphs, which will allow for the generation of more complex
semantic-similarity benchmarks.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction focus on the paper’s core
contribution - proposing an automatic and scalable pipeline for generating semantic similarity
benchmarks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A detailed discussion of limitations can be found at the end of the main paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper proposes a pipeline for generating benchmarks. Therefore there are
no theoretical results.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide the full dataset and the full code pipeline along with the submission.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide the full dataset and the full code pipeline along with the submission.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training details and prompts are briefly discussed in the main paper, and all
relevant details can be found in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are included in all figures of the paper, including the method of
generating the error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Compute resource details can be found in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics, and we confirm that this paper
conforms with the code in every respect.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impact statement can be found in the supplementary materials.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all original papers, code packages, and datasets that we use.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the full dataset and code along with the paper submission, and we
include a detailed description in the paper.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We thoroughly discuss the role of LLM generation, as well as ways to verify
the generated result is correct.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Ethical Disclosure

(1) Fairness/Bias Risks: This work used data derived from open-source datasets that may contain
biases. Indeed, several works report that Wikidata, upon which Codex is based, exhibits over-
representation of certain genders and ethnicities [30, 6], while our analysis into the representation of
geographical areas in FindKG (Figure 6), reveals a bias towards higher income countries. Semantic-
similarity evaluations conducted using our benchmark, might mask biases in evaluated models or
methods. We recommend that evaluations conducted using this benchmark are complemented with
dedicated fairness and bias assessments. (2) Data-Quality: All generated statements within our
framework undergo validation to ensure their faithfulness to the underlying knowledge-graphs these
statements are derived from. Nonetheless, the underlying datasets used within this work may contain
data-quality issues [31] such as errors or factual inconsistencies. Evaluations using our benchmark
should focus on semantic-similarity performance and not factual accuracy, for which dedicated
benchmarks already exist [L1]. (3) Environmental Impact: Generation of our benchmark dataset
required three LLM calls per generated statement: one for generation and two for each stage of
response validation, totalling approximately 24,000 LLM calls per dataset. Expanding this framework
to new datasets could lead to substantial carbon emissions. The high number of LLM calls reflects
the currently low success rate of response validation. We anticipate that improvements to generation
and validation will reduce the required number of calls, minimising the environmental footprint of
our framework. (4) Misuses: We emphasize that this benchmark is designed for evaluating semantic
similarity and should not be used to train new models where doing so risks reinforcing biases and
factual inaccuracies present in the source data.
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Figure 6: Distribution of Country Nodes by Income-Level in FindKG Percentage of Total
Geopolitical Entity Nodes ("GPE’) in FindKG belonging to different income-levels according to the
World-Bank income groups classification [40]

B Broader Impact Statement

Impact Statement This paper introduces a framework whose goal is to advance the field of
machine-learning. As LLMs are deployed to high-stakes domains it is essential we can validate their
outputs, particularly in domains where incorrect outputs may pose risks. Many methods exist for
validating language-model outputs, but it is not clear whether these methods can detect nuanced
semantic variations. Semantic-textual similarity benchmarks exist for this purpose but are often
limited in scope and generating new benchmarks for novel domains may be costly. We introduced this
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framework to aid researchers and developers to better explore the strengths and limitations of methods
such as LLM-as-a-judge, identifying potential failure modes. Our existing benchmark may provide
some initial insights that could be significant for LLM applications in domains such as biomedicine
and finance, but we also hope researchers can expand this benchmark to new domains using our
framework. Finally, our benchmark is not without its risks and performance on our benchmark is no
guarantee that this performance will translate into real-world performance. Researchers should use
domain-knowledge and incorporate risk-mitigation strategies into any LLM application, in addition
to using benchmarks such as this one.

C Experimental Details

C.1 Model Generation Parameters

All models used in this manuscript, for generation, validation, and evaluation are shown in TableE]
For response generation and response validation (both entity and KG extraction) we used GPT-40
with a temperature of 1.0.

For model evaluation all models were evaluated with a temperature of 0.0.

Model Name Provider Version
GPT3.5 Azure OpenAl gpt-35-turbo (0125)
GPT-40 [21]] Azure OpenAl gpt-4o (2024-08-06)
Gemini-1.5-Pro [36]] Google (VertexAl) gemini-1.5-pro-001
Llama-70b [37] Azure (Custom Endpoint) | Meta-Llama-3.1-70B-Instruct
Llama-8b [37]] Azure (Custom Endpoint) | Meta-Llama-3.1-8B-Instruct

Table 3: LLM Model Details

Model Name Provider Version
Text-embedding-3-large | Azure OpenAl | text-embedding-3-large
Text-embedding-ada-002 | Azure OpenAl | text-embedding-ada-002

Table 4: Embedding Model Details

C.2 Confidence-Intervals

To compute confidence-intervals for the F1 score, we first used the Clopper-Pearson method to
compute upper and lower bounds for precision and recall respectively. Then we computed the F1-
score using every combination of upper and lower bound for precision and recall, and the minimum
and maximum F1-score were taken as the upper and lower bounds for the final confidence-interval.
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D Extended Dataset Statistics

Table 5: Extended Summary Statistics (1) for Semantic-KG Dataset
Avg. Subgraph Nodes  Avg. Subgraph Edges

dataset name perturbation type

codex edge deletion 13.11 12.11
edge replacement 12.52 11.52
node removal 13.18 12.18
node replacement 11.56 10.56

findkg edge deletion 8.03 7.03
edge replacement 6.40 5.40
node removal 6.47 547
node replacement 6.18 5.18

globi edge deletion 14.18 13.18
edge replacement 13.96 12.96
node removal 14.07 13.07
node replacement 13.98 12.98

oregano edge deletion 13.36 12.36
edge replacement 8.95 7.95
node removal 13.05 12.05
node replacement 13.25 12.25

Table 6: Extended Summary Statistics (2) for Semantic-KG Dataset
Avg. Perturbed Subgraph Nodes  Avg. Perturbed Subgraph Edges

dataset name perturbation type

codex edge deletion 13.11 9.50
edge replacement 12.52 11.52
node removal 5.94 4.57
node replacement 11.54 10.56
findkg edge deletion 8.03 5.52
edge replacement 6.40 5.40
node removal 3.23 2.19
node replacement 6.17 5.18
globi edge deletion 14.18 10.41
edge replacement 13.96 12.96
node removal 6.25 4.75
node replacement 13.97 12.98
oregano edge deletion 13.36 9.95
edge replacement 8.95 7.95
node removal 5.68 4.33
node replacement 13.25 12.25

E Extended Dataset Validation

Table 7: Readability: Summary of readability for Semantic-KG compared against standard bench-
marks for academic and technical documents

Metric Semantic-KG  Academic Papers Technical Docs Assessment
Flesch Reading Ease 16.2+14.3 10-30 20-40 Academic
Grade Level 15.0+£2.2 14-18 12-16 Academic
Gunning Fog 194 +£3.0 15-20 12-18 Academic
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Table 8: Lexical Characteristics: Summary of lexical characteristics of Semantic-KG compared
against standard benchmarks for academic and technical documents

Metric Semantic-KG Academic Papers Technical Docs Assessment
Type-Token Ratio  0.673 £ 0.110 0.50-0.70 0.45-0.65 Academic
Lexical Density 0.693 £ 0.058 0.65-0.75 0.60-0.70 Academic
Unique Words 48 £20 40-80* 30-60 Academic

Table 9: Syntactic Complexity: Summary of syntactic complexity of Semantic-KG compared against
standard benchmarks for academic and technical documents

Metric Semantic-KG = Academic Papers Technical Docs Assessment
Avg Sentence Length  16.4 + 3.9 words 20-30 15-25 Below academic
Noun Ratio 0.232 £ 0.082 0.25-0.35 0.20-0.30 Below academic
Verb Ratio 0.095 £ 0.026 0.08-0.12 0.10-0.15 Academic
Noun-Verb Ratio 2.44 2.5-4.0 2.0-3.0 Technical
Content Word Density 38.0% 35-45% 40-50% Academic

E.1 Reconstruction Success Rate

Average Success Rate vs Subgraph Size
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Figure 7: Reconstruction Success by Subgraph Size. Average reconstruction accuracy, defined
as the percentage of knowledge-graphs successfully reconstructed from generated responses, as a
function of subgraph size. Note: Only successfully reconstructed subgraphs were used in the final version of
Semantic-KG
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F Extended Experimental Results

F.1 Codex Experimental Results

Performance by perturbation type for codex dataset
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Figure 8: Semantic Performance by Perturbation-Type for Codex Dataset. Performance (F1
Score) of different semantic similarity models on the Codex dataset stratified by perturbation-type.

Table 10: Performance of different models on CODEX dataset across perturbation types. Values
shown as F1 score + standard error.

Edge deletion  Edge replacement Node deletion = Node replacement
3-Large 0.880 & 0.073 0.884 4+ 0.078 0.937 &£ 0.050 0.946 4+ 0.036
Ada-002 0.821 £0.078 0.840 £+ 0.072 0.923 £0.054 0.945 £ 0.039
DeBERTa-Large-MNLI  0.675 +0.070  0.700 + 0.078 0.736 & 0.065 1.000 £ 0.021
GPT3.5 0.658 =0.070 0.712 £0.078 0.776 = 0.060 0.967 £+ 0.032
GPT4o0 0.585 +0.089 0.731 4+ 0.089 0.730 & 0.077 0.930 4 0.044
Gemini-1.5 Pro 0.684 & 0.070 0.778 & 0.076 0.846 & 0.055 0.967 4 0.032
Llama-3.1-70b 0.684 & 0.070 0.750 & 0.077 0.835 £ 0.056 0.967 4+ 0.032
Llama-3.1-8b 0.676 & 0.074 0.720 & 0.093 0.759 & 0.070 0.921 4 0.046
Sentence-T5-Base 0.800 £ 0.086 0.667 £0.115 0.971 £0.038 0.920 + 0.047
bertscore 0.780 & 0.080 0.741 4+ 0.084 0.896 & 0.059 0.867 4 0.057
bleu 0.800 = 0.086 0.694 + 0.097 0.954 +0.046  0.804 4 0.060
rougel 0.735 £0.094 0.711 £ 0.101 0.935 +0.049 0.857 4+ 0.052
rouge?2 0.735 £0.094 0.708 £+ 0.097 0.969 £+ 0.040 0.809 + 0.063
rougeL. 0.793 £ 0.079 0.696 £ 0.101 0914 £ 0.052 0.757 4+ 0.062
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F.2 FinDKG Experimental Results

Performance by perturbation type for findkg dataset
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Figure 9: Semantic Performance by Perturbation-Type for FinDKG Dataset. Performance (F1
Score) of different semantic similarity models on the FinDKG dataset stratified by perturbation-type.

Table 11: Performance of different models on FINDKG dataset across perturbation types. Values
shown as F1 score + standard error.

Edge deletion  Edge replacement Node deletion  Node replacement
3-Large 0.735 £ 0.089  0.690 £ 0.069 0.857 £ 0.061 0.968 4 0.041
Ada-002 0.622 +0.106 0.725 +0.072 0.849 4+ 0.065 0.951 4 0.046
DeBERTa-Large-MNLI  0.692 4+ 0.089 0.954 £ 0.046 0.779 & 0.056  0.954 4+ 0.046
GPT3.5 0.692 4+ 0.089 0.805 & 0.063 0.740 & 0.057 0.939 4 0.049
GPT4o0 0.652 £0.103 0.852 £ 0.070 0.857 £0.061 0.951 £ 0.046
Gemini-1.5 Pro 0.745 £ 0.082  1.000 £ 0.028 0.800 = 0.058 0.984 4 0.035
Llama-3.1-70b 0.745 £ 0.082 0.985 £+ 0.034 0.787 £0.055 0.985 £+ 0.034
Llama-3.1-8b 0.650 &= 0.112 0.769 4+ 0.079 0.753 £ 0.069 0.871 4 0.067
Sentence-T5-Base 0.571 £0.112 0.824 £+ 0.070 0914 £0.052 0.970 £ 0.039
bertscore 0.681 +0.099 0.659 4+ 0.074 0.779 & 0.071  0.889 4 0.052
bleu 0.652 +0.103 0.689 4 0.066 0.831 £ 0.065 0.652 4+ 0.071
rougel 0.591 £ 0.109 0.061 £ 0.071 0.838 & 0.066 0.806 4 0.069
rouge?2 0.667 & 0.094 0.216 4 0.099 0.805 & 0.068 0.725 4 0.080
rougeL. 0.731 £0.082 0.216 £ 0.099 0.767 = 0.075 0.696 £ 0.063

27



F.3 Globi Experimental Results

Performance by perturbation type for globi dataset
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Figure 10: Semantic Performance by Perturbation-Type for Globi Dataset. Performance (F1
Score) of different semantic similarity models on the Globi dataset stratified by perturbation-type.

Table 12: Performance of different models on GLOBI dataset across perturbation types. Values
shown as F1 score + standard error.

Edge deletion  Edge replacement Node deletion  Node replacement
3-Large 0.700 & 0.066  0.753 4 0.068 0.835 £ 0.049 0.795 4+ 0.070
Ada-002 0.702 &£ 0.069 0.721 £+ 0.071 0.814 +0.050 0.763 £+ 0.071
DeBERTa-Large-MNLI  0.672 + 0.056  0.692 £ 0.059 0.714 £0.049 0.744 £ 0.062
GPT3.5 0.672 & 0.056 0.706 4 0.059 0.725 £ 0.049 0.711 4 0.062
GPT4o0 0.684 £ 0.056 0.774 £ 0.057 0.735 £0.049 0.955 £ 0.042
Gemini-1.5 Pro 0.755 £ 0.054 0.758 4+ 0.057 0.862 +0.042 0.877 4+ 0.054
Llama-3.1-70b 0.678 =£0.056 0.713 £ 0.059 0.746 £ 0.048 0.771 £ 0.061
Llama-3.1-8b 0.672 & 0.058 0.713 4+ 0.059 0.690 & 0.049 0.711 4+ 0.062
Sentence-T5-Base 0.095 £0.071 0.105 £ 0.077 0.790 £ 0.053 0.714 £ 0.069
bertscore 0.804 & 0.060 0.690 4 0.074 0.933 4 0.038 0.928 4 0.047
bleu 0.699 4+ 0.064 0.732 +0.072 0914 +0.042 0.800 4 0.067
rougel 0.725 £ 0.069 0.688 4 0.069 0.883 & 0.043  0.899 £ 0.055
rouge?2 0.706 & 0.074 0.736 & 0.068 0.882 +0.049 0.841 4 0.067
rougeL. 0.763 £0.062 0.711 £ 0.069 0.833 £0.054 0.744 £ 0.071
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F.4 Oregano Experimental Results

Performance by perturbation type for oregano dataset
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Figure 11: Semantic Performance by Perturbation-Type for Oregano Dataset. Performance (F1
Score) of different semantic similarity models on the Oregano dataset stratified by perturbation-type.

Table 13: Performance of different models on OREGANO dataset across perturbation types. Values
shown as F1 score + standard error.

Edge deletion  Edge replacement Node deletion  Node replacement
3-Large 0.762 & 0.062  0.655 4 0.035 0.945 +0.039 0.986 4 0.031
Ada-002 0.745 £ 0.064 0.715 4+ 0.038 0.932 +0.044 0.972 4+ 0.037
DeBERTa-Large-MNLI  0.717 & 0.046  0.928 £ 0.021 0.715 £ 0.052 0.864 £ 0.055
GPT3.5 0.717 £0.046  0.682 4 0.031 0.822 +0.048 0.837 4 0.053
GPT40 0.738 =£0.049 0.943 £+ 0.020 0.793 £ 0.050 0.958 £+ 0.042
Gemini-1.5 Pro 0.800 & 0.045 0.974 +0.017 0.869 4+ 0.048 0.947 4 0.040
Llama-3.1-70b 0.752 £ 0.047 0.943 £+ 0.020 0.752 £0.052 0.900 £ 0.048
Llama-3.1-8b 0.709 4+ 0.048 0.693 4 0.031 0.739 £ 0.052 0.693 4 0.062
Sentence-T5-Base 0.626 =0.071 0.810 £ 0.038 0.955 +£0.038 0.973 £ 0.035
bertscore 0.765 & 0.062  0.640 £ 0.035 0.978 & 0.029 0.932 4+ 0.049
bleu 0.625 +0.072 0.628 4 0.040 0918 +0.047 0.811 4 0.069
rougel 0.707 £ 0.063 0.634 £+ 0.039 0.956 +0.037 0.933 4+ 0.046
rouge?2 0.752 £ 0.057 0.651 4+ 0.039 0.944 4+ 0.041 0.907 4 0.053
rougeL. 0.648 = 0.068 0.761 £ 0.040 0.894 4+ 0.052 0.829 4+ 0.069

F.5 Statistical Analysis

We performed statistical analysis to assess the differences in model performance on our benchmark,
accounting for the impact of perturbation-type and dataset. We analysed differences in F1 score using
a linear mixed-effects model with dataset as a random-intercept and model and perturbation-type as
fixed effects. Additionally, we modeled two-way interactions between model and dataset and model
and perturbation-type. The full results are shown in table[T4]
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Table 14: Statistical Analysis Results

Model Summary

No. Observations 224 No. Groups 4
Log-Likelihood 73.032 Scale (Residual Variance) 0.0073

Predictor B p-value Predictor 5 p-value
Intercept 0.848  0.000%** Llama-3.1-8b x oregano -0.061 0.653
Main Effect: Method Name Sentence-T5-Base x oregano 0.002 0.989
Ada-002 -0.058 0.467 bertscore X oregano 0.008 0.955
DeBERTa-Large-MNLI -0.165 0.039%* bleu x oregano -0.068 0.617
GPT-3.5 -0.145 0.070 rougel X oregano -0.002 0.987
GPT-40 -0.244 0.002%%* rouge2 X oregano 0.008 0.951
Gemini-1.5 Pro -0.136 0.088 rougeL. X oregano -0.007 0.958
Llama-3.1-70b -0.136 0.088 Interaction: Method Name X Perturbation

Llama-3.1-8b -0.136 0.089 Ada-002 x edge_replacement 0.051 0.547
Sentence-T5-Base -0.217 0.007%%* DeBERTa-Large-MNLI x edge_repl. 0.153 0.073
bertscore -0.080 0.317 GPT-3.5 x edge_replacement 0.065 0.445
bleu -0.104 0.194 GPT-40 x edge_replacement 0.184 0.031*
rougel -0.096 0.228 Gemini-1.5 Pro x edge_repl. 0.155 0.069
rouge?2 -0.081 0.309 Llama-3.1-70b x edge_repl. 0.157 0.066
rougeL -0.059 0.461 Llama-3.1-8b x edge_repl. 0.071 0.407
Main Effect: Perturbation Type Sentence-T5-Base x edge_repl. 0.102 0.232
edge_replacement -0.024 0.693 bertscore x edge_replacement -0.051 0.550
node_removal 0.124 0.039* bleu x edge_replacement 0.016 0.856
node_replacement 0.155 0.010%* rougel x edge_replacement -0.142 0.096
Interaction: Method Name x Dataset rouge2 x edge_replacement -0.113 0.185
3-Large x findkg -0.100 0.461 rougel. X edge_replacement -0.114 0.182
Ada-002 x findkg -0.096 0.479 Ada-002 x node_removal 0.032 0.706
DeBERTa-Large-MNLI x findkg 0.067 0.620 DeBERTa-Large-MNLI x node_remov.  -0.078 0.363
GPT-3.5 x findkg 0.016 0.907 GPT-3.5 x node_removal -0.044 0.610
GPT-40 X findkg 0.084 0.532 GPT-40 X node_removal -0.010 0.903
Gemini-1.5 Pro X findkg 0.064 0.638 Gemini-1.5 Pro X node_remov. -0.026 0.759
Llama-3.1-70b X findkg 0.066 0.624 Llama-3.1-70b x node_remov. -0.059 0.490
Llama-3.1-8b X findkg -0.008 0.951 Llama-3.1-8b x node_remov. -0.066 0.441
Sentence-T5-Base x findkg -0.019 0.885 Sentence-T5-Base X node_remov. 0.260  0.002%*
bertscore x findkg -0.069 0.610 bertscore X node_removal 0.015 0.864
bleu x findkg -0.107 0.428 bleu X node_removal 0.086 0.315
rougel x findkg -0.236 0.081 rougel X node_removal 0.089 0.297
rouge2 x findkg -0.202 0.135 rouge2 X node_removal 0.061 0.477
rougeL. X findkg -0.188 0.165 rougeL. X node_removal -0.006 0.944
3-Large X globi -0.141 0.295 Ada-002 x node_replacement 0.031 0.721
Ada-002 x globi -0.132 0.327 DeBERTa-Large-MNLI x node_repl. 0.047 0.584
DeBERTa-Large-MNLI x globi -0.072 0.594 GPT-3.5 x node_replacement 0.024 0.777
GPT-3.5 x globi -0.075 0.579 GPT-40 x node_replacement 0.129 0.130
GPT-40 x globi 0.043 0.749 Gemini-1.5 Pro x node_repl. 0.043 0.612
Gemini-1.5 Pro x globi -0.006 0.965 Llama-3.1-70b x node_repl. 0.036 0.670
Llama-3.1-70b x globi -0.082 0.543 Llama-3.1-8b x node_repl. -0.032 0.706
Llama-3.1-8b x globi -0.073 0.591 Sentence-T5-Base x node_repl. 0.216 0.011%*
Sentence-T5-Base x globi -0.413 0.002%%* bertscore X node_replacement -0.008 0.924
bertscore X globi 0.018 0.893 bleu x node_replacement -0.082 0.337
bleu x globi -0.027 0.843 rougel X node_replacement 0.030 0.728
rougel x globi -0.011 0.936 rouge2 x node_replacement -0.049 0.565
rouge2 x globi -0.014 0.917 rougelL X node_replacement -0.132 0.122
rougeL. X globi -0.027 0.839

3-Large X oregano -0.075 0.579

Ada-002 x oregano -0.041 0.760

DeBERTa-Large-MNLI x oregano 0.028 0.833

GPT-3.5 X oregano -0.014 0.919

GPT-40 X oregano 0.114 0.398

Gemini-1.5 Pro X oregano 0.079 0.560

Llama-3.1-70b x oregano 0.028 0.838

Note: 3 is the coefficient. *p <0.05, **p <0.01, ***p <0.001.
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G Dataset Licenses

All datasets used in this manuscript are free and open-source. Below we describe the licenses
associated with each.

Codex is licensed under an MIT license. WikiData, which Codex is based upon, is licensed under a
CCO License.

FinDKG is made freely available for research purposes (non-commercial purposes only).
Globi is licensed under a CC by 4.0 license.

Oregano is licensed under a CC by 4.0 license.

H Edge-Replacement Mappings

For all datasets a custom-mapping was defined indicating what value an edge could be replaced with
for an edge-replacement perturbation [2.2] Below we describe the mapping used for each dataset,
where the list of values for a given key indicates allowed replacement values for that edge.

Codex
{

”cast member”: [
”creator”,
”director”

]

9’

“director”: [
”cast member”,
”creator”

]’
“creator”: |
”cast member”,

”director”

b
“author”: [
”director”,
”cast member”

|

th)

eadquarters location”: [
“capital”

1,

”located in the administrative terroritorial entity”: [
”shares border with”,
”diplomatic relation”

I,

“country 7: [

”shares border with”,

”diplomatic relation”

”shares border with”: [
”located in the administrative terroritorial entity”,
“named after”,
”country”,
”diplomatic relation”
1,
”diplomatic relation”: [
”located in the administrative terroritorial entity”,
”shares border with”,
“country”,
“part of”
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1.
”location of formation”: [
“headquarters location”
1.
“country of origin”: [
“narrative location”
1.
”chairperson™: [
”founded by”,
”chief executive officer”,
”director”
1.
”parent organization”: [
”founded by”,
”part of”
1.
“airline hub”: [
“headquarters location”
1.
“chief executive officer”: [
”founded by”,
”chairperson”,
”director”
I,
”founded by”: [
”chairperson”,
”director”,
”chief executive officer”
)
“airline alliance”: [
”member of”
1.
“narrative location”: [
“country of origin”

“architect”: [

“named after”
1,
“capital ”: [

“headquarters location”
1,
“country of citizenship”: [

”place of burial”,

”place of birth”,

”place of death”

“residence”: [
“place of death”,
”place of birth”,
”place of burial”

1.

”place of birth”: [
”place of death”,
”place of burial”,
“residence”

1,

”place of death”: [
”place of birth”,
”place of burial”,
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“residence”

“place of burial”: [
”place of birth”,
“place of death”,
“residence”

I,

”child”: [
”sibling 7,
”spouse”,
“unmarried partner”,
“influenced by”

|

29

b

pouse”: [
”sibling 7,
”influenced by”,
”child”,
bad 3 ka
unmarried partner

]

)
”sibling ”: [
”child”,
”spouse”,
“unmarried partner”,
”influenced by”
1

2

)

nmarried partner”: [
”sibling 7,
”spouse”,
”influenced by”,
”child”

“educated at”: [
“employer”

]

2

ause of death”: [
”"medical condition”,
“health specialty”

1

9
”"medical condition”: [
”cause of death”,

“health specialty”
]

“heath specialty”: [
”"medical condition”,

”cause of death”

“member of political party”

“employer”
]’
”publisher”: [
“record label”,
“employer”

“record label”: [
“publisher”,
“employer”

|
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FinDKG
{

”Positive_Impact_-On”: [
”Negative_Impact_On”
1,
”Negative_Impact_On”: [
”Positive_Impact_On”
1,
”Raise”: [
”Decrease”

]7

”"Decrease ”: [
”Raise”

]

Globi

“parasiteOf”: [
“eats”,
”commensalistOf”,
"mutualistOf”

1.

“hasHost”: [
”coOccursWith”

]

2

djacentTo”: [
“hasHost”,
“preysOn”

]7

”coOccursWith”: [
“hasHost”

]9

“visitsFlowersOf”: [

”pathogenOf”

]7
“preysOn”: [
”livesNear”

1,
”pollinates ”: [
“eats”,
“visits”
1.

“kills”: [
”coOccursWith”,
”pathogenOf”

1.

“rootparasiteOf”: [
”adjacentTo”,
”livesNear”,
“eats”,
”commensalistOf”
"mutualistOf”

]7

“hasVector”: |
”pathogenOf”

1

”pathogenOf”: [
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“visitsFlowersOf”

)
"mutualistOf”: [
Yvisits ™,
“eats”,

“hasHost”,
“parasiteOf”
1

“livesInsideOf”: [
“eats”,
”adjacentTo”

]

2

)

ivesUnder”: [
“eats”,
”visitsFlowersOf”,
Pvisits”,
”pollinates”

]7

“epiphyteOf”: [
“hasHabitat”,
”parasiteOf”,
”adjacentTo”,
”livesNear”

”inhabits”: [

”pathogenOf”

]’

“ectoparasiteOf”: [
Lt} eats i) ,
”commensalistOf”,
"mutualistOf”

]

2

ndoparasiteOf”: [
”commensalistOf”,
"mutualistOf”
1,
"kleptoparasiteOf”: [
“eats”,
”coOccursWith”,
”commensalistOf”
"mutualistOf”

”providesNutrientsFor”: [

eats”
]7
“hasDispersalVector ”:
”eats”
]

29

ndoparasitoidOf”: [
”eats”

1.

”guestOf”: [
“eats”,
”coOccursWith”,
“preysOn”,
“visitsFlowersOf”

1.

“livesNear”: [
“parasiteOf”

[
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]

2

asRoost”: |
”pathogenOf”,
“preysOn”,
”hasHost”,
“eats”

1.

”coRoostsWith”: [
”pathogenOf”,
“preysOn”,
“hasHost”,
“eats”

9
“ectoParasitoid”: [
”Cats”

1,

“allelopathOf”: [
”pathogenOf”,
“hasHost”,
”adjacentTo”

}
Oregano

{

“increase_activity ”: [
“decrease_activity”

1,

“decrease_activity 7: [
“increase_activity”

I,

“increase_effect”: [
”decrease_effect”

I,

”decrease_effect”: [

“increase_effect”

I Prompt Templates

I.1 LLM-as-a-judge Evaluation Prompt Template

For the experimental results reported in[6.2] we used the following prompt template for all LLM-as-a-
judge models:

You will be provided with two biomedical statements.

Your goal is to determine whether these statements are
semantically similar or not.

If the statements describe different concepts or different
relationships between these concepts they are not semantically
similar , even if there is overlap in the words used to
describe them.

Please reply with only a \”yes\” if the pieces of text are
semantically similar, or \”no\” if they are not.
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Statement 1: {statement_1}
Statement 2: {statement_2}

Your answer:

L2 Response Generation Prompt Templates
For response generation we used a similar template for all datasets, adapting the few-shot examples
on a per-dataset basis. Below we report the generation templates used for every dataset:

Codex

You are going to be given a list of triples from a directed
knowledge graph. Each triple consists of a subject, a relation
, and an object.

The triples are defined in directed order, where the relationship
direction is from ”source_node” to “target_node”

Your goal is to express this triple in a continuous natural
language statement suitable for a general or a scientific

audience .

For example, given the triple:

triple = [

{{’source_node ’: {{’name’: ’Norway’}}, ’relation ’: {{’name’: ~’
diplomatic relation *}}, ’target_node ’: {{’name’: ’Colombia

{{’source_node ’: {{’name’: ’Norway’}}, ’relation ’: {{’name’: °’
shares border with’}}, ’target_-node ’: {{’name’: ’Russia
FHH

{{ source_node ’: {{’name’: ’'Norway’}}, ’relation ’: {{’name’: °’
member of*}}, ’target_node ’: {{’name’: ’Organisation for
the Prohibition of Chemical Weapons’}}}},

{{’source_node ’: {{’name’: ’Russia’}}, ’relation ’: {{’name’: °’
diplomatic relation *}}, ’target_node ’: {{’name’: ’Ethiopia

{{’source_node ’: {{’name’: ’*Colombia’}}, ’relation *: {{ name’:
"member of ’}}, ’target_node ’: {{’name’: ’'Universal Postal
Union’}}}},

{{’source_node ’: {{’name’: ’Colombia’}}, ’relation ’: {{’name’:
"member of ’}}, ’target_-node ': {{’name’: ’Andean Community

{{’source_node ’: {{’name’: ’Colombia’}}, ’relation *: {{ name’:
"member of *}}, ’target_-node ': {{’name’: ’Organisation for

the Prohibition of Chemical Weapons’}}}},
1

You could say:

”Norway has diplomatic relations with Colombia and Russia. Russia
is also known to have diplomatic relations with Ethiopia. Both
Norway and Colombia are members of the Organisation for the
Prohibition of Chemical weapons, while Colombia is also a
member of the Universal Postal Union and the Andean Community

Lt}

or given the triple:
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triple = [

{{’source_node *: {{’name’: ’Renate Axt’}}, ’relation ’: {{ name
>occupation '} }, ’target_node ’: {{’name’: ’writer }}}},

{{’source_node *: {{’name’: ’Renate Axt’}}, ’relation ’: {{ name
’: ’place of birth’}}, ’target-node ’: {{’name’: ’Darmstadt

{{’source_node ’: {{’name’: ’Darmstadt’}}, ’relation ’: {{’name
> ’country ’}}, ’target_node ’: {{’name’: ’Germany’}}}}

{{ source_node ’: {{’name’: ’*Germany’}}, ’relation ’: {{’name’:
>shares border with’}}, ’target_.node ’: {{’name’: ’Austria

{{ source_node ’: {{’name’: ’Germany’}}, ’relation ’: {{’name’:
>shares border with’}}, ’target_node ’: {{’name’: °’

Czechoslovakia’}}}},
]

You could say:

”Renate Axt was a writer, born in Darmstadt in Germany. Germany
shares a border with Austria and Czechoslovakia.”

or given the triple:

triple = [

{{’source_node ’: {{’name’: ’Frederick William II of Prussia
"}}, “relation ’: {{’name’: ’child’}}, ’target_node ’: {{’
name ’': ’Friedrich Wilhelm, Count Brandenburg’}}}},

{{’source_node ’: {{’name’: ’Frederick William II of Prussia
"1}, ‘relation ’: {{’name’: ’member of’}}, ’target_node ’:
{{’name’: ’Saint Petersburg Academy of Sciences’}}}},

{{’source_node ’: {{’name’: ’Friedrich Wilhelm, Count
Brandenburg ’}}, ’relation *: {{’name’: ’place of birth '}},
*target_node *: {{’name’: ’Berlin’}}}},

{{’source_node ’: {{’name’: ’Friedrich Wilhelm, Count
Brandenburg’}}, ’relation ’: {{’name’: ’occupation’}}, °’
target_node ': {{’name’: ’politician }}}},

{{’source_node ’: {{’name’: ’Saint Petersburg Academy of
Sciences *}}, ’relation ’: {{’name’: ’country’}}, °’
target_-node ’: {{’name’: ’Russia’}}}},

{{’source_node ’: {{’name’: ’Saint Petersburg Academy of
Sciences *}}, ’relation ’: {{’name’: ’located in the
administrative terroritorial entity *}}, ’target_node ’: {{’
name’: ’Saint Petersburg’}}}},

]

You could say:

”Frederick William II of Prussia was the child of Friedrich
Wilhelm , Count Brandenburg, a politician who was born in
Berlin. Frederick William II was a member of the Saint
Petersburg Academy of Sciences, a Russian institute , located
in Saint Petersburg”

Rules:

You must use all of the entities provided in the triple and please
include each node verbatim but do not use quotes.
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Your statement must preserve the directions of the knowledge-graph

Do NOT list the items in the triple as a list. Instead, write a
sentence or paragraph that describes the relationship between
every item in the triple.

You can also add additional information to the triple to make the
relationship more clear, however you must include all the

triples in your response.

In your final response, do NOT put name of any node or relation in

quotes.
For example for the node ‘{{”name”: “The Godfather”}} ‘:
The movie “The Godfather”...’ 1is =x%notxx allowed
’ starred in the movie “The Godfather”’ is #%not=*x allowed
’ alongside Marlon Brando in ’The Godfather’ is ##nots::
allowed

You may slightly rephrase the names of edges to ensure they are
grammatically correct and produce a fluent, coherent sounding
statement

Triples: {triples}

FinDKG

For FinDKG we provided a definition for every edge value due to the ambiguity in the edge name
alone.

You are going to be given a list of triples from a directed
knowledge graph. Each triple consists of a subject, a relation
, and an object.

The triples are defined in directed order, where the relationship
direction is from ”source_node” to “target_node”

Your goal is to express this triple in a continuous natural
language statement suitable for a general or a scientific

audience .

For example, given the triple:

triple = [

{{’source_node ’: {{’name’: ’U.S. Air Force’}}, ’relation ’: {{’
name’: ’Control "}}, “target_node ’: {{’name’: ’Asia and
Europe '}} 1},

{{’source_node ’: {{’name’: ’'U.S. Air Force’}}, ’relation ’: {{’
name’: ’Operate_In’}}, ’target_node ’: {{’name’: ~’

Afghanistan’}}}},
{{’source_node ’: {{’name’: ’Afghanistan’}}, ’relation ’: {{’
name’: 'Has’}}, ’target_node ’: {{’name’: ’government’}}}},

]

You could say:
”The U.S. Air Force controls Asia and Europe, and operates in
Afghanistan. Afghanistan has a government.”
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or given the triple:

triple = [
{{’source_node ’: {{’name’: ’Italian Debt’}}, ’relation ’: {{’
name’: ’Impact’}}, ’target_node ': {{’name’: ’Investors
{{’source_node ’: {{’name’: ’Italian Debt’}}, ’relation ’: {{’
name ’: ’Impact’}}, ’target_node ’: {{’name’: ’Italian

Government’}}}},

{{ source_node ’: {{’name’: ’TItalian Debt’}}, ’relation ': {{’
name’: ’Relate_To’}}, ’target_node ’: {{’name’: ’European
Central Bank’}}}},

{{’source_node ’: {{’name’: ’Investors’}}, ’relation ’: {{’name

2.

>Impact’}}, ’target_-node ': {{’name’: ’Yuan’'}}}},
1

You could say:
“Italian debt is related to policies of the European Central Bank.
This debt has an impact on the Italian Government in addition

to investors. Investors may also subsequently impact the
value of Yuan.”

or given the triple:

triple = [
{{’source_node ’: {{’name’: ’Federal Reserve System’}}, ~’
relation *: {{’name’: ’Impact’}}, ’target_node ': {{ name’:

"Gold’ }}}},

{{’source_node ’: {{’name’: ’Federal Reserve System’}}, °’
relation *: {{’name’: ’Control’}}, ’target_node ’: {{’name’:
"Expenses "} }}},

{{’source_node ’: {{’name’: ’Federal Reserve System’'}}, °’
relation *: {{’name’: ’Control '}}, ’target_node ': {{’name’:

>The U.S. Economy’}}}},
{{’source_node ’: {{’name’: ’The U.S. Economy’}}, ’relation ’:

{{’name’: ’Relate_.To’}}, ’target_node ’: {{’name’: ’Gross
Domestic Product’}}}},

{{’source_node ’: {{’name’: *The U.S. Economy’}}, ’relation ’:
{{’name’: ’Relate_.To’}}, ’target_node ’: {{’nmame’: °'U.S.
stocks "} }}},

{{’source_node ’: {{’name’: ’Expenses’}}, ’relation ’: {{’name’:

>Positive_Impact_On ’}}, ’target_node ’: {{’name’: ’Gold

BN

You could say:

”The Federal Reserve System controls expenses, which can have a
positive impact on Gold, an asset also impacted by the Federal
Reserve System. Additionally this system controls the U.S.

Economy which has a relationship with Gross Domestic Product
and U.S. stocks.”

Rules:

You must use all of the entities provided in the triple and please
include each node verbatim but do not use quotes.
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Your statement must preserve the directions of the knowledge-graph

Do NOT list the items in the triple as a list. Instead, write a
sentence or paragraph that describes the relationship between
every item in the triple.

You can also add additional information to the triple to make the
relationship more clear, however you must include all the
triples in your response.

In your final response, do NOT put name of any node or relation in
quotes.

For example for the node ‘{{”name”: “Federal Reserve System”}} ‘:
>The ”Federal Reserve System”...’  1is =xnotxx allowed
’ is controlled by the “Federal Reserve System”’

allowed

is controlled by the ’'Federal Reserve System’ is s#not:s

allowed

1S #%nOtsksk

Relationship Definitions and Examples:

— Has: Indicates ownership or possession, often of assets or
subsidiaries in a financial context. Example: Google Has
Android.

— Announce: Refers to the formal public declaration of a financial
event, product launch, or strategic move. Example: Apple
Announces iPhone 13.

— Operate_In: Describes the geographical market in which a
business entity conducts its operations. Example: Tesla
Operates In China.

— Introduce: Denotes the first—time introduction of a financial
instrument , product, or policy to the market. Example: Samsung
Introduces Foldable Screen.

— Produce: Specifies the entity responsible for creating a
particular product, often in a manufacturing or financial
product context. Example: Pfizer Produces Covid-19 Vaccine.

— Control: Implies authority or regulatory power over monetary
policy , financial instruments, or market conditions. Example:
Federal Reserve Controls Interest Rates.

— Participates_In: Indicates active involvement in an event that
has financial or economic implications. Example: United States
Participates In G20 Summit.

— Impact: Signifies a notable effect, either positive or negative,
on market trends, financial conditions, or economic
indicators. Example: Brexit Impacts European Union.

— Positive_Impact_On: Highlights a beneficial effect on financial
markets , economic indicators , or business performance. Example

Solar Energy Positive Impact On ESG Ratings.

— Negative_Impact_On: Underlines a detrimental effect on financial
markets , economic indicators , or business performance.
Example: Covid—19 Negative Impact On Tourism Sector.

— Relate_To: Points out a connection or correlation with a
financial concept, sector, or market trend. Example: Al
Relates To FinTech Sector.

— Is_Member_Of: Denotes membership in a trade group, economic
union, or financial consortium. Example: Germany Is Member Of
EU.

41



— Invests_In: Specifies an allocation of capital into a financial
instrument , sector, or business entity. Example: Warren
Buffett Invests In Apple.

— Raise: Indicates an increase, often referring to capital,
interest rates, or production levels in a financial context.
Example: OPEC Raises Oil Production.

— Decrease: Indicates a reduction, often referring to capital,
interest rates, or production levels in a financial context.
Example: Federal Reserve Decreases Interest Rates.

Triples: {triples}
Globi

You are going to be given a list of triples from a directed

knowledge graph. Each triple consists of a subject, a relation
, and an object.

The triples are defined in directed order, where the relationship
direction is from ”source_node” to “target_node”

Your goal is to express this triple in a continuous natural
language statement suitable for a general or a scientific
audience.

For example, given the triple:

triple = [
{{’source_node ’: {{’name’: ’Pinus jeffreyi ’}}, ’relation ’: {{’
name’: ’interactsWith *}}, ’target.node ’: {{’name’: ’Betula

occidentalis "}}}},

{{’source_node ’: {{’name’: ’Pinus jeffreyi '}}, ’relation ’: {{’
name’: ’interactsWith *}}, ’“target_node ’: {{’name’: °’
Wyethia mollis "} }}},

{{’source_node ’: {{’name’: *Wyethia mollis "}}, ’relation ’: {{’
name’: ’interactsWith '}}, ’target_node ’: {{’name’: ’

Collomia heterophylla’}}}}
1

You could say:

”Pinus jeffreyi interacts with several species including Betula
occidentalis and Wyethia mollis. Wyethia mollis in turn
interacts with Collomia heterophylla”

triple = [

{{’source_node ’: {{’name’: ’Neotoma mexicana’}}, ’relation ’:
{{’name’: ’interactsWith'}}, ’target_node ’: {{’name’: °’
Lynx rufus’}}}},

{{’source_node ’: {{’name’: ’Neotoma mexicana’}}, ’relation ’:
{{’name’: ’interactsWith "} }, ’target_node ’: {{’name’: ~’
Canis latrans "}}}}

{{’source_node ’: {{’name’: ’Canis latrans ’}}, ’relation *: {{’
name’: ’eats’}}, ’target_-node ': {{’name’: ’Prunus serotina

{{’source_node ’: {{’name’: ’Canis latrans ’}}, ’relation ': {{’
name’: ’eats '}}, ‘target-node ': {{’name’: ’Sylvilagus

cunicularius "}}}},
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{{’source_node ’: {{’name’: ’Canis latrans ’}}, ’relation ’: {{’

name’: ’coOccursWith’}}, ’target_node ’: {{’name’: ~’
Panthera leo’}}}},

{{’source_node ’: {{’name’: ’Crotalus pricei’}}, ’relation ’:
{{’name’: ’preysOn’}}, ’target_node ’: {{’name’: ~’
Sceloporus jarrovii "}}}},

{{’source_node ’: {{’name’: ’Crotalus pricei’}}, ’relation ’:
{{’name’: ’preysOn’}}, ’target_node ’: {{’name’: ’Neotoma

mexicana’}}}},

{{’source_node ’: {{’name’: ’Crotalus pricei’}}, ’relation ’:
{{’name’: ’preysOn’}}, ’target_node ’: {{’name’: ’Junco
phaeonotus "} }}},

]

You could say:

”Crotalus pricei is a species known to prey on several species
including , Sceloporus jarrovii, Junco phaeonotus, and Neotoma
mexicana. Neotoma mexicana have interactions with several
species including Lynx rufus and Canis latrans. Canis latrans
are known to co—occur with Panthera leo and eat Prunus
serotina and Sylvilagus cuncicularius.”

triple = [

{{’source_node ’: {{’name’: ’Chromatomyia erigerontophaga’}}, ’
relation *: {{’name’: ’visitsFlowersOf '}}, ’target_node ’:
{’name’: ’Potentilla nivea’}}}},

{{’source_node ’: {{’name’: ’Chromatomyia erigerontophaga’}}, ’
relation *: {{’name’: ’pollinates ’}}, ’target_node ": {{’
name’: ’Erigeron compositus’}}}},

{{’source_node ’: {{’name’: ’Potentilla nivea’}}, ’relation ’:
{{’name’: ’interactsWith '}}, ’target_node ’: {{’name’: ~’
Salix arctica '}}}},

{{ source_node ’: {{’name’: ’Potentilla nivea’}}, ’relation ’:
{{’name’: ’interactsWith '}}, ’target_node ’: {{’name’: °’

Draba nivalis "}}}},

{{’source_node ’: {{’name’: ’*Erigeron compositus’}}, ’relation
*: {{’name’: ’interactsWith’}}, ’target_node ’: {{’name’: ~’
Populus tremuloides '} }}},

{{’source_node ’: {{’name’: ’Erigeron compositus’}}, ’relation
> {{’name’: ’interactsWith '}}, ’target_node ’: {{’name’: °’

Luetkea pectinata }}}}
]

You could say:

”Chromatomyia erigerontophaga is a species known to visit the
flowers of Potentilla nivea which in turn have interactions
with Salix arctica and Draba nivalis. C. erigerontophaga also
pollinate Erigeron compositus. This flower is known to
interact with Populus tremuloides and Luetkea pectinata.”

Rules:

You must use all of the entities provided in the triple and please
include each node verbatim but do not use quotes.

Your statement must preserve the directions of the knowledge—graph
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Do NOT list the items in the triple as a list. Instead, write a
sentence or paragraph that describes the relationship between
every item in the triple.

You can also add additional information to the triple to make the
relationship more clear, however you must include all the

triples in your response.

In your final response, do NOT put name of any node or relation in

quotes.
For example for the node ‘{{”name”: ”Baccharis sarothroides”}} :
"The ”Baccharis sarothroides ”...’  is #xnot*xx allowed
’ interacts with the plant ”Baccharis sarothroides”™’ is
notx% allowed
”The plant ’'Baccharis sarothroides ’...” is =snot=*% allowed

Triples: {triples}

Oregano

You are going to be given a list of triples from a directed
knowledge graph. Each triple consists of a subject, a relation
, and an object.

The triples are defined in directed order, where the relationship
direction is from ”source_node” to “target_node”

Your goal is to express this triple in a continuous natural
language statement suitable for a general or a scientific
audience .

For example, given the triple:

triple =

{{’source_node ’: {{’name’: 'GFRA2’}}, ’relation ’: {{’name’: °’
acts_within "} }, ’target_node ’: {{’name’: ’'NCAMI
interactions "} }}},

{{’source_node ’: {{’name’: °GFRA2’}}, ’relation ’: {{’name’: ~’
acts_within "}}, ’target_node ': {{’name’: 'RAF/MAP kinase
cascade ’}}}},

{{’source_node ’: {{’name’: *GFRA2’}}, ’relation ’: {{’name’: °’
acts_within "}}, ’target_node ’: {{’name’: °'RET signaling

Bass

You could say:
”The gene GRFA2 acts within several pathways including NCAMI
interactions pathway, RAF/MAP kinase cascade and RET signaling

or given the triple:

triple = [
{{’source_node ’: {{’name’: ’nephrotic syndrome’}}, ’relation ’:
{{’name’: “has_phenotype’}}, ’target_node ’: {{’name’: °’

microcephaly "} }}},

44



{{’source_node ’: {{’name’: *SGPL1’}}, ’relation ’: {{’name’: °’
causes_condition *}}, ’target_node ’: {{’name’: ’nephrotic
syndrome ’}} }},

{{’source_node ’: {{’name’: ’SGPL1’}}, ’relation ’: {{’name’: ~’
acts_within "} }, ’target_node ’: {{’name’: ’Sphingolipid de
novo biosynthesis "}}}}

1

You could say:
”The gene SGPL1 which acts within the sphingolipid de novo

biosynthesis pathway and causes nephrotic syndrome, a disease
characterised by symptoms such as microcephaly”

or given the triple:

triple = [

{{’source_node ’: {{’name’: ’methyl l-phenylalaninate ’}}, ’
relation *: {{’name’: ’has_target’}}, ’target_node ': {{’
name’: ’fimbrial protein’}}}},

{{ source_node *: {{’name’: ’'methyl l-phenylalaninate "}}, °
relation *: {{’name’: ’has_target’}}, ’target_node ': {{’
name’: ’prothrombin’}}}},

{{’source_node ’: {{’name’: ’prothrombin’}}, ’relation ’: {{’
name’: ’gene_product_of’}}, ’target_node ’: {{’name’: ’'F2

{{’source_node ’: {{’name’: 'F2’}}, ’relation ’: {{’name’: °’
causes_condition "}}, ’target_node ’: {{’name’: ’pregnancy

loss’}}}}
]

You could say:

”The drug methyl l-phenylalaninate targets both the fimbrial
protein and prothrombin. Prothrombin is a gene product of F2
which is known to cause pregnancy loss.

Rules:

You must use all of the entities provided in the triple and please
include each node verbatim but do not use quotes.

Your statement must preserve the directions of the knowledge-graph

Do NOT list the items in the triple as a list. Instead, write a

sentence or paragraph that describes the relationship between
every item in the triple.

You can also add additional information to the triple to make the
relationship more clear, however you must include all the
triples in your response.

In your final response, do NOT put name of any node or relation in
quotes.

For example for the node ‘{{”name”: ”2-(6—methylpyridin-2-yl)-n-
pyridin —-4-—ylquinazolin —4—amine”}} “:

"The drug 72—-(6-methylpyridin-2-yl)-n—-pyridin —-4-ylquinazolin
—4—amine ...  1is =xxnotxx allowed
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is activate by the drug ”2-(6-methylpyridin -2—-yl)-n-
pyridin —4-ylquinazolin —4—amine”’ is =%not*% allowed

is activate by the drug 2—-(6—-methylpyridin -2-yl)-n-
pyridin —4-ylquinazolin —4—amine’ is allowed

Ensure you correctly capitalize the entity in your statement. The
capitalization does not need to match the provided entity.
For example for the node: ‘{{”name”: ”“Common Pathway of Fibrin
Clot Formation”}} *:
’...acts within the Common Pathway of Fibrin Clot Formation
> is =xnotxx correct capitalization
.acts within the common pathway of fibrin clot formation
> is correct capitalization

)

You may slightly rephrase the names of pathways to ensure they are
grammatically correct in your generated statement.

Triples: {triples}

I.3 Response Validation Prompt Templates

As with response generation, we used a similar prompt for every dataset, adapting the fewshot
example accordingly. The prompts used for both entity-extraction and KG-extraction for each dataset
are shown below.

Codex - Entity Extraction Prompt Template

You will be provided with a statement describing the relationship
between various entities.

The different entities described are of the following types: [’

s >

complication of pregnancy, childbirth and the puerperium’,
occupation ’, ’manga’, ’systemic disease’, ’climbing’, ’

government agency’ , ’paramilitary ’, ‘type of legal entity in
Germany’, ’superior planet’, ’county seat’, ’legislative term

>, ’clergy’, ’region of France’, ’movement in cinema’,
political organisation’, ’supervillain’, ’tapestry ’, ’rock
band’, ’religious servant’, ’constructed language’, ’military

i i

alliance ’, ’poetry collection’, ’“botanical garden’, ’former
municipality of Norway’, ’episcopal see’, 'municipality of

Germany’, ’language family’, ’film character’, ’city of

bl

Indonesia’, ’association under the French law of 1901,

i

county of Florida’, ’township of New Jersey’, ’regional

s

organization ’, ’auto racing team’, ’person’, ’digital library
>, “tribute album’, ’'media franchise ’, ’film school ’,
Australian rules football league’, ’lake’, ’national academy’,

imperial abbey’, *Wikimedia list of persons’, ’locality ’, ~’
kingdom’, ’*Comune sparso’, ’Parisian cemetery’, 'municipality
of Tunisia’, ’“higher municipal association of Germany’, ’

>

necked bowl lutes ’, ’“autonomous soviet socialist republic of a

s

union republic of the Soviet Union’, ’'realm’, ’medical
specialist >, ’Christian Church’, ’parliamentary assembly’,

bl

frazione ’, ’island nation’, ’“United States national laboratory

’ > >

>, "UCI ProTeam’, ’chemical substance ’, ’“academic’,
independent city ’, ’parliamentary term in the Kingdom of Great
Britain >, ’“website’, 'municipality of the Netherlands’ ’
sultanate >, ’club’, ’‘university —preparatory school’, ’United

bl

States federal agency’, ’comics character ’, ’set of wall

i i

hangings ’, ’personal union’, “human biblical figure’, ’Islam’,

s

k)

s

>
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)

“airline alliance ’, ’“geopolitical community’, ’federal state

>, ’Field Operating Agency’, ’television genre’, ’minor party
>, ’esports league’, ’art movement’, ’branch of biology’, ’
municipality of Brazil’, ’ethnic community’, ’definitely
endangered language’, ’research object’, ’writer’, ’cleric’, ’
necked box lutes played with a bow’, ’stadium’, ’state of
Malaysia’, ’Parliamentary group’, ’cargo airline ’, ’law’, ~
Conservatory of regional relevance’, ’district of Canton
Thurgau’, ’think tank’, ’district capital ’, ’major basilica ’,
"political party in the Russian Empire’, ’city of rajon
surbodinance ’, ’city under state jurisdiction in Latvia’, ~’
physiological condition’, ’Superior Conservatory of Music’, ’
video albums discography ’, ’art genre’, “human who may be
fictional >, ’medical profession’, ’historic house museum’, ’
group of humans’, ’literary group’, ’municipality of Finland’,
"natural satellite ’, ’crematorium ’, ’'eye disease ’, ’Esperanto
organization ’, ’space agency’, ’'consortium of universities in
France’, ’theatrical troupe’, ’design school’, ’zoonosis’, ’
ball game’, ’city municipality °, ’Japanese upper secondary
school’, ’reed organ’, ’feature film’, ’sports league’, ’
unincorporated community’, ’literature ’, ’girl group’, ’Kreis
in the kingdom of Bavaria’, ’television series ’, ’type of
business entity in the USA’, ’city of Pennsylvania’, ’plucked
necked box lutes ’, “Grand Lodge’, ’hearing disorder’, ’
religious movement’, ’viral video’, ’vassal state’, ’
fraternity >, ’city in Cyprus’, ’“federal office’, ’comune of
Italy °, ’supercontinent ’, ’airline ’, ’castle chapel’, ’Oghuz
languages ’, ’law school’, ’television pilot’, ’activity ’, ~’
Ortsteil °, moshav’, ’reservoir’, ’resistance movement’ , ’
music’, ’republic’, ’district of the canton of Schaffhausen’,
"municipality of Portugal’, ’geographical object’, ~
metropolitan region in Germany’, ’Major Waterborne diseases ’,
“television station ', ’genre’, ’Canadian football club’, ’
Community of universities and higher education institutions (
France)’, ’canton of Switzerland °, ’surgical procedure’, ’
capital of a prefecture of Japan’, ’Abrahamic religion’, ’
guitar technique ’, ’provisional government’, ’military school
>, ’“musician’, ’political coalition ’, ’murder’, ’athletics ’, ’
history of a country or state’, “aspect of history’, ’
municipality with town privileges in the Czech Republic’, °
religious occupation’, ’viols’, ’liberal arts college’, ’town
divided by border’, ’private university ’, ‘original net
animation’, *Central Committee’, *historic county of England’,
"natural sound’, ’original video animation’, ’Technische
Hochschule >, ’Lutheran cathedral ’, ’“opera company’, ’borough
of Pennsylvania’, ’security agency’, ’equestrian sport’, ’
interior ministry °, ’public university ’, ’crypt’, ’chef-lieu’,
“orchestra’, ’locality of Berlin’, ’science museum’, ’
tapestry manufactory ’, ’independent record label’, ’comic book
series >, 'mediterranean sea’, ’Studium Generale’, ’supergroup
>, ’character type’, ’former municipality of Switzerland’, ~’
village >, ’'non-geologically related mountain range’, ’
subregion ’, ’sets of free reeds’, ’film’, ’non-fiction book’,
"national rugby union team’, ’province of China’, *Constituent
republics and provinces of Yugoslavia’, ’trade association ’,
ward of Japan’, ’position’, ’fraternal organization ’, ’
Broadcasting Board’, ’miniseries ’, ’Wikimedia category ’,
property >, ’field of work’, ’specialty channel’, ’secondary
school ’, ’publisher ’, ’slide trumpets’, ’record label’, ’short
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film >, ’record company’, ’research’, ’urban municipality of

k)

Poland’, ’international organization’, ’consolidated city -

bl

county ’, ’film series ’, ’academic major’, ’sports venue’,
American football team’, “honor society ’, ’liberal arts
college in the United States’, ’state of Germany’, ’Category:

s

Political parties in Russia’, ’character’, ’academy of

il

sciences ’, ’'national wuniversity ’, ’‘woodwind instrument ’,
Studentenverbindung ’, ’empire’, ’'boarding school’, ’group

) k) s

action’, ’open flutes with internal duct with fingerholes ’,

) )

television series episode’, ’ch teau ’, ’transport company’,
communist party >, ’Dichterkreis ’, ’musical instrument’, °’
archipelago ’, ’necrosis’, 'municipality of Sweden’, °
concentration camp’, ’Gymnasium in Germany’, ’Empire on which

bl

the sun never sets’, ’academic profession’, ’district of the
Czech Republic’, ’“advocacy group’, ’county of Arizona’, ’

) bl b}

political party in Catalonia’, ’“special ward of Japan’,
automobile marque’, ’'non—controlled substance abuse’, ’region

)

of Graub nden ’, ’Indian Institutes of Technology’, ’consumer
cooperative ’, ’“execution method’, 'municipal arrondissement ’,
‘prison ’, ’“market town’, ’printmaker’, ’video game publisher ’,
“employers’ organization”, ’core city of Japan’, ’public
research university °, 'medical specialty ’, “traffic collision

s ) ) bl

, ’visual arts’, ’intergovernmental organization ’,
electronic musical instrument’, ’Public Scientific and
Technical Research Establishment’, “accident’, ’communication
>, ’intelligence agency’, ’faculty of economics’, ’museum’,
micronation ’, ’baseball park’, “covert operation’, ’legal

> E >

professional °, ’broadcaster ’, ’web documentary’, ’treatise ',

s

international non—-governmental organization ’, ’municipality of
Denmark’, administrative territorial entity of Poland’, °

archaeological site ’, ’business’, ’subdistrict of the canton

)

of Graub nden’, 'monotheistic religion ’, ’meta—organization ’,
“charter airline ’, ’polytheism’, ’country’, ’visa policy’, ’
b

county town’, ’punk band’, ’tourist attraction ’, ’columbarium

s s i

, 'province of Prussia’, ’academic degree’, ’geographic

b} )

location *, ’place with town rights and privileges ', ’capital ’,
"lower house’, ’second-level administrative country

s

subdivision ’, 'musical profession’, ’greatest hits album’,
international border’, “human’, ’Regierungsbezirk’, “institute

b )

of the Russian Academy of Sciences’, ’chemical compound’,
area of engineering ’, ’district of the canton of Solothurn’, ~’

>

village of New York’, ’disease’, ’state or insular area

s )

capital in the United States’, *Christian denomination ’,

s

municipality of Puerto Rico’, ’architectural style’, ’boys

school’, ’live video album’, ’association’, ’“republic of the
Soviet Union’, ’literary work’, ’city of regional significance
of Ukraine’, ’collective pseudonym’, ’presidency of British
India’, ’electronic organ’, ’music video compilation album’,

) )

branch of physics’, ’literary society’, ’enclave’, ’branch of

s

chemistry >, ’“park’, ’open—access publisher’, ’cultural region
>, ’institute of technology’, ’commune of France’, ’land-grant

s >

university °, ’town of the United States’, ’mathematician’,

> i k)

collegiate university °, ’jurist ’, ’research institute ’,

valley ’, ’lyc e ’, ’system’, ’school of the French public

> i

service >, ’plucked string necked bowl lute’, ’television film

s s )

, “humanistic gymnasium’, ’city of oblast significance ’,
artist >, “term’, ’software’, ’plucked string instrument’,

s

parish of the Church of Sweden’, ’music term’, ’music video’,

>

"barrio ’, ’non—governmental organization’, ’provincial city ',

b}

b}

)

>

)

>

i}
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)

“independent school’, municipality of Catalonia’, ’continent
>, ’“magazine’, 'medical school’, ”correspondents’ association

bl

, ‘urban area’, ’cemetery’, ’anime television series ’, ’town
in Hungary’, ’Stadtbezirk’, ’corporate title ’, ’animated
feature film’, *Wikimedia list article >, ’university museum’,

)

“county of Connecticut’, ’superhero’, ’former municipality of

s

Sweden’, ’Inns of Court’, ’commune of Haiti’, ’television
program ’, ’crime’, ’symptom’, ’neighborhood in Boston’, ’city
of the United States’, ’membranophones’, ’administration union
>, ’electoral district of Finland’, ’“abstract object’, ’state
in the Holy Roman Empire’, ’state of the United States’, °’
subsidiary entity °, ’technology museum’, ’constituency of the

> 5

canton of St. Gallen’, ’genre of painting’, ’actor’,
landlocked country ’, ’higher school in the Empire of Japan’, ~

upper—tier municipality >, ’filmmaking occupation’, ’type of
sport’, ’nation’, ’albums discography’, ’Jewish denomination ’,
"multi —purpose stadium ’, ’limited liability company’,

architectural firm’, ’municipalities and cities of Serbia’, ’
gridiron football >, 'municipality seat’, ’league of towns’, ’
ministry of communications’, ’province of Argentina’, ’
national Church’, ’death’, ’government organization’, ’art

>

group’, ’continental area and surrounding islands’, ’treaty ’,
9

“political faction’, ’audiovisual work’, ’specialty >, ’manga

series ', ’intoxication’ >landform ’, ’transcontinental country
9

)

’9

s

s

, “animated short film’, ’“executive board’, ’drama school’,

>

Eastern Orthodox patriarchate ’, ’composition school’, ’team’,
"national sports team’, ’borough of New Jersey ’, ’kommunaler

>

Spitzenverband °, ’state with limited recognition’, ’quarter of

il b}

Hamburg’, ’guitar’, ’title of honor’, ’reredos’, ’homicide’,
“art school’, municipality of Liechtenstein ’, ’regional
municipality of Ontario’, ’region of Belgium’, > writers
organization ’, ’rail guided transport’, ’rural district of
Baden—-W rttemberg ’, ’human action’, ’cultural movement’,
institute °, ’sibling group’, ’poisoning’, ’national
association football team’, ’city’, ’private company’,
literary form’, ’railway company’, ’municipality of Norway’,
health professional >, ’state of Australia’, ’'low-—cost airline
>, "multi—sport club’, 'military academy’, ’association
football stadium’, ’narrative technique ’, ’journalism school’,
“educator ’, ’saxophone’, ’state of India’, ’experience’, ’
former liberal party’, ’learned society ’, “high island’,
science fiction genre’, ’voluntary association’, ’university
building °, ’historical period’, “high school’, ’county of New
Jersey >, *Constitutional body’, ’century’, ’short story
collection ’, ’city with millions of inhabitants ’, ’research
university >, ’campus’, ’female idol group’, ’occurrence’, ’big
city ’, ’representation ', ’‘cover band’, ’'work of art’, ’minor
basilica ’, ’seminary’, ’group’, ’sports discipline ’, ’occupied
territory >, ’oblast of Russia’, ’governorate of the Russian
Empire’, ’county of Washington’, ’language regulator ’, ’Place
of Execution’, ’political party in Spain’, ’veterans
organization ’, ’painting movement’, ’software company’, ’human
settlement °, “hospital >, ’organ’, ’internal bleeding’, ’
municipality of Austria’, ’speculative fiction ’, municipality
of Spain’, ’county of Illinois ’, ’Nazi concentration camp’, ’

)

private school’, ’German public state broadcaster ’, ’former
administrative territorial entity ’, 'medical procedure’, ’web
series >, ’'pressure group’, 'social movement’, ’true board

zithers with resonator box’, ’Landschaftsverband ’, ’autonomous

b}

s

)

)
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country within the Kingdom of Denmark’, ’village in the
United States ’, ’Jewish cemetery’, ’book publishing company’,

s s

"video game developer’, 'metropolitan city of Italy ’,

s

government region of North Rhine-Westphalia’, ’district in

Switzerland °, ’foreign affairs ministry °, ’prefecture-level
city °, ’prefecture of Japan’, ’identifier >, ’union territory
of India’, ’new religious movement’, ’college athletic

conference ’, ’town in Croatia’, ’'neighborhood’, ’“modern
language ’, ’university in France’, ’Green party’, ’periodical

s s

, 'minister ’, ’single—tier municipality °, ’clay animation
film >, ’former district of Switzerland’, ’parliamentary term

b} )

in the United Kingdom’, ’juvenile political organisation ’,
church building °, ’secret police’, ’auxiliary science’, ’

) b} s

animated series ’, ’state of Austria’, ’ethnic group’,
creative work’, ’synthesizer’, ’religious identity ’,
television network’, “district of the canton of Schwyz’,
county of New York’, ’college’, ’rural district of Lower
Saxony’, ’philosophy’, ’falling ’, ’mausoleum’, ’ocean’,
Ortschaft >, ’dependent territory ’, ’race’, ’province of Canada

>, ’political party in Croatia’, ’rural district of Rhineland-
Palatinate °, ’Belgian municipality with city privileges ’,

dialect >, ’social science’, ’government’, ’rural cemetery’,

s b}

military museum’, ’musical work’, ’county of California’,

s

Catholic university ’, ’book series ’, ’volleyball team’,

superior graduate school in Italy ’, ’singing duo’, ’percussion
instrument >, ’engineer ', ’‘rugby union team’, ’graduate school
, 'mockumentary ’, ”“Conceyu d’ Asturies”, ’orthodox cathedral ’,

>

"VIA’, ’trade union’, ’public service’, ’sorority ’, ’former

k) )

French region’, ’historical society ’, ’East Slavic languages’,

“group of interconnected lakes’, ’musical duo’, ’borough’,
quarter >, ’registered association’, ’constituent part of the
United Kingdom’, ’theatrical genre’, ’legislative assembly’,

b}

area of law’, ’songwriter °, ’public educational institution of

bl

the United States ’, “university of applied sciences’, ’former

s

municipality °, ’metropolitan area’, ’Japanese television
drama’, ’League of Nations mandate’, ’Federal Ministry in
Germany’, ’nonprofit organization ’, ’‘online newspaper’, ’cause
of death’, ’private not—for—-profit educational institution ’,
"municipiu of Romania’, ’county-level city’, “director ’s cut”,

b}

‘city with powiat rights ’, ’administrative territorial entity

, ’daily newspaper’, ’tapestry series ’, ’rockumentary’,
higher party school’, ’“association football league’, ’state
school ’, ’heavy metal band’, ’borough of New York City’, °

> i

military operation’, ’school’, ’evaluation’, ’gymnasium’,

s s

protectorate °, ’drinking fountain’, ’chemical hazard’, ’comic
group’, ’cultural institution ’, ’political parties in Germany
>, ’tag team’, ’book’, ’college of music’, ’psychology’, °’

> i

juridical person’, ’foundation’, ’historic county of the
United Kingdom’, ’mallet percussion instrument’, ’“military

s

personnel °, ’parliamentary group’, ’accordion’, ’Relajaci n’,
“international court’, ’island’, ’constituency of the canton
of Lucerne’, ’Esperanto language institute ’, ’academic

5

discipline ’, ’fictional human’, ’steering committee , ’madhhab

s

i

b}

k)

)

s

s

s

[l

s s

b

)

, 'parliament’, ’governorate ', ’federally funded research and

development center ’, ’arrondissement of France’, ’massif’, ~’

live —action animated film’, “anglican or episcopal cathedral ’,

“art form’, ’home rule municipality of Pennsylvania’, ’upper
9

house’, ’comedy’, ’biology’, ’city of Japan’, ’village of New
Jersey ’, ’international airport’, ’political ideology’, ’

50



principality °, ’democratic republic’, ’acoustic guitar’, ’
b

salon’, ’New England town’, ’sea’, ’county of Minnesota’,

)

history >, ’“arts educational institution ’, ’city designated by

i s >

government ordinance ’, ’cultural heritage site in Russia’,

) s

military officer’, ’statutory city of Austria’, ’constituent
state °, ’public broadcasting ’, ’credit institution ’, ’
transport accident’, ’head and neck disease’, ’military unit
branch-size class’, ’central bank’, ’music genre’, ’
territorial entity >, ’television channel’, ’literary genre’,
musical group’, ’colony’, ’'Landeskirche’, ’concept’, ’branch
of science’, ’'natural language’, ’federative unit of Brazil ’,
"play ’, ’“oblast of Ukraine’, ’advisory board’, ’borough of
Hamburg’, ’single -reed instrument’, ’music scene’, ’divided
country °, ’science fiction’, ’valve horn’, ’civil parish’,
musical technique ’, 'major label ’, ’Oriental studies’, ’
hardback ’, ’written work’, ’international financial
institution ’, ’atheneum’, ’video game theme’, ’region of
Finland ’, ’ecclesiastical title ’, ’constituency ’, ’supreme
court’, ’“district of the canton of Valais’, ’Japanese TV
series *, ’engineering school’, ’city or town’, ’joint-stock
company’, “area of London’, ’“home rule city of Michigan’, °’
film studio’, “English’, ’science’, ’former provinces of Italy
>, "Landeswohlfahrtsverband °, ’labour party’, ’“secret society
, “district of Israel’, ’first-level administrative country
subdivision ’, ’professional sports league’, ’*Khanate’, ’state
>, ’United States federal executive department’, ’mountain’,
journalism genre’, ’region of Italy’, ’religious text’, °’
district of the canton of Neuch tel >, “town’, ’“Catholic

bl

religious occupation’, ’municipal arrondissement of Marseille

s

b

s

)

s

>

’

, ’superpower’, 'memory institution ’, ’religious denomination

k) s b}

, ’academic institution ’, ’people’, ’artist collective ’,
holding company’, ’municipality of Switzerland ’, ’serial film
>, ’philosophical movement’, ’urban area in Sweden’, ’

scientific society ’, ’Hanseatic city ’, ’social influence ’,
district of the canton of Fribourg’, “imperial university of

s

the Russian Empire’, ’state university system’, ’“pontifical
university >, ’religious organization’, ’state church’,
overseas department of France’, ’'ceremonial county of England

s s E

, ’shock troops’, ’county of Maryland’, ’radio station ’,

s

tradesperson ', 'Metropolitan Statistical Area’, ’facility ’,

organization related to nonviolence’, ’public scientific ,
cultural or professional establishment’, ’charter city ’,

il

class of instruments ’, ’college of the University of Oxford’,
"province of the Republic of China’, ’district of the canton

bl )

of Ticino’, ’film genre’, ’believer ’, ’“aviation accident’,
keyboard ’, ’'mountain range’, 'health problem’, ’anime and

s

manga genre ', ’‘volcano’, ’Ecole secondaire de Neuchatel ’,

> 5> k]

device ’, ’drama’, ’dead language’, statistical service ’,
physics °, ’commercial organization’, ’keyboard instrument’,
parish of Jamaica’, ’historical language’, ’literary movement
>, ’culture ’, ’business school’, ’cinematic technique ’, ’
enterprise °, ’video game genre’, ’atypical pneumonia’,
faculty >, ’art music’, ’district of the canton of Vaud’,
necked bowl lutes sounded by plectrum ’, ’rural district of
North Rhine—Westphalia’, ’“age’, ’United States national

cemetery ’, ’single oboes with conical bore’, ’philosophical

i k)

school °, ”UCI Women’s Team”, ’educational institution ’,
9

metropolitan municipality of South Africa’, ’Bundestag
committee >, ’basketball team’, ’supranational wunion’,

s

)

s

b}

k)

b}
>

)

s

b}

s
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s E)

apostasy °, ’ethics ’, ’economic branch’, ’grande cole s
administrative district of the canton of Bern’, ’urban

)

municipality of Germany’, ’census-—designated place’, ’largest

city °, ’theatre ’, ’sovereign state ’, ’international school’,
municipality °, ’district or neighborhood of Los Angeles’, ’
public policy school’, ’academia’, ’geographic region’, ’
association football club’, ’extermination camp’, ’profession

s El s

, 'terrorist organization ’, ’symphonic orchestra’, ’airport’,

s b}

>cathedral >, ’computing platform ’, ’locality of Mexico’,
college of the University of Cambridge’, ’liberal religion’, ~’
government region of Baden—-W rttemberg ’, ’medical society ’,

[l bl

specialized agency of the United Nations’, ’language’, ’city/
town’, ’community center ’, ’proposed country’, “historical

b} )

Chinese state ’, ’faculty of law’, ’spoken language’, ’zone of
Nepal’, ’protection ’, ’independent city of Germany’, ’higher

s ) s

education institution ’, ’stop-motion animated film ’,
fictional city ’, ’German Student Corps’, ’voivodeship of
Poland’, ’baseball team’, ’department of Argentina’, ’district
of the canton of Aargau’, ’UCI Trade Team II’, ’county of

Virginia ’, ’news agency’, ’'newspaper’ , ’athletic conference ’,
“historical country’, ’rural district of Saxony’, ’politician

s )

, 'border town’, ’infectious disease’, ’district of the
canton of Z rich ’, 'mind sport’, “pop duo’, ’Swedish Royal
Academies’, ’world view’, ’Ausbildungsberuf’, ’staff college ’,
"neighborhood in Brooklyn, New York City’, *Eastern Catholic

i s

Church’, ’department of France’, ’city in New Jersey ’,
political party’, ’primary school’, ’boy band’, ’art museum’,
university >, “animated character’, 'municipality of Belgium’,

bl )

‘type of business entity >, ’organization ', ’conservatory ’,
municipality of Vietnam’, ’entertainment company’, ’London

s

borough’, ’“county of Massachusetts >, ’instrumentalist’, ’city

)

of New Brunswick’, ’historical region’, ’“group of fictional

i

characters >, ’association football team’, ’*British Overseas

)

Territories >, ’absence’, ’“confederation’, ’subdistrict of the

> k] >

canton of Ticino’, ’Crusader states ’, ’city—-state ’, ’Catholic

b}

cathedral ’, ’jurisdiction ’, 'municipality of the Czech
Republic’, ’Protestantism ’, ’education’, ’sports club’,

university college’, ’“special city of Japan’, ’subcontinent ’,
"royal palace’, ’writing circle ’, ’clinical sign’, ’clan’, ’3D

film >, ’film production company’, “human—-geographic
territorial entity °, ’sequel film’, ’building’, ’colonial

s k)

power’, ’oboe family instrument’, ’“area of mathematics ’,

)

vascular disease ’, ’academy’, ’island of Japan’, ’fountain ’].

>

H

Please extract a list of all the entities of the types described
above from the given passage.

Please provide your response in valid JSON using the following

response schema: {’type’: ’object’, ’properties ': {’entities ’:
{"type ’: ’array’, ’items’: {’type’: ’string }}}, ’required ’:
[entities ], ’additionalProperties ': False, ’strict ’: True}
For example:
Example input: “Renate Axt was a writer, born in Darmstadt in
Germany. Germany shares a border with Austria and

Czechoslovakia.”

Expected response: {{
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entities: [
”Renate Axt”,
”Darmstadt”,
”Germany”,
”Austria”,
”Czechoslovakia”,

13
Codex - KG Extraction Prompt Template

You will be provided with a text describing the directed
relationships between various entities

You will also be provided with a list of entities contained within
that statement.

Entities are related to the other entities via the following
directed relationships: [’country of citizenship ', ’country’,
“occupation ’, ’place of birth’, 'member of political party’,
educated at’, ’“genre’, 'member of’, ’located in the
administrative terroritorial entity ’, ’languages spoken,
written , or signed’, ’religion ’, ’instrument’, ’sibling’,
place of death’, ’shares border with’, ’spouse’, ’place of
burial °, ’cast member’, ’'record label’, ’field of work’, ’

>

b}

employer’, ’influenced by’, ’location of formation’, ’
diplomatic relation ’, ’cause of death’, ’country of origin’, ’
residence >, ’airline hub’, *official language’, ’narrative
location ’, ’capital ’, ’ethnic group’, ’member of sports team’,

’language of work or name’, ’time period’, ’headquarters
location ’, ’child’, ’sport’, ’medical condition’, ’‘movement’,

“director ’, ’‘uses’, ’founded by’, ’parent organization ', ’
continent >, ’occupant’, ‘mountain range’, ’symptoms’, ’part of
>, ’publisher ’, ’drug used for treatment’, ’industry ’, ’named
after >, ’unmarried partner’, ’airline alliance ’, ’creator’, ’
legal form’, ’author’, ’chairperson’, ’health specialty ', ~’
architect °, ’chief executive officer ’, ’product or material

b b : b 9 : M b b

produced ’, ’architectural style’, ’legislative body’,

s

practiced by’, ’foundational text’, ’studies’, ’use’]

Your goal is to extract the relationships between the entities as
a directed graph and represent that graph as a list of triples
in valid json using the following schema: {’type’: ’object’,
"properties *: {’triples ’: {’type’: ’array’, ’items’: {’type ’:
"object ’, ’properties ': {’source_node ’: {’type’: ’object’,
properties *: {’name’: {’type’: ’string '}}, ’required ’: [’ name
"], ’additionalProperties *: False}, ’relation ’: {’type’: °’
object ’, ’properties ': {’name’: {’type’: ’string ’}}, ’required
>: [’name’], ’additionalProperties ’: False}, ’target_node ': {’

)

type ’: ’“object’, ’properties *: {’name’: {’type’: ’string’'}}, °’
required ’: [’name’], ’additionalProperties ’: False}}, ’
required ’: [’source_node’, ’relation ’, ’target_node ], ’

>

additionalProperties ’: False}}}, ’required ’: [’triples '],
additionalProperties ’: False, ’strict ': True}

The triples should be represented in directed order with the
relation direction going from ”source_node” to “target_node”

Examples:
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1

Example entities: [”Renate Axt”, ”Darmstadt”, “Germany”, ”
Austria”, ”"Czechoslovakia”]
Example text: “Renate Axt was a writer, born in Darmstadt in

Germany. Germany shares a border with Austria and
Czechoslovakia.”

Expected output: {{
“triples ”: [

{{ source_node *: {{’name’: ’Renate Axt’}}, ’relation *: {{’
name’: ’occupation’}}, ’target_node ’: {{’name’: °’
writer "} }}},

{{’source_node ’: {{’name’: ’Renate Axt’}}, ’relation ’: {{’
name’: ’place of birth’}}, ’target_node ’: {{’name’: ~’
Darmstadt "} }}},

{{’source_node ’: {{’name’: ’Darmstadt’}}, ’relation ’: {{’
name’: ’‘country’}}, ’target_-node ’: {{’name’: ’Germany

{{’source_node ’: {{’name’: ’Germany’}}, ’relation ’: {{’
name’: ’shares border with’}}, ’target_node *: {{ name
*: " Austria’}}}},

{{ source_node *: {{’name’: ’Germany’}}, ’relation ’: {{’
name’: ’shares border with’}}, ’target_node *: {{ name

’: > Czechoslovakia’}}}},

Example entities: ["Rome”, ”"Roman Republic”, “ancient Rome”, ”
Western Roman Empire”, ”Persian Empire”, “classical antiquity
5’, ”Latin”]

Example text: “"Rome has been located in a range of
administrative terroritorial entities including the Roman
Republic, ancient Rome and the Western Roman Empire. Ancient
Rome, which shared a border with the Perian Empire, existed in
the time period of classical antiquity. Within the Western
Roman Empire, the official language was Latin.”

Expected output: {{
“triples ”: [
{{’source_node ’: {{’name’: ’Rome’}}, ’relation {{’name :
"located in the administrative terroritorial entity
*}}, ‘target_node ’: {{’name’: ’Roman Republic’}}}},

2.

{{ source_node ’: {{’name’: ’Rome’}}, ’relation ’: {{ name’:
"located in the administrative terroritorial entity
’}}, ’target_node ’: {{’name’: ’ancient Rome’}}}},

{{’source_node ’: {{’name’: 'Rome’}}, ’relation *: {{’name’:
"located in the administrative terroritorial entity
*}}, ’target_node ’: {{’name’: ’Western Roman Empire
HHE

{{’source_node ’: {{’name’: ’ancient Rome’}}, ’relation ’:
{{’name ’: ’shares border with’}}, ’target_node ’: {{’
name’: ’Persian Empire’}}}},

{{ source_node ’: {{’name’: ’ancient Rome’}}, ’relation ’:
{{’name’: ’time period’}}, ’target_node ’: {{’name’: °’
classical antiquity "}}}},

{{’source_node ’: {{’name’: ’Western Roman Empire’}}, ~’
relation *: {{’name’: ’official language’}}, °’
target_node *: {{’name’: ’Latin’}}}},
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1

]

Example entities: [”G.I. Joe: The Rise of Cobra”, ”Lee Byung-
hun”, ”Marlon Wayans”, “film director”, ”"New York City”, ”
Howard University”, ”film actor”, ”Seoul”, ”Korean”]

Example text: "G.I. Joe: The Rise of Cobra, a film that takes
place in Tokyo, starred Lee Byung—-hun and Marlon Wayans.
Wayans, also a film-director was born in New York City and
attended Howard University . Meanwhile Lee Byung—hun is an
actor born in Seoul who speaks Korean.”

{{’source_node ’: {{’name’: ’G.I. Joe: The Rise of Cobra’}}, °’
relation *: {{’name’: ’cast member’}}, ’target_node ': {{’
name’: ’Lee Byung—hun’}}}},

{{’source_node ’: {{’name’: ’G.I. Joe: The Rise of Cobra’}}, °’
relation *: {{’name’: ’cast member’}}, ’target_node ': {{’
name’: ’Marlon Wayans’}}}},

{{ source_node *: {{’name’: 'G.I. Joe: The Rise of Cobra’}}, ~’

relation *: {{’name’: ’narrative location’}}, ’target_node
> {{’name’: 'Tokyo’}}}}.

{{’source_node ’: {{’name’: ’Marlon Wayans’}}, ’relation ’: {{’
name ’: ’occupation’}}, ‘target_node ’: {{’name’: ’film
director "} }}},

{{’source_node ’: {{’name’: ’*Marlon Wayans’}}, ’relation ’: {{’
name’: ’place of birth’}}, ’target_-node ’: {{’name’: ’New

York City "}}}},
{{’source_node ’: {{’name’: *Marlon Wayans’}}, ’relation *: {{’

name’: ’educated at’}}, ’target.node ’: {{’name’: ’Howard
University "}}}},

{{’source_node ’: {{’name’: ’Lee Byung-hun’}}, ’relation ’: {{’
name’: ’occupation’}}, ‘target_node ’: {{’name’: ’film
actor "} }}},

% .

{{’source_node {{’name’: ’Lee Byung-hun’}}, ’relation ’: {{’
name’: ’place of birth’}}, ’target_node ’: {{’name’: ’Seoul

{{’source_node ’: {{’name’: ’Lee Byung-hun’}}, ’relation ’: {{’
name’: ’languages spoken, written, or signed’}},
target_-node *: {{’name’: ’Korean’}}}},

FinDKG - Entity Extraction Prompt Template

You will be provided with a statement describing the relationship

between various entities .

The different entities described are of the following types: [ ORG

/GOV’, °ORG’, ’PERSON’, ’SECTOR’, ’ORG/REG’, ’EVENT’, °
ECON_INDICATOR’ , ’FIN_INSTRUMENT’, 'COMP’, 'GPE’, ’CONCEPT’, ~
PRODUCT" ].

Please extract a list of all the entities of the types described

above from the given passage.

Please provide your response in valid JSON using the following

response schema: {’type’: ’object’, ’properties ’: {’entities ’:
{"type ’: ’array’, ’items ': {’type’: ’string '}}}, ‘required ’:
[’entities ’], ’additionalProperties ’: False, ’strict ’: True}
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For example:

Example input: ”Italian debt is related to policies of the
European Central Bank. This debt has an impact on the Italian
Government in addition to investors. Investors may also
subsequently impact the value of Yuan.”

Expected response: {{
“entities ”: [
”Jtalian debt”,
”European Central Bank”,
”Italian Government”,
”investors”,
”Yuan”,

13

FinDKG - KG Extraction Prompt Template

You will be provided with a text describing the directed
relationships between various entities

You will also be provided with a list of entities contained within
that statement.

Entities are related to the other entities via the following

directed relationships: [’ Control’, ’Impact’, ’Participates_In
>, ’Relate_To’, ’Operate_In’, ’Positive_Impact_On’, ’Raise’, ’
Announce’, ’Introduce’, ’'Negative_-Impact_-On’, ’Is_-Member_Of’,

>Decrease ’, 'Has’, ’Produce’, ’Invests_In ’]”

Relation Definitions:

— Has: Indicates ownership or possession, often of assets or
subsidiaries in a financial context.

— Announce: Refers to the formal public declaration of a financial
event, product launch, or strategic move.

— Operate_In: Describes the geographical market in which a
business entity conducts its operations.

— Introduce: Denotes the first—time introduction of a financial
instrument , product, or policy to the market.

— Produce: Specifies the entity responsible for creating a
particular product, often in a manufacturing or financial
product context.

— Control: Implies authority or regulatory power over monetary
policy , financial instruments, or market conditions.

— Participates_In: Indicates active involvement in an event that
has financial or economic implications.

— Impact: Signifies a notable effect, either positive or negative,
on market trends, financial conditions, or economic
indicators .

— Positive_Impact_-On: Highlights a beneficial effect on financial
markets , economic indicators , or business performance.

— Negative_Impact_-On: Underlines a detrimental effect on financial
markets , economic indicators , or business performance.

— Relate_To: Points out a connection or correlation with a
financial concept, sector, or market trend.

— Is_Member_Of: Denotes membership in a trade group, economic
union, or financial consortium.
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— Invests_In: Specifies an allocation of capital into a financial
instrument , sector, or business entity.

— Raise: Indicates an increase, often referring to capital,
interest rates, or production levels in a financial context.

— Decrease: Indicates a reduction, often referring to capital,
interest rates, or production levels in a financial context.

Your goal is to extract the relationships between the entities as
a directed graph and represent that graph as a list of triples

in valid json using the following schema: {’type’: ’object’,
"properties *: {’triples ': {’type’: ’array’, ’items’: {’type ’:
"object’, ’properties ’: {’source_node ’: {’type’: ’object’, ’
properties *: {’name’: {’type ’: ’string '}}, ’required ’: [’ name
"], ’additionalProperties *: False}, ’relation ’: {’type’: ~’
object’, ’properties ': {’name’: {’type’: ’string ’}}, ’required
>: [’name’], ’additionalProperties ’: False}, ’target_node ': {’
type ’: ’object’, ’properties *: {’name’: {’type’: ’string’'}}, ~’
required *: [’name’], ’additionalProperties ’: False}}, ’
required ’: [’source_node’, ’relation ’, ’target_node '], ’
additionalProperties *: False}}}, ’required ': [ triples '], °
additionalProperties *: False, ’strict ': True}

The triples should be represented in directed order with the
relation direction going from “source_node” to “target_node”

Examples:

1. Example entities = ["U.S. Air Force”, ”Asia and Europe”, ”
Afghanistan”, ”government”]

1. Example text = "The U.S. Air Force controls Asia and Europe,

and operates in Afghanistan. Afghanistan has a government.”

1. Expected output: {{
“triples”: [

{{’source_node ’: {{’nmame’: °'U.S. Air Force’}}, ’relation ’:
{{’name’: ’Control’}}, ’target_node *: {{’name’: ’Asia
and Europe’}}}},

{{’source_node ’: {{’name’: ’U.S. Air Force’}}, ’relation ’:
{{’name’: ’Operate_In’}}, ’target_node ’: {{’name’: ~’

Afghanistan"}}}},

{{ source_node ’: {{’name’: ’*Afghanistan’}}, ’relation ’:
{{’name’: °'Has’}}, ’target_node ’: {{’name’: ~’
government’}}}},

1

2. Example entities = ["Tax Cut”, “consumer spending”, “investment
”, ”Economic indicators”, "The U.S. Economy”]
2. Example text = ”"Tax cuts can impact investment but also have a

positive impact on consumer spending which relates to
important economic indicators and can impact the U.S. economy

29

2. Expected output: {{
“triples ”: [
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{{ source_node *: {{’name’: ’'Tax Cut’}}, ’relation *: {{’

name’: ’Positive_Impact_On’}}, ’target_node ’: {{ name
. ’Consumer Spending’}}}},

{{’source_node ’: {{’nmame’: ’Tax Cut’}}, ’relation ’: {{’
name’: ’Impact’}}, ’target_node ’: {{’name’: ~’
investment "} }}},

{{’source_node ’: {{’name’: ’Consumer Spending’}}, °’
relation *: {{’name’: ’Relate_.To’}}, ’target_node ’: {{’
name’: ’Economic indicators '}}}},

{{ source_node ’: {{’name’: ’'Consumer Spending’}}, °’
relation *: {{’name’: ’Impact’}}, ’target_node ": {{’
name’: ’The U.S. Economy’}}}},

]

3

3. Example entities: [”Federal Reserve System”, ”“Gold”, “Expenses
”, ”The U.S. Economy”, ”Gross Domestic Product”, “U.S. stocks
"]

3. Example text = “The Federal Reserve System controls expenses,

which can have a positive impact on Gold, an asset also
impacted by the Federal Reserve System. Additionally this
system controls the U.S. Economy which has a relationship with
Gross Domestic Product and U.S. stocks.”

3. Expected output: {{
“triples ”: [
{{’source_node ’: {{’name’: ’Federal Reserve System’}},

bl

relation *: {{’name’: ’Impact’}}, ’target_-node ’: {{’
name’: 'Gold’}}}},

{{’source_node ’: {{’name’: ’Federal Reserve System’}}, ~’
relation *: {{’name’: ’Control’}}, ’target_node ": {{’
name’: ’Expenses’}}}},

{{ source_node ’: {{’name’: ’Federal Reserve System’}}, °’
relation *: {{’name’: ’Control’}}, ’target_node ": {{’

name’: ’The U.S. Economy’}}}},
{{’source_node ’: {{’name’: *The U.S. Economy’}}, ’relation

*: {{’name’: ’Relate_To’}}, ’target_node ’: {{’name’: ~’
Gross Domestic Product’}}}},

{{’source_node ’: {{’name’: ’The U.S. Economy’}}, ’relation
*: {{’name’: ’Relate_-To’}}, ’target_node ’: {{’name’: ~’

U.S. stocks i,

{{ source_node *: {{’name’: ’Expenses’}}, ’relation ’: {{’
name’: ’Positive_Impact_-On’}}, ’target_node *: {{ name
*: ’Gold’}}1}},

Globi - Entity Extraction Prompt Template

Due to the prohibitively large number of edges in the Globi KG, the prompt template edge-list is
truncated here to fit in the manuscript. The prompt template used in validation contained all available
edges.

You will be provided with a statement describing the relationship
between various entities.

The different entities described are of the following types: [’
Cicindellidae °, ’Euphausiidae’, ..., ’“Centracanthidae ’].
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Please extract a list of all the entities of the types described
above from the given passage.

Please provide your response in valid JSON using the following
response schema: {’type’: ’object’, ’properties ’: {’entities
{"type ’: ’array’, ’items’: {’type’: ’string }}}, ’required ’:
[entities ], ’“additionalProperties ': False, ’strict ’: True}

% .

For example:

Example input: “Chromatomyia erigerontophaga is a species known to
visit the flowers of Potentilla nivea which in turn have
interactions with Salix arctica and Draba nivalis. C.
erigerontophaga also pollinate Erigeron compositus. This
flower is known to interact with Populus tremuloides and
Luetkea pectinata.”

Expected response: {{
“entities”: [

”Chromatomyia erigerontophaga”,
”Potentilla nivea”,
”Salix arctica”,
”Draba nivalis”,
”Erigeron compositus”,
”Populus tremuloides”,
”Luetkea pectinata”,

1

Globi - KG Extraction Prompt Template

You will be provided with a text describing the directed
relationships between various entities

You will also be provided with a list of entities contained within
that statement.

Entities are related to the other entities via the following

s )

directed relationships: [’parasiteOf’, “hasHost’, ’eats’,

5>

preysOn’, ’pollinates ’, ’pathogenOf’, ’visitsFlowersOf ’,
hasVector ’, ’rootparasiteOf ', ’endoparasiteOf’, ’interactsWith
>, “kills ’, ’createsHabitatFor ’, ’parasitoidOf’, ’hasRoost’, ’
coRoostsWith’, ’ecologicallyRelatedTo ’, ’epiphyteOf’, ~’
commensalistOf >, “mutualistOf’, ’providesNutrientsFor >, ~’
ectoparasiteOf ’, ’coOccursWith’, “hasHabitat’, ’symbiontOf’,

kleptoparasiteOf °, ’adjacentTo’, ’allelopathOf’, ’laysEggsIn’,

k]

s

>visits 7, “hyperparasiteOf ’, ’laysEggsOn’, ’endoparasitoidOf
>, ’livesOn’, ’guestOf’, ’livesInsideOf’, ’ectoParasitoid ’, ’
livesNear ’, ’livesUnder ’, ’inhabits >, ’hasDispersalVector ’]

Your goal is to extract the relationships between the entities as
a directed graph and represent that graph as a list of triples
in valid json using the following schema: {’type’: ’object’,

"properties *: {’triples ’: {’type’: ’array’, ’items’: {’type’
"object ’, ’properties ’: {’source_node ’: {’type’: ’object’, ’
properties *: {’name’: {’type’: ’string ’'}}, ’required ’: [’name
"], ’additionalProperties *: False}, ’relation ’: {’type’: °’
object’, ’properties ': {’name’: {’type’: ’string’}}, ’required
>: [’name’], ’additionalProperties ': False}, ’target_node ": {’
type ’: ’object’, ’properties ’: {’name’: {’type’: ’string’}}, ’
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required *: [’name’], ’additionalProperties ’: False}}, °

required ’: [’source_node’, ’'relation ’, ’target_node '], ’
additionalProperties *: False}}}, ’required ': [ triples '], °
additionalProperties ’: False, ’strict ’: True}

The triples should be represented in directed order with the
relation direction going from ”source_node” to “target_node”

Examples:

1. Example entities: [”Chromatomyia erigerontophaga”, ”“Potentilla
nivea”, ”Salix arctica”, ”Draba nivalis”, "Erigeron compositus
”, "Populus tremuloides”, ”"Luetkea pectinata”]

1. Example text: “Chromatomyia erigerontophaga is a species known

to visit the flowers of Potentilla nivea which in turn have
interactions with Salix arctica and Draba nivalis. C.
erigerontophaga also pollinate Erigeron compositus. This
flower is known to interact with Populus tremuloides and
Luetkea pectinata.”

1. Expected output: {{
“triples ”: [

{{’source_node ’: {{’name’: ’Chromatomyia erigerontophaga
>}y, ‘relation ’: {{’name’: ’visitsFlowersOf }}, °
target_node *: {{’name’: ’Potentilla nivea’}}}},
{{’source_node ’: {{’name’: ’Chromatomyia erigerontophaga
’}}, ’relation ’: {{’name’: ’pollinates '}}, ~’
target_node *: {{’name’: ’Erigeron compositus’}}}},
{{’source_node ’: {{’name’: ’Potentilla nivea’}}, ’relation
*: {{’name’: ’interactsWith '}}, ’target_node ’: {{ name
*: ’Salix arctica '} }}},
{{ source_node ’: {{’name’: ’Potentilla nivea’}}, ’relation
" {{’name’: ’interactsWith '}}, ’target_node ’: {{ name
. ’Draba nivalis "} }}},
{{’source_node ’: {{’name’: ’Erigeron compositus’}}, ’
relation *: {{’name’: ’interactsWith '}}, ’target_node’
{{’name’: ’Populus tremuloides }}}},
{{’source_node ’: {{’name’: ’Erigeron compositus’}}, ’
relation *: {{’name’: ’interactsWith '}}, ’target_node ’
{{’name ’: ’Luetkea pectinata’}}}}
]
1
2. Example entities: [”Pinus jeffreyi”, “Betula occidentalis”, ”
Wyethia mollis”, ”Collomia heterophylla”]
2. Example text: ”Pinus jeffreyi interacts with several species

including Betula occidentalis and Wyethia mollis. Wyethia
mollis in turn interacts with Collomia heterophylla.”

2. Expected output: {{
“triples ”: [

{{’source_node ’: {{’name’: ’Pinus jeffreyi '}}, ’relation ’:
{{’name’: ’interactsWith '}}, ’target_node ’: {{’name’:
"Betula occidentalis "} }}},

{{ source_node ’: {{’name’: ’Pinus jeffreyi '}}, ’relation ’:
{{’name’: ’interactsWith *}}, ’target_node ’: {{ name’:

>Wyethia mollis "} }}},
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{{ source_node ’: {{’name’: *Wyethia mollis ’}}, ’relation ’:
{{’name’: ’interactsWith *}}, ’target_node ’: {{ name’:
"Collomia heterophylla’}}}}
3 |
3. Example entities: [”Neotoma mexicana”, “Lynx rufus”, ”Canis
latrans”, ”Prunus serotina”, ”Sylvilagus cunicularius”, ”
Panthera leo”, ”"Crotalus pricei”, ”Sceloporus jarrovii”, ”
Junco phaeonotus”]
3. Example text: ”Crotalus pricei is a species known to prey on
several species including , Sceloporus jarrovii, Junco

phaeonotus , and Neotoma mexicana. Neotoma mexicana have

interactions with several species including Lynx ruf

us and

Canis latrans. Canis latrans are known to co—occur with

Panthera leo and eat Prunus serotina and Sylvilagus
cuncicularius.”

3. Expected output: {{

“triples ”: [

{{ source_node ’: {{’name’: ’'Neotoma mexicana’}}, ’relation
*: {{’name’: ’interactsWith '}}, ’target_node ’: {{ name
*: "Lynx rufus’}}}},

{{’source_node ’: {{’name’: ’Neotoma mexicana’}}, ’relation
*: {{’name’: ’interactsWith '}}, ’target_node ’: {{’name
. ’Canis latrans "}}}}

{{’source_node ’: {{’name’: ’Canis latrans ’}}, ’relation ’:
{{’name’: ’eats’}}, ’target_-node ’: {{’name’: ’Prunus
serotina "} }}},

{{’source_node ’: {{’name’: ’Canis latrans '}}, ’relation ’
{{’name’: ’eats’}}, ’target.node ’: {{’name’: °’
Sylvilagus cunicularius }}}},

{{’source_node ’: {{’name’: ’Canis latrans ’}}, ’relation ’:
{{’name’: ’coOccursWith’}}, ’target_node ’: {{’name’: ~’
Panthera leo’}}}},

{{’source_node ’: {{’name’: ’Crotalus pricei’}}, ’relation
*: {{’name’: ’preysOn’}}, ’target_node ’: {{’name’: ~’
Sceloporus jarrovii "}}}},

{{’source_node ’: {{’name’: ’Crotalus pricei’}}, ’relation
*: {{’name’: ’preysOn’}}, ’target_node ’: {{’name’: °’
Neotoma mexicana’}}}},

{{’source_node ’: {{’name’: ’Crotalus pricei’}}, ’relation
*: {{’name’: ’preysOn’}}, ’target_node ’: {{’name’: °’

Junco phaeonotus’}}}},

1

Oregano - Entity Extraction Prompt Template

You will be provided with a statement describing the re
between various entities.

lationship

The different entities described are of the following types: [’

COMPOUND’ , "GENE’, ’DISEASE’, ’PROTEIN’, 'MOLECULE’,
>, "EFFECT’, °PHENOTYPE’, ’PATHWAY’, ’INDICATION’, °
SIDE_EFFECT ’].

Please extract a list of all the entities of the types
above from the given passage.
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Please provide your response in valid JSON using the following

response schema: {’type’: ’object’, ’properties ’: {’entities ’:
{"type ’: ’array’, ’items’: {’type’: ’string '}}}, ‘required ’:
[’entities ’], ’additionalProperties ’: False, ’strict ’: True}
For example:
Example input: “The compound kizuta saponin kl2 targets

prostaglandin G/H synthase 2. The prostaglandin G/H synthase 2
is a gene product of PTGS2, which acts within the pathway of
the synthesis of 15-eicosatetraenoic acid derivatives.”

Expected response: {{
“entities ”: [
“kizuta saponin k127,
“prostaglandin G/H synthase 27,
"PTGS2”,
”synthesis of 15-eicosatetraenoic acid derivatives”,

1

Oregano - KG Extraction Prompt Template

You will be provided with a text describing the directed
relationships between various entities

You will also be provided with a list of entities contained within
that statement.

Entities are related to the other entities via the following
directed relationships: [’ has_target’, ’increase_activity ’,

> s

has_activity °, ’decrease_activity >, ’increase_effect ’,
has_effect ’, ’decrease_effect’, ’increase_efficacy ’, ’

)

decrease_efficacy >, ’causes_condition ’, ’has_phenotype ’,

> s b}

is_affecting °, ’is_substance_that_treats ’, ’“acts_within ’,
has_indication ’, “has_side_effect’, ’gene_product_of ’]

bl

Your goal is to extract the relationships between the entities as
a directed graph and represent that graph as a list of triples
in valid json using the following schema: {’type’: ’object’,
"properties ’: {’triples ’: {’type’: ’array’, ’items’: {’type ’:
"object ’, ’properties ': {’source_node ’: {’type’: ’object’,
properties *: {’name’: {’type’: ’string ’}}, ’required ’: [’name
"], ’additionalProperties ': False}, ’relation ’: {’type’: °’
object ’, ’properties *: {’name’: {’type’: ’string ’}}, ’required
>: [’name’], ’additionalProperties ’: False}, ’target_node ": {’
type *: ’object’, ’properties ': {’name’: {’type’: ’string }}, ’
required ’: [’name’], ’additionalProperties ’: False}}, ’
required ’: [’source_node’, ’relation ’, ’target_node '],
additionalProperties ’: False}}}, ’required ’: [’triples '],
additionalProperties *: False, ’strict ': True}

)

s

)

The triples should be represented in directed order with the
relation direction going from ”source_node” to “target_node”

The valid edge directions are [’COMPOUND —> PROTEIN’, ’'COMPOUND —>
MOLECULE’ , ’COMPOUND —> ACTIVITY’, ’COMPOUND —> EFFECT’, °’
COMPOUND —> COMPOUND’, ’'GENE —> DISEASE’, ’'DISEASE —>
PHENOTYPE’ , 'COMPOUND —> GENE’, ’'COMPOUND —> DISEASE’, ’GENE
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—> PATHWAY’ , ’COMPOUND —> INDICATION’, ’'COMPOUND —> SIDE’, ~’
PROTEIN —> GENE’ ]

Examples:

1. Example entities: [”kizuta saponin k12”7, ”"prostaglandin G/H
synthase 2”7, ”"PTGS2”, ”synthesis of l5-eicosatetraenoic acid
derivatives ]

1. Example text: “The compound kizuta saponin kl2 targets
prostaglandin G/H synthase 2. The prostaglandin G/H synthase 2
is a gene product of PTGS2, which acts within the pathway of
the synthesis of 15-eicosatetraenoic acid derivatives.”

1. Expected output: {{
“triples ”: [

{{”source_node”: {{”name”: ”kizuta saponin k127}},
relation”: {{”name”: “has_target”}}, “target_node”
{”name”: ”prostaglandin G/H synthase 2”}}}},

{{”source_node”: {{”name”: ”prostaglandin G/H synthase
27}}, “relation”: {{”name”: ”gene_product_of”}},
target_node”: {{”name”: "PTGS2”}}}},

{{”source_node”: {{”name”: “PTGS2”}}, “relation”: {{”name
”: 7acts_within”}}, “target_node”: {{”name”: ”
synthesis of I15-eicosatetraenoic acid derivatives

")
13

2. Example entities: [”xk469”, ~aldehyde oxidase 1”7, "toxic liver
disease”, “neoplasms”]
2. Example text: “The drug xk469 has an effect on aldehyde oxidase

1. Interestingly , alterations in aldehyde oxidase 1 are known
to cause several conditions including toxic liver disease,
and neoplasms.”

2. Expected output: {{
“triples ”: [
{{’source_node *: {{’name’: ’*xk469°}}, ’relation ’: {{’name
. ’is_affecting "}}, ’target_node ’: {{’name’: ~’
aldehyde oxidase 1’}}}}]1”
{{ source_node *: {{’name’: ’aldehyde oxidase 1°}},

relation : {{ name’: ’causes condition "}},

target_node ’: {{’name’: “toxic liver disease’ }}}}
{{’source_node ’: {{’name’: ’aldehyde oxidase 1’ }}

relation *: {{’name’: ’causes_condition '}},

5.

target_node {{’name’: ’neoplasms’}}}},

13

3. Example entities: [” Aniracetam”, “Dopamine D2 receptor”, “DRD2
”, ”Magnesium Sulfate”, ”Paramethadione”, “Dihydrocodeine”, ”
Orvepitant”]

3. Example text: ”’The drug known as Aniracetam targets the
Dopamine D2 receptor, a gene product of DRD2. Aniracetam is
known to enhance the efficacy of Magnesium Sulfate , which in
turn boosts the effects of Paramethadione, Dihydrocodeine , and
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Orvepitant. Therefore, caution should be taken when using
Aniracetam due to its wide—reaching effects.

3. Expected output: {{
“triples ”: [

{{’source_node ’: {{’name’: ’Aniracetam’}}, ’relation ’: {{’
name’: ’has_target’}}, ’target_node ’: {{’name’: °’
Dopamine D2 receptor’}}}},

{{ source_node ’: {{’name’: ’Dopamine D2 receptor ’}}, °’
relation *: {{’name’: ’gene_product_of ’}}, ’target_node
*: {{’name’: 'DRD2’}}}},

{{ source_node *: {{’name’: ’Aniracetam’}}, ’relation *: {{’
name’: ’increase_efficacy }}, ’target_node ’: {{’name’:

’Magnesium Sulfate "} }}},

{{’source_node ’: {{’name’: ’Magnesium Sulfate’}}, ~’
relation ': {{’name’: ’increase_efficacy ’}}, ~’
target-node *: {{’name’: ’Paramethadione’}}}},

{{’source_node ’: {{’name’: ’Magnesium Sulfate ’}}, °’
relation *: {{’name’: ’increase_efficacy "}}, ~’
target_node *: {{’name’: ’Dihydrocodeine’}}}},

{{ source_node ’: {{’name’: 'Magnesium Sulfate }}, °’
relation *: {{’name’: ’increase_efficacy '}}, ~’
target_node *: {{’name’: ’Orvepitant’}}}}]”

1

64



	Introduction
	The Semantic-KG Framework
	Subgraph sampling
	Subgraph perturbation
	Response generation
	Response validation

	Dataset Overview
	Dataset Validation
	Related Works
	Experiments
	Task Setup
	Results

	Discussion
	Limitations & Future Work
	Ethical Disclosure
	Broader Impact Statement
	Experimental Details
	Model Generation Parameters
	Confidence-Intervals

	Extended Dataset Statistics
	Extended Dataset Validation
	Reconstruction Success Rate

	Extended Experimental Results
	Codex Experimental Results
	FinDKG Experimental Results
	Globi Experimental Results
	Oregano Experimental Results
	Statistical Analysis

	Dataset Licenses
	Edge-Replacement Mappings
	Prompt Templates
	LLM-as-a-judge Evaluation Prompt Template
	Response Generation Prompt Templates
	Response Validation Prompt Templates


