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A ADDITIONAL RELATED WORK

Theoretical Algorithms Existing theoretical algorithms suffer from several limitations. First,
graphs with different characteristics (e.g., Erdős-Rényi graphs versus power-law graphs) may require
different features and carefully tuned parameters. In contrast, by learning from the training graphs,
our SeedGNN can automatically choose the effective features. Second, these theoretical algorithms
may not synthesize different features most effectively. For instance, the l-hop algorithm in (Mossel
et al., 2019) only utilizes the witnesses at a specific hop l, but does not study how to combine
witnesses at different hops.

Inductive Semi-supervised Learning on Graphs Our goal of using supervised learning for
seeded graph matching shares some similarity with the work in Wen et al. (2021), which also aims
to both perform inductive learning (i.e., learn transferrable knowledge from training graphs) and
utilize a small amount of labeled data on the test graph. However, Wen et al. (2021) focuses on a
node classification problem, which is quite different from seeded graph matching. In particular, Wen
et al. (2021) uses node-based GNNs, which (as we discussed in Section 4.1) have more difficulty in
effectively utilizing seed information than our proposed pair-wise GNN. Further, in order to transfer
knowledge from the trained GNN to test graphs, Wen et al. (2021) scales all GNN weights by a
common factor. It is unclear how this scaling will effectively transfer knowledge for seeded graph
matching, e.g., how to best use different hops of witnesses. In contrast, our design of SeedGNN
exploits the inherent structure of the seeded graph matching problem, and can be shown to general-
ize well to unseen graphs of sizes and types very different from the training set. For future work, it
would be of interest to explore whether our SeedGNN can be further improved with a meta-learning
component (Santoro et al., 2016).

Convex Relaxation Algorithms In addition to the theoretical algorithms and the GNN ap-
proaches, there is another class of algorithms based on convex relaxations of the quadratic assign-
ment problem, which maximizes the total number of matched edges between two graphs subject
to the seed constraint (Lyzinski et al., 2014; Fishkind et al., 2019). In (Fishkind et al., 2019), the
authors describe a gradient ascent approach to solve this relaxed problem, which is called SGM.
Compared to SeedGNN, SGM also has flavors of using witnesses and percolation ideas. Specifi-
cally, the gradient of the SGM algorithm is similar to a matrix counting 1-hop witnesses. However,
using only 1-hop witnesses is known to be ineffective in sparse graphs (as there are very few 1-hop
witnesses even for true pairs). Indeed, our experiments in Section 5 find that our SeedGNN often
outperforms SGM, especially in sparse graphs.

Differences in Using Similarity Matrix and Masking We note that both the idea of using sim-
ilarity matrix to refine higher-layer matching and the idea of masking have appeared in seedless
matching. For example, some previously proposed node-based GNN architectures for seedless graph
matching also compute the similarity matrix and use it to refine the node embedding in each layer
(Wang et al., 2019; Fey et al., 2020). However, these approaches heavily rely on high-quality non-
topological node features and does not clean up the “noisy” information as we carefully did. Yu
et al. (2019) also uses the Hungarian algorithm for seedless graph matching, but they only clean up
the matching result in their loss function. The results of intermediate layers are still very noisy. We
use the Hungarian algorithm in each layer to filter out the misleading information, and thus the final
result would be better.

Differences between Our Percolation Module and Previous Percolation Aalgorithms Unlike
previous percolation algorithms (Yartseva et al., 2013), we allow SeedGNN to correct errors from
ealier layers by re-matching nodes at each layer. Note that in many percolation algorithms, once a
new pair of seeds is identified, it will be used as the correct matching until the end. This approach
can be problematic if an incorrect pair is identified as seeds, whose impact will be lasting for many
iterations down the road. In contrast, since our SeedGNN rematches nodes at each layer, even if
some of the newly-identified seeds in the previous layer are incorrect, we can potentially correct
these errors in the next layer, as long as the fraction of incorrect seeds is small. In other words,
our design of SeedGNN takes advantage of the power of partially-correct (i.e., noisy) seeds (as
theoretically verified in Yu et al. (2021a))
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A.1 COMPARISON WITH NGM

The NGM architecture of Wang et al. (2021) shares some similarity with our SeedGNN, and it also
uses a pair-wise GNN and uses the affinity matrix as input. However, note that Wang et al. (2021)
focuses on seedless graph matching. Therefore, the NGM architecture in Wang et al. (2021) was not
designed for seeded graph matching. For example, they do not aim to exploit important features such
as witness. Further, the NGM algorithm has not been evaluated for seeded graph matching either. In
Section 5.2, we transferred the NGM approach to seeded graph matching by modifying the affinity
matrix to encode seed information, and compare its performance with our SeedGNN. Through these
experiments, we find that the NGM algorithm in Wang et al. (2021) does not generalize well when
the test graph is with much larger size and node-degree than the training graph. Below, we discuss
the possible reasons.

Recall that we train both NGM and our SeedGNN on the same training set in Section 5.1, and test
on correlated Erdős-Rényi graphs with n = 500, s = 0.8, p = {0.01, 0.2}. Note that this test graph
size is larger than the training Erdős-Rényi graph size of n = 100. From the experimental results
in Figure 5 in Section 5.2, we can observe that, although NGM performs close to our SeedGNN
in larger sparse graphs (p = 0.01), it performs quite poorly in larger dense graphs (p = 0.2).
One possible reason for this deterioration in the generalization power of NGM could be that, in the
aggregation step, NGM normalizes each representation by the vertex degree of the association graph
(which is roughly the square of the node degrees), but we do not. To see why this difference matters,
note that according to known theoretical results on seeded graph matching, there exist algorithms
that only need Ω(log n) seeds to match all n nodes (Mossel et al., 2019). However, if the graph
sparsity p is fixed, the node degree increases proportionally to n, and correspondingly the vertex
degree of the association graph increases quadratically with n. As a result, when NGM divides the
similarity of each node pair by the vertex degree, we expect that the resulting value (∼ logn

n2 ) will
decrease close to zero as the graph size increases. Hence, it would be difficult for the sinkhorn step
in NGM to distinguish the true pairs from the fake pairs in test graphs with larger size and node
degrees than the training graphs. In contrast, since SeedGNN does not divide the similarity scores
by the vertex degrees, the Hungarian algorithm step in our percolation (which can distinguish any
absolute difference) will then be able to distinguish the true pairs from the fake pairs.

In contrast to Figure 5(b), for the experiment on the SHREC’16 dataset (Table 1), NGM has similar
performance as our SeedGNN. This is because in this experiment, we train NGM also with the
SHREC ’16 dataset (same as other seedless GNNs in Table 1). Note that the node degrees of the
graphs in the SHREC’16 dataset are all around 6. In other words, the test graphs and training graphs
are with similar node degrees. As a result, the issue caused by dividing the similarity scores by the
vertex degree of the associate graphs is not as critical for the SHREC’16 dataset.

B COMPLEXITY AND SCALABILITY

B.1 TIME AND SPACE COMPLEXITY

First, we analyze the computational complexity of our SeedGNN. In each layer, counting witnesses
in (2) takes O(n1n2dmean) time. The neural networks (3) and (5) take O(n1n2) time. The Hungarian
algorithm takes O(n1n

2
2) times (Crouse, 2016). Thus, the total time complexity is O(n1n

2
2).

The space complexity of our SeedGNN is O(n1n2) since we need to store the representations of all
n1n2 node-pairs in each layer.

B.2 MAKING SEEDGNN MORE SCALABLE

For very large graphs, the step of the Hungarian algorithm may potentially become the compu-
tational bottleneck. We can use greedy max-weight matching (GMWM) in (Avis, 1983) instead,
as the time complexity of GMWM is only O(n1n2 log n2). With this improvement, the total time-
complexity is reduced to O(n1n2 log n2+n1n2dmean). To the best of our knowledge, the best-known
time complexity for GNN-based algorithms is O(n1n2) (Fey et al., 2020). Thus, the computational
complexity of our SeedGNN is only moderately larger than the best known one. Our numerical
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result shown in Table 1 has demonstrated that the run time of our SeedGNN is comparable to the
best-known GNN-based algorithms.

C STUDYING THE INNER-WORKING OF SEEDGNN

In this section, we further investigate how the performance of SeedGNN varies as we change its
inner working. First, to verify the effectiveness of our design choices for our SeedGNN method,
we compare the performance of different architectural designs. Then, we investigate which sets of
samples need to be included in our training set to obtain an effective trained model. Finally, we study
the matching process of SeedGNN for different types of graphs. The results suggest that SeedGNN
could potentially choose the appropriate features for different graphs based on the confidence level
of new seeds.

C.1 STUDY OF THE DESIGN CHOICES

To verify the effectiveness of our design choices, we consider four variants of SeedGNN, which are:

1. SeedGNN-x: SeedGNN without convolution module. This variant aims to verify the im-
portance of extracting witness-like information at a larger number of hops.

2. SeedGNN-w: SeedGNN without percolation module. This variant aims to verify the im-
portance of the percolation module in SeedGNN.

3. SeedGNN-p: SeedGNN with percolation module but without the Hungarian matching al-
gorithm (i.e., zl = unvec(Yl) in each GNN layer). This variant aims to verify the impor-
tance of the “cleaning” process in SeedGNN.

4. SeedGNN-h: SeedGNN with zl = unvec(Rl) instead of (7) in each layer. This vari-
ant aims to verify that among the new seeds, it is still important to distinguish the high-
confident one and low-confident one.

Finally, we use “SeedGNN” to denote the full design in Fig. 1. We train all these variants with the
same training set T in Section 5.1.

In Figure 8, we show the performance of the above variants of SeedGNN on correlated Erdős-Rényi
graph model. For test graphs, we increase θ from 0 to 0.05 while fixing n = 500, p = 0.04, s = 0.8.
As illustrated in Figure 8, our SeedGNN with full design achieves the best performance among
all variants, which shows the effectiveness of our design choices for the SeedGNN architecture.
Further, among the variants, SeedGNN-w almost fails completely, which highlights the significant
importance of using the percolation idea in SeedGNN for seeded graph matching. SeedGNNx does
performs poorly, which demonstrates that it is also important to extract witness information at a
larger number of hops instead of only 1-hop. We can observe that SeedGNN and SeedGNN-h
both outperform SeedGNN-p and the improvement of SeedGNN is significantly bigger. This result
verifies that it is not enough to only use the soft-correspondence (as in SeedGNN-p), and we need
to combine both the matching result Rl of the Hungarian algorithm and the similarity Yl as in (7) to
achieve the best performance.

C.2 STUDY OF THE NECESSARY TRAINING SAMPLES FOR GENERALIZATION

Intuitively, in order to help our SeedGNN successfully learn useful knowledge that can be applied to
never-seen graphs, the training set needs to contain graph pairs with different varieties, e.g., graph
sparsity, graph correlation, and the size of seed set. However, a larger training set also increases
the training time. To show which sets of graph pairs are necessary, we compare SeedGNN trained
with different training sets, whose parameters are shown in Table 2. We use T to denote the training
set that only includes the Erdős-Rényi graphs of the training set in Section 5.1. First, to show the
necessity of training graph pairs with a wide range of sparsity, we train SeedGNN with T , Tp1 and
Tp2, and compare the performance of the trained models while increasing p from 0.02 to 0.2 and
fixing n = 500, s = 0.8 and θ = 0.05. Figure 9(a) shows that, if SeedGNN is only trained with
p = 0.1, it performs well on sparse graphs but poorly on dense graphs. In contrast, if SeedGNN is
only trained with p = 0.5, it performs well on dense graphs but poorly on sparse graphs. Thus, we
should include both p = 0.1 and p = 0.5 in the training set to achieve good performance. Second, to
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Figure 8: Performance comparison of our SeedGNN and four other variants on correlated Erdős-
Rényi graph model with different θ. Fix n = 500, p = 0.04, s = 0.8.

show the necessity of training graph pairs with different correlations, we compare the performance of
SeedGNN trained with T , Ts1, Ts2 and Ts3, and compare these models while increasing s from 0.5
to 1 and fixing n = 500, p = 0.08 and θ = 0.05. Figure 9(b) shows that, if SeedGNN is only trained
with s = 0.6, it performs well on moderately correlated graphs but poorly on highly correlated
graphs. In contrast, if SeedGNN is only trained with s = 0.8 or s = 1, it performs well on highly
correlated graphs but poorly on moderately correlated graphs. Thus, we should include different
correlations in the training set to achieve good performance. Third, we compare the performance of
SeedGNN trained with T , Tt1 and Tt2, and compare these models while increasing θ from 0 to 0.05
and fixing n = 500, p = 0.04 and s = 0.8. Figure 9(c) shows that, if SeedGNN is only trained with
θ = 0.1 and θ ∈ {0.1, 0.3}, it performs exactly the same. If SeedGNN is only trained with θ = 0.3,
it performs worse than the former two. Thus, we only need to include graph pairs with a relatively
small seed set in the training set.

Table 2: Different Training Sets

Training Sets p s θ
Tp1 {0.1} {0.6, 0.8, 1} {0.05, 0.1}
Tp2 {0.5} {0.6, 0.8, 1} {0.05, 0.1}
Ts1 {0.1, 0.5} {1} {0.05, 0.1}
Ts2 {0.1, 0.5} {0.8} {0.05, 0.1}
Ts3 {0.1, 0.5} {0.6} {0.05, 0.1}
Tt1 {0.1, 0.5} {0.6, 0.8, 1} {0.3}
Tt2 {0.1, 0.5} {0.6, 0.8, 1} {0.1, 0.3}
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(a) s = 0.8, θ = 0.05.
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(b) p = 0.08, θ = 0.05.
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(c) p = 0.04, s = 0.8.

Figure 9: Performance comparison of SeedGNN trained with different training sets. Fix n = 500.
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C.3 LAYER-WISE STUDY OF SEEDGNN

Recall from Section 4.3 that our design on the feature combination potentially enables SeedGNN to
utilize various types of witness information adaptively, based on the confidence levels of new seeds
zl. In this section, we verify this capability through numerical results. To directly visualize zl in
the matching process, we present the similarity matrix Yl of each layer of SeedGNN and compare
it with the witness matrix of the iterative 1-hop and 2-hop algorithms at each iteration. We assume
that the true mapping π is the identity permutation, i.e., π(i) = i.

First, we study the matching process in dense graphs. We fix a pair of correlated Erdős-Rényi graphs
with n = 50, p = 0.4, s = 0.8 and θ = 0.1. Then, we index the nodes from 0 to 49 in the descending
order of the node degree in the parent graph G0. In Figure 10, we show the similarity matrix Yl in
each layer of our SeedGNN, and compare it with the witness matrix in each iteration using either
the 1-hop or 2-hop algorithm. We can immediately see that the similarity matrices provided by
SeedGNN are more similar to the witness matrices of the iterative 1-hop algorithm than that of the
iterative 2-hop algorithm. Specifically, since the graphs are dense, the 1-hop witness information
from the initial seeds can already generate new seeds with high confidence (see Figure 10(a) and
10(g), where there are many dark points on the diagonal (i.e., consistent with the underlying true
mapping), while there are few dark points off the diagonal). The iterative 1-hop algorithm is known
to use new 1-hop witnesses from these new seeds (see Figure 10(h)) in the next iteration. In contrast,
the 2-hop witnesses from the initial seeds are much noisier (see Figure 10(m), where the darkness of
the points on the diagonal cannot be differentiated from those off the diagonal). As we illustrated in
Figure 4, these two types of witness information are both contained in the second layer of SeedGNN.
By comparing Figure 10(b) with Figure 10(h) and Figure 10(m), we can observe that the second layer
of SeedGNN produces a similarity matrix that is closer to the witness matrix of the 1-hop algorithm
than that of the 2-hop algorithm. Thus, we infer that, for these dense graphs in which the new seeds
are reliable, the SeedGNN relies more on witnesses computed from these new seeds.
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Figure 10: The similarity/witness matrices of the matching process on a fixed pair of dense corre-
lated Erdős-Rényi graphs with n = 50, p = 0.4, s = 0.8 and θ = 0.1. Darker points correspond
to higher similarity (in Yl) or a larger number of witnesses. Figure 10(a) — Figure 10(f) are the
similarity matrix from each layer of SeedGNN. Figure 10(g) — Figure 10(l) are the witness matrix
from each iteration of the iterative 1-hop algorithm. Figure 10(m) — Figure 10(o) are the witness
matrix from each iteration of the iterative 2-hop algorithm.

Then, we study the matching process in sparse graphs. We fix a pair of correlated Erdős-Rényi
graphs with n = 50, p = 0.1, s = 0.8 and θ = 0.1. Then, we also index the nodes from 0 to 49 in
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the descending order of the node degree in the parent graph G0. In Figure 11, we show the similarity
matrix Yl in each layer of our SeedGNN, and compare it with the witness matrix in each iteration
using either the 1-hop or 2-hop algorithm. In contrast to Figure 10, in this case, we observe that the
similarity matrices provided by SeedGNN are more similar to the witness matrices of the iterative
2-hop algorithm than those of the iterative 1-hop algorithm. Specifically, since the graphs are sparse,
there are very few 1-hop witnesses even for true pairs. Thus, the 1-hop algorithm almost fails com-
pletely (see Figure 11(g) — Figure 11(l)). On the contrary, the 2-hop witnesses from the initial seeds
are much more reliable (see Figure 11(m)). As a result, the iterative 2-hop algorithm produces much
better results (see Figure 11(m) — Figure 11(o)). By comparing Figure 11(b) with Figure 11(h) and
Figure 11(m), we can observe that the second layer of SeedGNN produces a similarity matrix that is
closer to the witness matrix of the 2-hop algorithm than that of the 1-hop algorithm. Thus, we can
infer that, for these sparse graphs in which the confidence levels of new seeds are low, SeedGNN
utilizes 2-hop witness information from the initial seeds, and avoids using 1-hop witnesses based on
these new seeds.
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Figure 11: The similarity/witness matrices of the matching process on a fixed pair of sparse corre-
lated Erdős-Rényi graphs with n = 50, p = 0.1, s = 0.8 and θ = 0.1. Darker points correspond
to higher similarity (in Yl) or a larger number of witnesses. Figure 11(a) — Figure 11(f) are the
similarity matrix from each layer of SeedGNN. Figure 11(g) — Figure 11(l) are the witness matrix
from each iteration of the iterative 1-hop algorithm. Figure 11(m) — Figure 11(o) are the witness
matrix from each iteration of the iterative 2-hop algorithm.

In summary, from these two case studies, we conclude that our SeedGNN might be able to choose
the appropriate features for different types of graphs according to the confidence level of new seeds.
Further, we observe that the matching accuracy of SeedGNN is even higher than that of the 1-
hop and 2-hop algorithms, the latter two of which have been theoretically proven to work well for
dense graphs and sparse graphs, respectively (Mossel et al., 2019). Thus, this result suggests that
SeedGNN may extract more valuable features, or learn more effective ways to synthesize witness
information, than the theoretical algorithms.

D PERFORMANCE COMPARISON WITH GNN METHODS

In this section, we further compare the SeedGNN with several state-of-the-art deep graph match-
ing networks, including semi-supervised learning methods (PALE (Man et al., 2016), DeepLink
(Zhou et al., 2018), dName (Zhou et al., 2019), CrossMNA (Chu et al., 2019), MGCN (Chen et al.,
2020) ) and supervised learning methods (GMN (Zanfir et al., 2018),PCA-GM (Wang et al., 2019),
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NGM (Wang et al., 2021), IPCA-GM (Wang et al., 2020a), CIE (Yu et al., 2019), GLMNet (Jiang
et al., 2022), LCS (Wang et al., 2020b), DGMC (Fey et al., 2020), BB-GM (Rolı́nek et al., 2020),
DGM (Gao et al., 2021), DLGM (Yu et al., 2021c)). We conduct experiments on Willow Object
dataset (Cho et al., 2013), which consists of 256 images in 5 categories. The training set contains
all categories of images, with 20 images of each category. We test the trained models on the rest
images. Following the experimental setups in (Fey et al., 2020), we construct graphs via the De-
launay triangulation of keypoints, and the input features of keypoints are given by the concatenated
output of relu4 2 and relu5 1 of a pre-trained VGG16 (Simonyan & Zisserman, 2015). Note that
the resulting graphs only have 10 nodes. For semi-supervised methods, we randomly choose 5 true
pairs as seeds. For supervised methods, they do not need seeds. For SeedGNN, we still directly
use the model trained in Section 5.1. We generate the seeds in two ways. The first way is to apply
the Hungarian algorithm on the similarities of non-topological node features. The second way is
to use the matching result of the GNN methods for seedless graph matching (we choose DGMC).
Note that for both ways, our SeedGNN does not utilize any training graph in the Willow Object
dataset. For the semi-supervised algorithms, we use the publicly available implementations from
their respective papers to generate the corresponding matching results. The performance values of
the existing supervised algorithms are directly retrieved from their respective papers.

Since there are lack of sufficient training data for semi-supervised methods (there are only 5 seeds
for each pair of graphs), it is difficult for them to learn to match the seeds effectively. As a result,
we observe in Table 3 that SeedGNN significantly outperforms the semi-supervised methods. In
contrast, the supervised methods learn from a large number of graph pairs. Further, the two images
to be matched are of the same category. Therefore, the input node feature generated are similar
and informative enough for correlating keypoints. Thus, the supervised methods have performed
relatively well, and SeedGNN using seeds generated by the non-topological node features does not
achieve performance gain. However, we can use SeedGNN to refine the output of seedless graph
matching algorithms. We observe that SeedGNN consistently improves the matching performance
of DGMC and achieves the best performance.

Table 3: Comparison of matching accuracy (%) on Willow Object dataset. The best results are
marked as bold. The performance values of the existing supervised algorithms are directly retrieved
from their respective papers.
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DeepLink (Zhou et al., 2018) 86.1 55.8 63.7 62.0 72.3 66.0
dName (Zhou et al., 2019) 86.9 58.3 65.3 66.0 77.7 68.8

CrossMNA (Chu et al., 2019) 85.6 60.1 61.4 65.8 74.2 68.0
MGCN (Chen et al., 2020) 87.2 63.0 67.5 67.2 78.1 72.6

Su
pe

rv
is

ed

GMN (Zanfir et al., 2018) 98.1 65.0 72.9 74.3 70.5 76.2
PCA-GM (Wang et al., 2019) 100.0 76.7 84.0 93.5 96.9 90.2

NGM (Wang et al., 2021) 99.2 82.1 84.1 77.4 93.5 87.2
IPCA-GM (Wang et al., 2020a) 100.0 77.7 90.2 84.9 95.2 89.6

CIE (Yu et al., 2019) 100.0 90.0 82.2 81.2 97.6 90.2
GLMNet (Jiang et al., 2022) 100.0 89.7 93.6 85.4 93.4 92.4

LCS (Wang et al., 2020b) 100.0 99.4 91.2 86.2 97.9 94.9
DGMC (Fey et al., 2020) 100.0 92.1 90.3 89.0 97.1 93.7

BB-GM (Rolı́nek et al., 2020) 100.0 98.9 95.7 93.1 99.1 97.4
DGM (Gao et al., 2021) 100.0 98.8 98.0 92.8 99.0 97.7
DLGM (Yu et al., 2021c) 100.0 99.3 96.5 93.7 99.3 97.8

SeedGNN (ours) 100.0 98.9 98.0 93.1 98.7 97.7
DGMC+ SeedGNN 100.0 99.6 100.0 99.7 99.1 99.5
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